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Abstract. In this study, we investigate the ability of the chemistrgnsport model (CTM) B-
LAIR 3D of the air quality modelling platform &.yPHEMUS of simulating lidar backscattered pro-
files from model aerosol concentration outputs. To do soukitad lidar signals are compared to
hourly lidar observations performed during the MEGAPOLE@4cities: Emissions, urban, regional
and Global Atmospheric POLIlution and climate effects, artddrated tools for assessment and mit-
igation) summer experiment in July 2009, where a grounetbasobile lidar was deployed around
Paris on-board a van. The comparison is performed for sfgreifit measurement days, 01, 04, 16,
21, 26 and 29 July 2009, corresponding to different levelpadlution and different atmospheric
conditions. BLYPHEMUS correctly reproduces the vertical distribution of aerasatical properties
and their temporal variability. In the second part of thisdst two new algorithms for assimilating
lidar observations are presented. The aerosol simulatghsut and with lidar data assimilation are
evaluated using the Airparif (a regional operational nekwin charge of air quality survey around
the Paris area) data base to demonstrate the feasibilithendefulness of assimilating lidar profiles
for aerosol forecasts.

1 Introduction

Aerosols are key air quality species to monitor and modehayg impact vegetation and as they
impact human health by penetrating the respiratory systeheading to respiratory and cardiovas-
cular diseases (Lauwerys et al., 2007; Dockery and Pop&)198ey also impact visibility (Wang

et al., 2009), and they represent an uncertain componefintdte changes due to their effects on
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the Earth’s radiative budgets (Intergovernment Panel amaté Control (IPCC), 2007). For air
quality, in order to simulate and predict particle concativns, modellers have developed various
chemistry transport models (CTM) in the past several yeags,EMEP (European Monitoring and
Evaluation Programme) (Simpson et al., 2003), LOTOS (LoagriTOzone Simulation) - EUROS
(European Operational Smog) (Schaap et al., 2004), CHIMEREzic et al., 2006), DEHM (Dan-
ish Eulerean Hemispheric Model) (Brandt et al., 2007) andlPRHEMUS (Sartelet et al., 2007).
However, the aerosol vertical distribution is poorly quied, because of numerous uncertainties on
their sources (direct emissions) and on processes affettt@ir formation, e.g. nucleation, conden-
sation, evaporation, and coagulation, as well as on mdtegical conditions. As aerosol lifetime
ranges froml to 10 days (Seinfeld and Pandis, 1998), improvements in the septation of their
vertical distribution may lead to improved surface concaians (lower error and higher correlation
against observations) (Wang et al., 2013).

Various measurement types have been used to evaluate mddedsmost frequently used data
arein situ surface measurements, e.g. AirBase (http://www.eegpaura/) and EMEP over Europe,
BDQA (Base de Donges de la Quakt de I'Air) (Sartelet et al., 2007; Konovalov et al., 2009).
However, they do not provide direct information on vertipedfiles.

Satellite passive remote sensors (e.g. the Moderate Riesolionaging Spectroradiometers (MODIS))
and sun-photometer surface stations (e.g. the AErosol ROWBE Twork (AERONET)) have greatly
enhanced our ability to evaluate models. Comparisons legtwbserved and simulated Aerosol Op-
tical Fhiekness{AST) have been implemented for global nimdad regional models (Kinne et al.,
2006; Tombette et al., 2008¢R et al., 2010). However, instruments, such as sun photosnede
only retrieve column-integrated aerosol properties amdordy work during daytime.

As accurate vertical profiles of aerosols can be measure@togal lidars, lidar measurements
were used in several campaigns, for example to evaluateghsport of particles (Chazette et al.,
2012). Moreover, aerosol lidar networks, such as the Eanmopgeerosol Research Lidar Network
(EARLINET), are being developed & situ sites. In space, measurements are performed with
the Cloud-Aerosol Lidar with Orthogonal Polarisation (Q&IP) lidar (Winker et al., 2007). Li-
dar measurements have been used for the validation of denosiels. For example, Hodzic et al.
(2004) compared vertical profiles simulated by CHIMERE whithse observed by lidars, from EAR-
LINET, and Stromatas et al. (2012) used observations fraQALIOP space-based lidar. Royer
et al. (2011) used an optical-to-mass relationships (ynmamurban and rural) to retrieve the PM
(particulate matter with diameter less tham um) concentrations from lidar signals (Raut et al.,
2009a,b). In Royer et al. (2011), lidar-derived RMconcentrations were compared with simula-
tions from PoLYPHEMUS and CHIMERE during the MEGAPOLI (Megacities: Emissionshanm,
regional and Global Atmospheric POLIution and climate &feand Integrated tools for assessment
and mitigation) summer experiment in July 2009.

This paper is-devetingto-evatluating the lidar signal sirteddy RoLYPHEMUSduring the MEGAPOLI
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summer experiment, when a ground-based mobile lidar (GBWsl deployed around Paris on-
board a van. Measurements from a ground-basesitu lidar at Saclay were also performed on
01 July 2009. This evaluation can also be regarded as a megsing stage of data assimilation
(validation of the observation operator).

Data assimilation (DA hereafter) can reduce the unceréaim input data such as initial or bound-
ary conditions by coupling models to observations (Bouitied Courtier, 2002). In air quality,
applications of DA to PN, forecast usingn situ surface measurements have been performed by
Denby et al. (2008) and Tombette et al. (2009) over Europa Pagowski et al. (2010); Pagowski
and Grell (2012); Li et al. (2013) over the United States ofekita. Over Europe, the efficiency
of assimilating lidar measurements to improve fgNbrecast has been compared to the efficiency
of assimilatingin situ surface measurements by Wang et al. (2013). They suggéstethé assim-
ilation of lidar observations may be more efficient to immd®V, forecast, although it depends
on the number of lidar stations used. However, Wang et alL3pdid not directly assimilate the
lidar signal, but they used a relation between mass coratérirand optical properties of pollution
aerosol. Although this kind of relation has been determfoegollution aerosols over Greater Paris
(Raut et al., 2009a), it needs to be generalised to otherurgrasnt sites before operationally as-
similating the mass concentration converted from the I&iiginal. Moreover, the uncertainly linked
to the estimation of mass concentrations may be abifidt (Raut et al., 2009 is mostly due to
uncertainties in estimating the specific cross sectionsaBse uncertainties in the lidar signal may
be less than %, it is more accurate to directly assimilate lidar signals.

This paper is organised as follows. Section 2 describesxperignent setup, i.e. the chem-
istry transport model used RYPHEMUS) and the observations. In section 3, the lidar observation
operator is presented. Section 4 describes the evaludtitie simulation within situ surface mea-
surements and AERONET data. Results of the comparisonebatabserved and simulated lidar
signals are shown in section 5. A new algorithm for the adation of lidar observations and results
are shown in section 6. The findings are summarised and disdus section 7.

2 Experiment setup

2.1 -Presentation-ofthg model

In this study, the BLAIR3D air quality model (Sartelet et al., 2007) of the air qyafitatform
PoLYPHEMUS, available at http://cerea.enpc.fr/polyphemus/ and ritesd in Mallet et al. (2007),
is used to simulate air quality over the Greater Paris arezrogols are modelled using the Slze-
REsolved Aerosol Model (SIREAM-SuperSorgam), which iscdiégd in Debry et al. (2007) and
Kim et al. (2011). SIREAM-SuperSorgam includ&saerosol species3 primary species (mineral
dust, black carbon and primary organic speciésjorganic species (ammonium, sulfate, nitrate,
chloride and sodium) andi2 organic species. Five bins logarithmically distributedothe size
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range0.01 pm - 10 pm are used. The chemical mechanism CBO05 (Carbon Bond meb3its
used for the gas chemistry (Yarwood et al., 2005p.L RIR3D/SIREAM has been used for several
applications. For example, it was comparedrdaitu surface measurements for gas and aerosols
over Europe by Sartelet et al. (2007, 2012); Couvidat et28)12), over Greater Paris by Couvidat
et al. (2013), it was compared to AERONET data over Europe dybkette et al. (2008) and to
satellite data by Zhang et al. (2013), and it was compareidiao-terived PM, over Greater Paris
during MEGAPOLI by Royer et al. (2011).

2.2 Modelling setup and observational data

The modelling domain is the same as the one used in Royer @0dl1); Couvidat et al. (2013).
It covers the Greater Paris ared.f £/,3.5°E] x [47.9°N, 50.1° N]) with a horizontal resolution
of 0.02° x 0.02°. Because Royer et al. (2011) show that limited vertical rhogsolution leads to
much smoother vertical profiles than those deduced from $dmals, a finer vertical resolution is
used with twenty three vertical levels from the ground 2000 m, instead of nine vertical levels in
Royer et al. (2011). The simulations are carried out for owatim from28 June to30 July 2009.
Meteorological inputs are the same as in Couvidat et al.3p0lhey are simulated with the Weather
Research & Forecasting (WRF) model (Skamarock et al., 20§i8y@n urban canopy model and an
undated Corine land-use data base (Kim, 2011) with the YS#meterisation (Hong et al., 2006)
for the planetary boundary layer (PBL) dynamics. Anthraggrdg emissions of gases and aerosols
are generated with the Airparif (the Paris air quality aggmaventory for the yea2005. Boundary
conditions for gaseous and particulate species were astdiom nested simulations over Europe
and France, presented by Couvidat et al. (2013).

The ground based mobile lidar (GBML) used during the MEGAP@4mpaign is based on an
ALS450 lidar commercialised by the LEOSPHERE company aitahily developed by the Com-
missariat I'Energie Atomigue (CEA) and the Centre National de la Reche Scientifigue (CNRS)
(Chazette et al., 2007). It provides lidar measurementsatdn. The main characteristics of this
lidar are detailed in Royer et al. (2011). This system isipaldrly well-adapted to air pollution
and tropospheric aerosol studies thanks to its full overtsgzhed at about 150-200 m height and
its +igh vertical resolution ot.5 m. Measurement days of 01, 04, 16, 21, 26 and 29 July 2009,
which correspond to different levels of pollution from Adgnif (low, moderate or high), are used for
comparisons to the lidar signal. Moreover, ground-basesitu lidar measurements were performed
at Saclay on 01 July 2009 from 06:49 to 16:44 UTC 01 July 2008 [lue square in Fig. 1). These
measurements are used for both the comparison and the lasisimof lidar observations.

Airparif is the regional operational network in charge af@uality survey around the Paris area.
It provides hourly gases and/or aerosol concentrations,{Rivid PM 5) measurements. Figure 1
shows the location of the Airparif stations with red squaed/or the magenta triangles. There are
17 stations at which P\ and/or PM 5 concentration measurements are performed.
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The AERONET (AErosol RObotic NETwork) program is a fedesatof ground-based remote
sensing aerosol networks established by NASA and PHOTOMg.(0f Lille 1, CNES, and CNRS-
INSU), which provides a long-term, continuous and readdgessible public domain database of
aerosol optical measurements performed by sun—photn—photometers measure AOD at
different wavelengths ranging from 340 to 1024 nm. AOD data@mputed for three data qual-
ity levels: Level 1.0 (unscreened), Level 1.5 (cloud-sneh, and Level 2.0 (cloud-screened and
quality-assured). The uncertainty of AOD measurementssis than 0.02 (Holben et al., 2001). For
this study, there are 2 available stations over GreatesPRairis (urban station) and Palaiseau (sub-
urban station) (the green discs in Fig. 1). In this papereL@&W AOD data at 340 and 380 nm are
used to derive AOD data at 355 nm following the Angstrlaw:

AOD(355) = AOD(340) <355> , )
340
whereq is the angstim exponent defined by
AOD(340) 380
=In|———=]/In{ — |. 2
“ n(AOD(380)>/n<340) @

3 Methodology

This section presents the methodology usediny®HEMUSto derive the lidar observation operator.

The range-corrected lidar signBR, measured at an altitudeis defined by Collis and Russell

(1976
PR2(2) =C(Bm(2)+ B4(2))exp (—Q/OZ (am(2) —&—oza(z’))dz’) , (3)

whereg,, (resp. 3,) is the molecular (resp. aerosol) backscatter coefficiept(resp. a,) is the
molecular (resp. aerosol) extinction coefficient, & the instrumental constant for each channel
depending on the technical characteristics of the emittimjreceiving optics. In order to eliminate
the instrumental constant (because it is unknown), BRs normalised as follows

_ PR?(Z) _ 5m(z)+/8a(z) ex Fref a (2 a (2 !
H(Z)ipRQ(Zref)76m(zref)+ﬁa(zref) p(Ql ( m( )+ a( ))d >’ (4)

wherez,s is taken at an altitude in the molecular zone. In equationt¢4@stimate the normalised

lidar signalH, four optical parameters,,, 5., a,, anda, are needed.
The molecular backscatter coefficient,() at the wavelength of the incident light is calculated

by Nicolet (1984)@,
B = e (5)
m — kBT SRay

where P is the pressure] is the temperatureip is the Boltzmann constant, and the Rayleigh

scattering cross sectioi., is given by

SRay = 4.678- 10—29 . )\—(3.916+0.074~A+0.05/>\) . (6)
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The molecular extinction coefficient,) is given by Nicolet (1984)

8w
—Bm.- 7
3/ )

Aerosol extinction and backscatter coefficienty @nd «,) are functions of particle sizes, of

Qo =

the aerosol complex refractive index (ACRI) of partictesand of the wavelength of the incident
light. With a population of different-sized particles oéiatical refractive index: and with a number
size distribution functiom (Dt ) With Dy the particle wet diameter, the aerosol extinction and

backscatter coefficients are given by the following fornsula

DT o
wet 7TD
Qg = / 4wet Qext (m7awet)n(Dwet)dDweta (8)
0
and
Dmax 2
wet 7TD
Ba= / 4wet Qbsca(maawet)n(Dwet)dDwet7 (9)
0

whereD™2x js a wet diameter upper limit for the particle populatiag,; = ’TDAW a dimensionless

wet

size parametet)oxt (M, awet ) aNdQbsca (M, awet ) are extinction and backscatter efficiencies. These
efficiencies are computed through the Mie code (de Rooij amndder Stap, 1984; Mishchenko et al.,
2002) from ftp://ftp.giss.nasa.gov/pub/crmim/spheihe dry complex refractive index (CRI) is
interpolated from the OPAC package (Hess et al., 1998) fcin species at the desired wavelength
(355 nm). The CRI and densities used for calculation of appcoperties are shown in Table 1. The
wet diameterD,,., is computed from the mean dry diameter of each section oféhesal sectional
model SIREAM and from the aerosol water content. The aenvatér content is calculated from
the thermodynamic model ISORROPIA (Nenes et al., 1998@

Computing the ACRI requires to make an assumption on thengisiate of the aerosol chemical

species. The current version obPrPHEMUS s based on an assumption of aerosol internal mixing:
all the particles of a given size section at a given grid pointhe domain are supposed to have
the same chemical composition. Within this framework, Tettdet al. (2008) compared aerosol
optical properties using 2 different assumptions for thacBICarbon (BC) mixing state: internally
homogeneous mixing and core-shell mixing. In the intepnatbmogeneous mixing case, BC is
treated as the other components and a volume-weighted ACgdIculated from the CRI of pure
species. In the core-shell mixing case, each particle isnasd to have a structure : the core (BC)
and the shell (all the other components). The hypothesia @ftarnally homogeneous mixing state
seems to be unphysical as BC can not be well-mixed in thecpaliecause of its complex geometry
and solid state (Katrinak et al., 1993; Sachdeva and A6,72. Tombette et al. (2008) have shown
that the use of these two mixing states leads to negligibferdnces on AOD, but non-negligible
differences on single scattering albedo and absorptiongssy in agreement with illustrations of
Jacobson (2000). Thus, a core-shell mixing hypothesisad ursthis study. The Maxwell-Gar,
approximation is used to calculate ACRI from the core CRI.(BC in this study) and the shell EC:DJ
(where all the other components are well mixed).
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3.1 Estimation of z,.¢

The altitude used to normalise the lidar signal does not t@edrrespond exactly to the beginning
altitude of the molecular zone, but it could be any arbitrengsen altitude in the molecular zone,
where there is almost no aerosol. However, it is better toamsestimation of the normalisation
altitude as close as possible to the beginning of the malezohe, because lidar signals are attached
to higher uncertainties at high altitudes. Although theeaualar zone is often determined visually
from lidar vertical profiles, this method is not efficient teat large amounts of lidar profiles. We
therefore created a new algorithm which can automaticalyreate the normalisation altitudg.;
from the lidar vertical profile.

The normalisation altitude,.; is estimated from the lidar signal and the simulated mobecul

signalSgay

SRay(z) = ﬁm(z)exp (_2/0 am(zl)dzl> ) (10)
as follows :

— Define a weight for each vertical point of the lidar signak(tkertical resolution is 1.5 m). The
weights should be larger for the points that are more likellge in the molecular zone, i.e. at
high altitudes. We used(h) = exp((h — hmax)/L)/L, whereh is the altitude of the points,
hmax 1S the maximal altitude considered (e.g. 4 km) and the patemieis taken equal to
200 m.

— Fitall lidar signal vertical points (noted as a vecggwith a weighted least absolute deviations
(LAD) regression (DasGupta and Mishra, 2007). In detail miimise

(= (ab-+0) " wlls =3 (s —ahs =) (1)

to find e andb (cyan lines in Fig. 2).

— Calibrate the simulated molecular sigi8al., with the LAD regression line at altitude,, .,
and calculate the difference between the calibraied and the LAD regression line at each
vertical point of the lidar signal in a loop starting from higltitudes to low altitudes. The
altitude at which the difference becomes larger than a pseggaed value (1% of the value

corresponding to the LAD regression line) correspondsdo

Figure 2 shows comparisons between the lidar signal anditt@ated molecular signdg.y
for different lidar measurement days during MEGAPOLI. Thewdated molecular signal (red lines
in Fig. 2) agrees well with the lidar observations (blue p®im Fig. 2) at high altitudes in the
molecular zone, leading to the determination of the mobeczbne and, ;.
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4 Model evaluation

To evaluate air quality models, Boylan and Russell (2006pmanended PM model performance
goal and criterion that are based upon an analysis of nuraétiland visibility modelling studies.
The PM model performance goal corresponds to the level afracy that is considered to be close to
the best a model can be expected to achieve. The PM modetiparice criterion corresponds to the
level of accuracy that is considered to be acceptable foefling applications. The Mean Fractional
Bias (MFB) and the Mean Fractional Error (MFE) are proposeévaluate model performances
against observations. RMSE and correlation are also offed im the aerosol modelling community.
The statistical indicators are defined in appendix A.

4.1 Model evaluation with Airparif data

Table 2 shows statistics for the month of simulation andlfier@ lidar measurement days. For the
month of simulation, for PM5, the MFB and MFE are respectively in the range [-30 %, 30%] and
[0, 50 %], i.e. the PM model performance goal is met. For,P,Nhe MFB and MFE are respectively
in the range [-60 %, 60%] and [0, 75 %], i.e. the PM model pen@ance criterion is met. For each
lidar measurement day, the PM model performance goal isyalweet for PM 5, and the PM model
performance criterion is met for P except for 29 July.

As shown in Table 2, the model simulates well PMconcentrations, but PN concentrations
are underestimated. In other words, coarse particles¢pkate matter with a diameter higher than
2.5 um and lower than 10 pm) are underestimated. This may dmibe emissions and boundary
conditions of coarse particles are underestimated, eafl mesuspensions of PM is not considered
in the model and boundary conditions are obtained from desteulations over Europe and France

where coarse particles were underestimated.
4.2 Model evaluation with AERONET data

Table 3 presents statistics for hourly data: the simulatinderestimates the AOD, in agreement
with the result of the comparisons between the simulatiah Ainparif observations (see section
4.1). The simulated and the observed AOD agree well on 011®4nd 26 July 2009, according to
the criteria of Boylan and Russell (2006). However, thedation is only -8 on 01 July, which is

a day of high pollution (see Table 2). To understand why threetation is low on 01 July, Figure
3 presents the hourly evolution of the Rivconcentration (resp. simulated AOD) against Airparif
(resp. AERONET) surface measurements at the station "Pafisthe surface, there is a good
agreement (90.38 % correlation) between the simulationAirghrif observations for the PM
concentration on 01 July 2009. However, the hourly simdl&®D and the surface measured RM
do not correlate well with AERONET data at this station. Altigh the surface P)N concentration
starts to increase from 02:00 UTC, the AOD only begins togase from 09:00 UTC. It means that
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between 02:00 and 09:00 UTC, RMconcentration is high near the surface but not at high dkisu
However, in the model, the AOD increases from as early asbo8C. A possible explanation of
the discrepancy between observed and simulated AOD ishbaidrticles are mixed by turbulence
more effectively and earlier in the model than in the tru¢estd the atmosphere on 01 July (Wang
et al., 2013). As shown in Fig. 3, there is a time differendso(a 2 hours) between the peak of
AOD and the peak of simulated/measured surfacefPddncentrations, probably because a strong
thermic mixing occurring in the late morning during thisdidmeasurement day (Royer et al., 2011).

5 Comparisons with lidar vertical profiles

The simulated lidar signal is compared with GBML observagiperformed during the MEGAPOLI
summer experiment on the different measurements days 4016021, 26 and 29 July 2009). The
purpose of this section is to validate the ability abl®PHEMUS to simulate lidar backscattered
profiles and then choose suitable measurement days to doilasisin tests.

On 01 July 2009, GBML measurements are performed leewaidkiise pollution plume in the
Southwest of Paris between Saclay and Chateaudun during 8 ¢be black track in Fig. 1). Itisthe
most polluted day of the MEGAPOLI experiment. High level$,,, on average about 45 pgrh
(see Tab. 2), are measured by the Airparif network. Figuree$ents the comparison between
lidar observations and the simulation at 11:00 , 12:00 an@@.BTC. It shows that BLYPHEMUS
underestimates the lidar signal at 13:00 UTC, but it ovaredes it at 14:00 UTC and it agrees
well with observations at 15:00 UTC. While the-beundarytplyeight increases from about 1.2
to 1.8 km from 11:00 to 13:00 UTC and the GBML runs out of thelyg@n plume (Royer et al.,
2011), both the observed and simulated lidar signals dserdeigures of the comparison between
the simulation and observations from a ground-baseditu lidar at Saclay @hown later in this
paper. The pollution plume covers Saclay because of thendast wind. Thus high lidar signal
values in both the simulation and observations are seen Hjt€0 UTC, although the simulated
lidar signals are underestimated. Data assimilation vélpbrformed for this day, as it is the most
polluted day with observations from both the GMBL and a gmased in-situ lidar.

On 04 July 2009, GBML measurements are performed around Réh a circular pattern from
14:49 to 17:24 UTC. Particle AOD and concentrations are rggienated in the simulation. The
daily averaged AOD from the AERONET network is about 0.25pextively 0.14 in the simulation
(see Tab. 3). The daily averaged R)Mconcentration from the Airparif network is about 18.37
ug m3, respectively 11.11 pgn? in the simulation (see Tab. 2). Figure 5 shows the comparison
between the GBML measurements and the simulation at 15:@3 &R0 16:00 UTC. The simulated
lidar signals are underestimated. Moreover, lidar measents show an aerosol layer between 2.0
km and 3.0 km (probably from long-range transport), whichdspresent in the simulation.

On 16 July 2009, GBML measurements are performed in the NafrtRaris from Saclay to
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Amiens between 11:00 UTC and 14:30 UTC. The lidar signal eral underestimated, as shown
in Fig. 6, in agreement with the underestimation of lgMhown by the statistics in Tables 2 and
3. Surface PM, concentration from the Airparif network and from the sintida are respectively
26.25 and 16.47 ugnt (low-moderate level of pollution, see Tab. 2). The obseraed simulated
AOD are respectively 0.26 and 0.18 (see Tab. 3). The sindild@D has a good correlation with
AERONET data (up to 89%). As deduced from the comparisons of the modelled and obderv
lidar signals in Fig. 6, the PBL height is well modelled urit:00 UTC, but it is underestimated
afterwards, e.g. the PBL height is about 2.1 km from the olesklidar signal but it is about 1.6
km in the simulation. These differences in PBL height exptaat the simulated lidar signal agrees
better with the observation until 12:00 UTC.

On 21 July 2009, the GBML travels from Saclay to the North ofiacross the city centre of
Paris. As shown in Fig. 7, the lidar signal is overestimat@dlis measurement day. However, the
surface PM, concentration is underestimated. It is 27.84 and 16.84 g (low-moderate level
of pollution, see Tab. 2) from the Airparif network and frohetsimulation respectively. The large
simulated lidar signals originate in high aerosol conaian at high altitudes, i.e. between 2.0
km and 2.5 km, which leads to higher backscattering and etidim coefficients. This high-altitude
aerosol layer originates in boundary conditions, but itaspresent in the observations. It impacts
the lidar signal until low altitudes. This is why surface RMs underestimated while lidar signal is
overestimated.

On 26 July 2009, the GBML followed two circular patterns (yfelow and cyan tracks in Fig. 1).
One is performed from 12:40 to 15:30 UTC at a distance betWw8eamd 30 km from the city centre.
Another one is performed from 16:44 to 18:18 UTC in the Sdslrthwest of Paris. Low levels
of pollution are observed and simulated. Surface Pbbncentration and AOD are underestimated.
The daily averaged P)M concentration from Airparif is 18.04 ugm, against 10.12 ug i in the
simulation. The mean observed AOD value is 0.15, againgt i@he simulation. Although the
lidar signal is slightly underestimated in the simulatismulated and observed lidar signals agree
fairly well, as shown in Figure 8. The pollution from Parigiiansported by the South wind to the
North. This is why the lidar signal is higher at 14:00 UTC igFB. Because as much as 5 hours
of lidar measurements are performed, which is longer tha®4eii6, 21 and 29 July 2009, we will
perform data assimilation for this day.

On 29 July 2009, GBML measurements are performed from 12125110 UTC in the North of
Paris and in peri-urban and rural areas. While low levels diifion (12.33 pgmr? of the mean
PM;, concentration in Tab. 2) are simulated, moderate levelsobfifion (29.25 pug m? of the
mean PM, concentration in Tab. 2) is observed by the Airparif netwokk deduced from Figure
9, at the beginning of measurement period, the PBL heighidsital.5 km and the simulated lidar
signal agrees well with lidar observations. At 15:00 UTQ dbserved lidar signal has increased,

because of an aerosol layer between 2.0 and 3.5 km. Thisikyet simulated and the simulated
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lidar signal is underestimated.

6 Assimilation test of lidar observations

As mentioned in the previous section of comparisons betwleesimulation and the lidar observa-
tions during the MEGAPOLI summer experiment in July 2009, iDA is performed for 01 (5 hours
of measurements) and 26 (13 hours of measurements) July 2009

In air quality, the large number of state variables leadsigb komputational costs when imple-
menting DA algorithms. Among the widely used DA algorithrtise optimal interpolation (Ol) is
used here, as it is the most computationally efficient (Deetogl., 2008; Tombette et al., 2008;
Wu et al., 2008; Li et al., 2013). In applications of DA to amwbforecast, Tombette et al. (2009)
have used the Ol over western Europe for assimilating obiens from the BDQA network, which
covers France. Denby et al. (2008) have used two differentdaAniques, the Ol and EnKF, to as-
similate PM concentrations over Europe. Pagowski et al. (2010) hawve thgeOl over the United
States of America for data assimilation of PMobservations. Li et al. (2013) have used the Ol
for multiple aerosol species and for prediction of £Mn the Los Angeles basin. And Wang et al.
(2013) have used the Ol over Europe to investigate the patémpact of future ground-based lidar
networks on analysis and short-term forecasts of 2M

6.1 Basic formulation

The basic formulation of DA of lidar signals with Ol is now deibed. Particles are represented
in the model by mass concentrations of different chemicatcigs for the different particle size
sections.

The state vectax is defined by

x = {@; 1 1 <i< Ny 1< N 1<k <n, 1<h<1; 12)

wherez! . . is the mass concentration of the aerosol spegiessection: for the horizontal spatial

1,5,k
grid k at 'ihe model vertical levél, N, is the number of size section¥, is the number of chemical
speciesn is the number of horizontal grid points at each vertical lévand! is the total number of
vertical levels. The lidar observation operatoi$x) = L - S(x), whereS is a nonlinear operator
from the model state to the lidar signal state, arldis a linear spatial interpolation operator.

The analysed state vector is a solution to the variationtnigation problem:
x% =Argmin J(z), (13)
whereJ is the cost function defined by
Tp-1 1 nTr-1 b
(Hx)-y) R (H(X)—}’)-i-i (x—x") B~ (x—x")
R (H(x")+LS(x—x")—y)

J(x) =

T

1

(H(xb) +LS(X—xb) — y)

11
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whereS is the tangent linear of operatdf, B andR are the matrices of error covariances for
backgrounds and observations respectively,yarsithe vector of observations. In this way, we have

VJ(x") = (LS)"R™ ' (H(x")—y)+ (B~'+(LS)"R(LS)) (x" —x") =0, (15)
which leads to

x*—x" = (B~ +(LS)"R(LS)) " (y— H(X")) (16)
= B(LS)" (LS)B(LS)" +R) ' (y - H(x")). 17)

6.2 Construction of error covariances

As the measurements at different levels originate from #meeslidar, the matri>R should not be
diagonal because of measurement error correlations. Hawieworder to simplifyR. in the first tests
of DA of lidar observations, one tak@& = r1 as a diagonal matrix wheilds the identity matrix and
r is an error variance. The value of the observation erroavagr is determined by &2 diagnosis
(Ménard et al., 1999), in which the scalar

C=(y-H(x)) (LS)BLS)"+R) ' (y—H(x") (18)

should be equal, on average, to the number of observatiéhat(each DA step.

Specifically,B plays a role in determining how the corrections of the cotretions should be
distributed over the domain during DA. In practice, howeitds impossible to accurately know all
coefficients ofB. In our simulation, the number of model grid points is of thdey of 10°. Thus
the number of coefficients in the matiX is about10'® multiplied by the square of the number of
analysis variables (about 100 variables for particles aezlinere). Thereford is too large to be
handled numerically.

In order to reduce the size of the error covariance matricebdckground, we model the matrix

B as follows
B=PDP", (19)

whereD is the error covariance matrix for PM defined by the Balgovind approach (Balgovind
et al., 1983) obtained by considering the RMSE and cormalatf simulated PM, concentrations.
Thus, the size oD is much less than the one Bf. The matrixP is defined by

V1 0..0
0 Vo ... 0

P= ... . ’
00 ... Vs

(M-Nyp-N3)x M

12
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whereM is equal to the dimension of the domain), v, is a vector of sizeV, - N, (the number
of state variables). Each componentgfcorresponds to the proportion of the mass of particles for
a given species in a given size section in fgivhass concentrations at grid point

Let S’ = SP be the directional derivative of along a given direction, and let andc® be PM,
concentration states before and after analysis respbctie multiply each side of equation (17)
by the matrixZ in order to converk into the PM, statec :

1...10...00...00...0
0..01...10...00...0

Z:
0..00...00...01...1}|
M x(M-Ny-Ny)
We obtain
¢ —c’=D(LS)T (LS)D(LS) +R) ™ (y— H(x")). (20)

After the analysis, the concentratioa’ are redistributed over particle species and size sections
following the initial chemical and size distributions.

6.3 DA setup

DA experiments are carried out for 01 and 26 July 2009. All Déeriments are performed with
time step600 s and from 200 to 1800 m above the ground (10 model levelsje shre lidar measure-
ments are not available below the altitude of full overla@Q(2n above the ground) and since aerosol
concentrations above the PBL have limited impact on surfddg, in the short term (Wang et al.,
2013). Inthe Balgovin@roach, the horizontal corretatength is set t0.2°, which is estimated
from numerical DA tests. The error variances are separagglfor each DA level, depending on the
RMSE of PM concentrations and the variability of PM concatins at each model level.

Two new algorithms are tested for the assimilation of lidasarvations. In the first algorithm,
we use the assimilation of lidar observations to analysejRddncentrations and the analysed M
concentrations are redistributed over particle specidsee sections following the initial chemical
and size distributions (see section 6.2). The backgrourd esrianceg-(PM,) are estimated by the
simulation without DA and Airparif observations. The valoiethe observation error varianeeis
determined by a? diagnosis, which yields =1 ug? m—° andr =0.006 ug? m—% respectively for
01 and 26 July, depending on the level of uncertainties @etos 5). Let/V be the number of lidar
observations at one DA step. Figure 10 shows the time ewoluti x> /N (blue lines) for DA runs
on 01 and 26 July. The mean over DA window\gf/N is 1.02 (resp. 1.02) for 01 (resp. 26) July.

In the second algorithm, we separately analyse, PNMnd PM 5_1o (particulate matter with
a diameter higher than 2.5 pm and lower than 10 pm) in the #ation of lidar observations.
We modify the matrices used in section 6.2 to obi@jrg andcs 510, the mass concentrations of
PM, 5 and PM 51, respectively (see Appendix B for details). We separatdiyteeerror variances
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for PMy 5 and PM 5_1¢ in matrix D. Because of the lack of PM_1o observations, we can not
directly estimate the background error variances. Theyletermined by the? diagnosis using the
observation error varianeefound in the first algorithm.

In the following, we note the assimilation with the first (pessecond) DA algorithm as “DA
(PMy0)” (resp. “DA (PM.5 and PM 5 10)").

6.4 Results and discussions

In these DA tests, the purpose is to verify if these new algors are functional. Because we work
on a small scale, the corrections of DA are transported othi@imulation domain very quickly.
Thus we only compute the statistics for the DA window to valélthe DA tests.

Table 4 presents statistics of the simulation results witfi®A and with DA. Statistics are com-
puted for both PM, and PM 5 concentrations. Overall, both DA algorithms lead to bestres
(lower RMSE, MFB and MFE, and higher correlation) than thawdation without DA for PM,
concentrations. Comparing two DA algorithms, the simolatwith DA (PMy 5 and PM5_19)
leads to better scores than the simulation with DA (gMor PM;, concentrations (see Tab. 4).
The RMSE of PMg is 11.63 ugm3 in the simulation with DA (PM s and PM_5_1,), against
13.69 pgnt? in the simulation with DA (PM,) on 01 July. The RMSE of PM is 4.73 pgnt3
in the simulation with DA (PM.5 and PM, 5_10), against 6.08 ug m? in the simulation with DA
(PMyo) on 26 July. It is because higher background error varianceset for the coarse sections
in the simulation with DA (PM.5 and PM 5_19). However, the simulation with DA (Phk and
PM, 5_19) leads to similar scores to the simulation with DA (RWifor PM, 5 concentrations (see
Tab. 4). Itis because similar background error varianceBid, 5 in the simulation with DA (PM 5
and PM, 5_10) to the simulation with DA (PM5) are used in the? diagnosis, since fine particles
contribute to more than 80% of the lidar signal (Randriamca et al., 2006). In the following, we
compare the simulation without DA and the simulation with ™M 5 and PM, 5_19).

On 01 July, the averaged RMSE of RMis 11.63 pgm?3 with DA (PMy.5 and PN 5_10),
against 17.74 ugm without DA. The decrease of the RMSE are explained by theetation
length in the matrixD, since no Airparif station performs measurements in theltSeest of Paris
(the Northeast wind). At statiof8SY-LES-MOULINEAUX, the closest station to Saclay, the RMSE
of PMyg is 14.72 pg m3 with DA (PM, 5 and coarse), against 22.81 ug#without DA. However,
the averaged RMSE of Pjj is about 10.4 pug m? with DA (PM,_ 5 and PM5_1), against 8.54
ug 2 without DA. This is due to the larger horizontal correlatiength (see section 6.3). Figure
11 shows that the model underestimates the lidar signal @daysaWhile DA runs increase PM
concentrations in the lidar measurement grids, PM conagoirs are increased at Airparif stations,
where PM 5 concentrations is well simulated and coarse particlesradenestimated. This problem
can be solved by decreasing the horizontal correlatiortiieng

On 26 July, the averaged RMSE of RMs 4.73 g nt3 with DA (PM, 5 and PN 5_1), against
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6.67 pgnT? without DA. Because two circular GBML travelling patterngms performed around
Paris (see Fig. 1), most of Airparif stations are leeware @outh wind) or they are close to the
patterns of GBML. They could validate improvements of PMaamtrations. At statioRPARIS ler
Les Halles, the RMSE of PMy is 1.96 pgnt? in the simulation with DA (PM.5 and PM 5_1),
against 4.71 pg m? in the simulation without DA. Moreover, DA runs lead to begeores than the
simulation without DA for PM 5. At leeward statiorCREIL FAIENCERIE, the RMSE of PM 5 is
4.1 pgnt?3 in the simulation with DA (PM 5 and PM, 5_1), against 4.9 pg m? in the simulation
without DA.

7 Conclusions

In order to investigate the ability of the CTMoRAIR3D of the air quality modelling platform
POLYPHEMUS to simulate lidar vertical profiles, we have pemied a simulation in the Greater
Paris area for the summer month July 2009. The results,{Riid PM, 5 concentrations) are
evaluated by Airparif data. We have simulated aerosol apticoperties and lidar signals from
the model aerosol concentration outputs using the aerosaplex refractive index (ACRI) and the
wet particle diameter. Hourly comparisons between siredldilar signals and lidar observations
have been described for six measurement days during the NPESEASummer campaign. These
comparisons have shown a good agreement between GBML reeasots and the simulation except
21 July 2009, where an aerosol layer was presented at hitjitede in the model. The results show
that the optical property module of POLYPHEMUS would reprog correctly lidar signals in the
model, if the aerosol layer is well simulated.

Two new algorithms for the assimilation of lidar observatidnave been presented. That depend Q

on whether PN, is analysed or PMs5 and PM 5_1¢ are both analysed. DA tests were performed
for 01 and 26 July 2009. On the whole, both of these algoritle@ad to better scores (lower RMSE,
MFB and MFE, and higher correlation) for Ryl However, they did not work for Pk on 01
July 2009, because of the larger horizontal correlatiogtlenThe simulation with DA (PM 5 and
PM, 5_10) leads to better scores than the simulation with DA (PMby setting separately the error
variances for backgrounds in fine sections and coarse ssctidhe results shown in this paper
suggest that the assimilation of lidar observations fohesirag PM, 5 and PM 51, would perform
better than assimilating the lidar signal for analysing;@Nbut it is computationally more costly.

Comparing the simulation without DA and the simulation wdA (PMs 5 and PM 5_19), the
averaged RMSE of PM is 11.63 ugn? with DA (PMs 5 and PM 5_10), against 17.74 ugm
without DA on 01 July 2009. The averaged RMSE of BNb 4.73 pgnt? with DA (PM 5 and
PMs.5_10), against 6.67 pg m without DA on 26 July 2009.

A forthcoming paper will present results about the assitiiteof continuous measurements from
the ACTRIS/EARLINET network during a 72-hour period of ingive observations.
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Appendix A  Statistical indicators

500 {o;}i=1, and{s;}i=1,, are the observed and the modelled concentrations atitimespectively.
n is the number of available observations. The statisticdicators used to evaluate the results
with respect to observations are: the Root Mean Square ERIMISE), the (Pearson) correlation,
the Mean Fractional Error (MFE), the Mean Fractional BiaF@). MFE and MFB bound the
maximum error and bias and do not allow a few data points toidat® the statistics. They are
505 often used to evaluate model performances against obgersdbr aerosol mass concentrations and
optical properties (Boylan and Russell, 2006). The statisindicators are defined as follow:

RMSE=, | =) “(0;—s:)?, (A1)
correlation = \/2772::;_1 (Oi_;j)zgff _( 5) oE , (A2)
i=1\0i — 0 i=1\8i —§

1 - |SZ — 07;|
MFE=-) ——— A3
n;(sﬁ—oi)ﬂ’ (A3)

1 - S; —0;
510 MFB=- ——— A4
nz(si—i-oi)/Z’ (A4)

=1

~_ 1 n a1 n
whereo=->"" j0; ands=-=>"" , s;.

Appendix B Update formula for DA (PM 5 5 and PMs 5_1¢)

In order to separately analyse BMand PM 5_1o in the assimilation of lidar observations, the
matrix B is modelled as follows

515 B=PDPT, (B1)
whereD is the error covariance matrix for P\ and PM 5_1o. The matrixD is defined by

D— Dzs O
0 D2s5_10

)

and the matriXP is defined by

P
p_ 2.5

)
P2s5_10
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520 where each columh of P, 5 (respP2.5_10) corresponds to the proportion of the mass of particles
for a given species in a given size section in PMresp. PM 5_19) mass concentrations at grid
point £ as section 6.2 shown.

The matrixZ is defined by

Z
z_ | 425

3

Z2.5710

525 where the matriZs 5 (resp.Zz.5_10) is aM x (M - N, - N,) matrix, which converts the state vector
x into the PM 5 (resp. PM 5_19) Statecs 5 (resp.c2.5_10)-
Let S’ = SP. After multiplying each side of equation (17) by the matZixwe obtain

a _ b
2.5 Cff ~D(LS)" (LS)D(LS)' +R) ' (y— H(x")).
€35-10—C25-10
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Fig. 1. The blue square shows the location of the ground-baseidu lidar station, the red squares (resp. the
magenta triangles) show the locations of Airparif stations for{£Mesp. PM 5) measurements and the green
discs show the locations of AERONET stations. The black pattern showsBMLGrack on 01 July 2009.
The yellow and cyan patterns show two GBML tracks on 26 July 2009. &timgle area is detailed in the
bottom figure.
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Fig. 2. Blue points (resp. red lines) indicate lidar signBR. (resp. simulated molecular sign&lg.,) at
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(blue points). LAD regressions of weighted lidar measurement poiatmédicated by cyan lines.
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MUS (red lines) on 01 July 2009 from 11:00 to 13:00 UTC. Lidar observatietsbthe altitude of full overlap
are not represented.
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are not represented.

Table 1. Dry CRI and density for different aerosol species\at 355 nm. Re (resp. Im) stands for the real

(resp. imaginary) part of CRI.

Species Re Im density (g cm)
Nitrate 1.53 -0.005 15
Ammonium 1.53 -0.005 0.91

Black carbon 1.75 -0.4645 2.25

Mineral dust ~ 1.53 -0.0166 2.33
Organics 1.53 -0.008 1.3

Sulfate 1.45 -1e-08 1.84

Sodium 1.509 -2.946e-07 0.97
Chlorate 1.509 -2.946e-07 1.15

Water 1.35738 2.72875e-08 1.0
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Fig. 6. Comparisons between the vertical profiles observed by GBML (blueg)@nd simulated by ®.YPHE-
MUS (red lines) on 16 July 2009 at 11:03, 12:00, 13:25 and 14:09 UTC. Lidservations below the altitude
of full overlap are not represented.

Table 2. Statistics (see Appendix A) of the simulation results for the Airparif netwaidind the MEGAPOLI

summer experiment. Obs. stands for observation. Sim. stands fdasionu Corr. stands for correlation.

Day PMo PMa 5
Obs. mean Sim.mean RMSE Corr. MFB MHEObs. mean Sim.mean RMSE Corr. MFB MFE
ugm-* ugm-* Hgm=® % % % ugm-? ugm-* Hgm=® % % %

All  21.53 14.14 10.79 64 -42 49 | 12.59 12.78 6.02 68 4 39

01 44.99 29.39 18.08 78 -45 47 | 28.82 27.14 7.94 74 -10 23

04 18.37 11.11 8.34 8 -48 48 | 10.80 9.99 3.90 -25 -4 31

16 26.25 16.47 12.28 16 -41 46 | 12.60 15.76 541 31 25 34

21 27.84 16.84 13.13 28 -46 50 | 15.46 16.19 5.84 14 6 31

26 18.04 10.12 9.52 -4.6 -52 53 | 12.32 10.27 5.05 7.1 -16 34

29 29.25 12.33 18.49 28 -76 78 | 14.82 11.78 7.32 38 -20 37
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Fig. 7. Comparisons between the vertical profiles observed by GBML (blueg)@nd simulated by ®.YPHE-
MUS (red lines) on 21 July 2009 at 12:15, 13:16, 14:10 and 15:10 UTC. Lidservations below the altitude
of full overlap are not represented.

Table 3. Statistics (see Appendix A) of the simulation results for the AERONET netdarklifferent lidar
measurement days.
Day Obs. mean Sim.mean RMSE Corr. MFB MFE
% % %

01 0.59 0.47 0.20 -8 -21 29
04 0.25 0.14 0.12 37 -58 58
16 0.26 0.18 0.08 80 -33 33
26 0.15 0.08 0.07 45 -53 53
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Fig. 9. Comparisons between the vertical profiles observed by GBML (blueg)@nd simulated by ®.YPHE-
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Fig. 11. Lidar vertical profiles observed by the ground-bageditu lidar at Saclay (blue points), simulated
without DA (red lines) and simulated with DA (magenta lines) on 01 July 2009.
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Table 4. Statistics (see Appendix A) of the simulation results (BMnd PM 5) without DA and with DA
for the Airparif network for 01 and 26 July 2009. “With DA (PM)” stands for the assimilation of lidar
observations correcting directly Ryl “With DA (PM2 5 and PM 5_10)" stands for the assimilation of lidar

observations correcting separately PMand PM 5_10.

Day Species Sim. Obs. mean Sim. mean RMSE Corr. MFB MFE
% % %

01  PMyo  Without DA 47.26 32.35 17.74 84  -41 43
With DA (PMy,) 36.20 1369 90  -29 32

With DA (PMa.5 and PM.5_10) 39.85 11.63 84  -19 25

PM.s  Without DA 30.52 30.21 854 69 -5 23

With DA (PMy,) 33.04 1044 59 5 27

With DA (PMa 5 and PM.5_10) 33.08 1045 58 5 27

26 PMo  Without DA 16.25 9.96 6.67 20 -47 47
With DA (PM1,) 10.55 6.08 15  -42 42

With DA (PM2.5 and PMb.5_10) 12.80 473 26 25 30

PM.s  Without DA 10.25 8.99 280 7 -9 25

With DA (PM1,) 9.64 251 22 -2 22

With DA (PMa.5 and PM.5_10) 9.49 254 21 -4 22
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