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Abstract. In this study, we investigate the ability of the chemistry transport model (CTM) PO-

LAIR 3D of the air quality modelling platform POLYPHEMUS of simulating lidar backscattered pro-

files from model aerosol concentration outputs. To do so, simulated lidar signals are compared to

hourly lidar observations performed during the MEGAPOLI (Megacities: Emissions, urban, regional

and Global Atmospheric POLlution and climate effects, and Integrated tools for assessment and mit-5

igation) summer experiment in July 2009, where a ground-based mobile lidar was deployed around

Paris on-board a van. The comparison is performed for six different measurement days, 01, 04, 16,

21, 26 and 29 July 2009, corresponding to different levels ofpollution and different atmospheric

conditions. POLYPHEMUScorrectly reproduces the vertical distribution of aerosoloptical properties

and their temporal variability. In the second part of this study, two new algorithms for assimilating10

lidar observations are presented. The aerosol simulationswithout and with lidar data assimilation are

evaluated using the Airparif (a regional operational network in charge of air quality survey around

the Paris area) data base to demonstrate the feasibility andthe usefulness of assimilating lidar profiles

for aerosol forecasts.

1 Introduction15

Aerosols are key air quality species to monitor and model as they impact vegetation and as they

impact human health by penetrating the respiratory system and leading to respiratory and cardiovas-

cular diseases (Lauwerys et al., 2007; Dockery and Pope, 1996). They also impact visibility (Wang

et al., 2009), and they represent an uncertain component of climate changes due to their effects on
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the Earth’s radiative budgets (Intergovernment Panel on Climate Control (IPCC), 2007). For air20

quality, in order to simulate and predict particle concentrations, modellers have developed various

chemistry transport models (CTM) in the past several years,e.g. EMEP (European Monitoring and

Evaluation Programme) (Simpson et al., 2003), LOTOS (Long Term Ozone Simulation) - EUROS

(European Operational Smog) (Schaap et al., 2004), CHIMERE(Hodzic et al., 2006), DEHM (Dan-

ish Eulerean Hemispheric Model) (Brandt et al., 2007) and POLYPHEMUS (Sartelet et al., 2007).25

However, the aerosol vertical distribution is poorly quantified, because of numerous uncertainties on

their sources (direct emissions) and on processes affecting their formation, e.g. nucleation, conden-

sation, evaporation, and coagulation, as well as on meteorological conditions. As aerosol lifetime

ranges from1 to 10 days (Seinfeld and Pandis, 1998), improvements in the representation of their

vertical distribution may lead to improved surface concentrations (lower error and higher correlation30

against observations) (Wang et al., 2013).

Various measurement types have been used to evaluate models. The most frequently used data

arein situ surface measurements, e.g. AirBase (http://www.eea.europa.eu/) and EMEP over Europe,

BDQA (Base de Donńees de la Qualité de l’Air) (Sartelet et al., 2007; Konovalov et al., 2009).

However, they do not provide direct information on verticalprofiles.35

Satellite passive remote sensors (e.g. the Moderate Resolution Imaging Spectroradiometers (MODIS))

and sun-photometer surface stations (e.g. the AErosol RObotic NETwork (AERONET)) have greatly

enhanced our ability to evaluate models. Comparisons between observed and simulated Aerosol Op-

tical Thickness (AOT) have been implemented for global models and regional models (Kinne et al.,

2006; Tombette et al., 2008; Péŕe et al., 2010). However, instruments, such as sun photometers can40

only retrieve column-integrated aerosol properties and can only work during daytime.

As accurate vertical profiles of aerosols can be measured by aerosol lidars, lidar measurements

were used in several campaigns, for example to evaluate the transport of particles (Chazette et al.,

2012). Moreover, aerosol lidar networks, such as the European Aerosol Research Lidar Network

(EARLINET), are being developed atin situ sites. In space, measurements are performed with45

the Cloud-Aerosol Lidar with Orthogonal Polarisation (CALIOP) lidar (Winker et al., 2007). Li-

dar measurements have been used for the validation of aerosol models. For example, Hodzic et al.

(2004) compared vertical profiles simulated by CHIMERE withthose observed by lidars, from EAR-

LINET, and Stromatas et al. (2012) used observations from the CALIOP space-based lidar. Royer

et al. (2011) used an optical-to-mass relationships (urban, pre-urban and rural) to retrieve the PM1050

(particulate matter with diameter less than10 µm) concentrations from lidar signals (Raut et al.,

2009a,b). In Royer et al. (2011), lidar-derived PM10 concentrations were compared with simula-

tions from POLYPHEMUS and CHIMERE during the MEGAPOLI (Megacities: Emissions, urban,

regional and Global Atmospheric POLlution and climate effects, and Integrated tools for assessment

and mitigation) summer experiment in July 2009.55

This paper is devoting to evaluating the lidar signal simulated by POLYPHEMUSduring the MEGAPOLI
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summer experiment, when a ground-based mobile lidar (GBLM)was deployed around Paris on-

board a van. Measurements from a ground-basedin-situ lidar at Saclay were also performed on

01 July 2009. This evaluation can also be regarded as a preprocessing stage of data assimilation

(validation of the observation operator).60

Data assimilation (DA hereafter) can reduce the uncertainties in input data such as initial or bound-

ary conditions by coupling models to observations (Bouttier and Courtier, 2002). In air quality,

applications of DA to PM10 forecast usingin situ surface measurements have been performed by

Denby et al. (2008) and Tombette et al. (2009) over Europe, and Pagowski et al. (2010); Pagowski

and Grell (2012); Li et al. (2013) over the United States of America. Over Europe, the efficiency65

of assimilating lidar measurements to improve PM10 forecast has been compared to the efficiency

of assimilatingin situ surface measurements by Wang et al. (2013). They suggested that the assim-

ilation of lidar observations may be more efficient to improve PM10 forecast, although it depends

on the number of lidar stations used. However, Wang et al. (2013) did not directly assimilate the

lidar signal, but they used a relation between mass concentration and optical properties of pollution70

aerosol. Although this kind of relation has been determinedfor pollution aerosols over Greater Paris

(Raut et al., 2009a), it needs to be generalised to other measurement sites before operationally as-

similating the mass concentration converted from the lidarsignal. Moreover, the uncertainly linked

to the estimation of mass concentrations may be about25% (Raut et al., 2009a). It is mostly due to

uncertainties in estimating the specific cross sections. Because uncertainties in the lidar signal may75

be less than5%, it is more accurate to directly assimilate lidar signals.

This paper is organised as follows. Section 2 describes the experiment setup, i.e. the chem-

istry transport model used (POLYPHEMUS) and the observations. In section 3, the lidar observation

operator is presented. Section 4 describes the evaluation of the simulation within situ surface mea-

surements and AERONET data. Results of the comparisons between observed and simulated lidar80

signals are shown in section 5. A new algorithm for the assimilation of lidar observations and results

are shown in section 6. The findings are summarised and discussed in section 7.

2 Experiment setup

2.1 Presentation of the model

In this study, the POLAIR3D air quality model (Sartelet et al., 2007) of the air quality platform85

POLYPHEMUS, available at http://cerea.enpc.fr/polyphemus/ and described in Mallet et al. (2007),

is used to simulate air quality over the Greater Paris area. Aerosols are modelled using the SIze-

REsolved Aerosol Model (SIREAM-SuperSorgam), which is described in Debry et al. (2007) and

Kim et al. (2011). SIREAM-SuperSorgam includes20 aerosol species:3 primary species (mineral

dust, black carbon and primary organic species),5 inorganic species (ammonium, sulfate, nitrate,90

chloride and sodium) and12 organic species. Five bins logarithmically distributed over the size
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range0.01 µm - 10 µm are used. The chemical mechanism CB05 (Carbon Bond version 5) is

used for the gas chemistry (Yarwood et al., 2005). POLAIR3D/SIREAM has been used for several

applications. For example, it was compared toin situ surface measurements for gas and aerosols

over Europe by Sartelet et al. (2007, 2012); Couvidat et al. (2012), over Greater Paris by Couvidat95

et al. (2013), it was compared to AERONET data over Europe by Tombette et al. (2008) and to

satellite data by Zhang et al. (2013), and it was compared to lidar-derived PM10 over Greater Paris

during MEGAPOLI by Royer et al. (2011).

2.2 Modelling setup and observational data

The modelling domain is the same as the one used in Royer et al.(2011); Couvidat et al. (2013).100

It covers the Greater Paris area ([1.2◦E,3.5◦E] × [47.9◦N , 50.1◦N ]) with a horizontal resolution

of 0.02◦×0.02◦. Because Royer et al. (2011) show that limited vertical model resolution leads to

much smoother vertical profiles than those deduced from lidar signals, a finer vertical resolution is

used with twenty three vertical levels from the ground to12000 m, instead of nine vertical levels in

Royer et al. (2011). The simulations are carried out for one month from28 June to30 July 2009.105

Meteorological inputs are the same as in Couvidat et al. (2013). They are simulated with the Weather

Research & Forecasting (WRF) model (Skamarock et al., 2008) using an urban canopy model and an

undated Corine land-use data base (Kim, 2011) with the YSU parameterisation (Hong et al., 2006)

for the planetary boundary layer (PBL) dynamics. Anthropogenic emissions of gases and aerosols

are generated with the Airparif (the Paris air quality agency) inventory for the year2005. Boundary110

conditions for gaseous and particulate species were obtained from nested simulations over Europe

and France, presented by Couvidat et al. (2013).

The ground based mobile lidar (GBML) used during the MEGAPOLI campaign is based on an

ALS450 lidar commercialised by the LEOSPHERE company and initially developed by the Com-

missariat̀a l’Energie Atomique (CEA) and the Centre National de la Recherche Scientifique (CNRS)115

(Chazette et al., 2007). It provides lidar measurements at 355 nm. The main characteristics of this

lidar are detailed in Royer et al. (2011). This system is particularly well-adapted to air pollution

and tropospheric aerosol studies thanks to its full overlapreached at about 150-200 m height and

its high vertical resolution of1.5 m. Measurement days of 01, 04, 16, 21, 26 and 29 July 2009,

which correspond to different levels of pollution from Airparif (low, moderate or high), are used for120

comparisons to the lidar signal. Moreover, ground-basedin-situ lidar measurements were performed

at Saclay on 01 July 2009 from 06:49 to 16:44 UTC 01 July 2009 (the blue square in Fig. 1). These

measurements are used for both the comparison and the assimilation of lidar observations.

Airparif is the regional operational network in charge of air quality survey around the Paris area.

It provides hourly gases and/or aerosol concentrations (PM10 and PM2.5) measurements. Figure 1125

shows the location of the Airparif stations with red squaresand/or the magenta triangles. There are

17 stations at which PM10 and/or PM2.5 concentration measurements are performed.
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The AERONET (AErosol RObotic NETwork) program is a federation of ground-based remote

sensing aerosol networks established by NASA and PHOTONS (Univ. of Lille 1, CNES, and CNRS-

INSU), which provides a long-term, continuous and readily accessible public domain database of130

aerosol optical measurements performed by sun-photometers. Sun-photometers measure AOD at

different wavelengths ranging from 340 to 1024 nm. AOD data are computed for three data qual-

ity levels: Level 1.0 (unscreened), Level 1.5 (cloud-screened), and Level 2.0 (cloud-screened and

quality-assured). The uncertainty of AOD measurements is less than 0.02 (Holben et al., 2001). For

this study, there are 2 available stations over Greater Paris: Paris (urban station) and Palaiseau (sub-135

urban station) (the green discs in Fig. 1). In this paper, Level 2.0 AOD data at 340 and 380 nm are

used to derive AOD data at 355 nm following the Angström law:

AOD(355)=AOD(340)

(

355

340

)−α

, (1)

whereα is the angstr̈om exponent defined by

α = ln

(

AOD(340)

AOD(380)

)

/ln

(

380

340

)

. (2)140

3 Methodology

This section presents the methodology used in POLYPHEMUSto derive the lidar observation operator.

The range-corrected lidar signalPR2 measured at an altitudez is defined by Collis and Russell

(1976)

PR2(z)=C(βm(z)+βa(z))exp

(

−2

∫ z

0

(αm(z′)+αa(z′))dz′
)

, (3)145

whereβm (resp. βa) is the molecular (resp. aerosol) backscatter coefficient,αm (resp. αa) is the

molecular (resp. aerosol) extinction coefficient, andC is the instrumental constant for each channel

depending on the technical characteristics of the emittingand receiving optics. In order to eliminate

the instrumental constantC (because it is unknown), PR2 is normalised as follows

H(z)=
PR2(z)

PR2(zref)
=

βm(z)+βa(z)

βm(zref)+βa(zref)
exp

(

2

∫ zref

z

(αm(z′)+αa(z′))dz′
)

, (4)150

wherezref is taken at an altitude in the molecular zone. In equation (4), to estimate the normalised

lidar signalH, four optical parametersβm, βa, αm andαa are needed.

The molecular backscatter coefficient (βm) at the wavelengthλ of the incident light is calculated

by Nicolet (1984)

βm =
P

kBT
·sRay, (5)155

whereP is the pressure,T is the temperature,kB is the Boltzmann constant, and the Rayleigh

scattering cross sectionsRay is given by

sRay =4.678 ·10−29 ·λ−(3.916+0.074·λ+0.05/λ). (6)
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The molecular extinction coefficient (αm) is given by Nicolet (1984)

αm =
8π

3
βm. (7)160

Aerosol extinction and backscatter coefficients (βa and αa) are functions of particle sizes, of

the aerosol complex refractive index (ACRI) of particlesm, and of the wavelengthλ of the incident

light. With a population of different-sized particles of identical refractive indexm and with a number

size distribution functionn(Dwet) with Dwet the particle wet diameter, the aerosol extinction and

backscatter coefficients are given by the following formulas:165

αa =

∫ Dmax

wet

0

πD2
wet

4
Qext(m,awet)n(Dwet)dDwet, (8)

and

βa =

∫ Dmax

wet

0

πD2
wet

4
Qbsca(m,awet)n(Dwet)dDwet, (9)

whereDmax
wet is a wet diameter upper limit for the particle population,awet = πDwet

λ a dimensionless

size parameter,Qext(m,awet) andQbsca(m,awet) are extinction and backscatter efficiencies. These170

efficiencies are computed through the Mie code (de Rooij and van der Stap, 1984; Mishchenko et al.,

2002) from ftp://ftp.giss.nasa.gov/pub/crmim/spher.f.The dry complex refractive index (CRI) is

interpolated from the OPAC package (Hess et al., 1998) for each species at the desired wavelengthλ

(355 nm). The CRI and densities used for calculation of optical properties are shown in Table 1. The

wet diameterDwet is computed from the mean dry diameter of each section of the aerosol sectional175

model SIREAM and from the aerosol water content. The aerosolwater content is calculated from

the thermodynamic model ISORROPIA (Nenes et al., 1998).

Computing the ACRI requires to make an assumption on the mixing state of the aerosol chemical

species. The current version of POLYPHEMUS is based on an assumption of aerosol internal mixing:

all the particles of a given size section at a given grid pointof the domain are supposed to have180

the same chemical composition. Within this framework, Tombette et al. (2008) compared aerosol

optical properties using 2 different assumptions for the Black Carbon (BC) mixing state: internally

homogeneous mixing and core-shell mixing. In the internally homogeneous mixing case, BC is

treated as the other components and a volume-weighted ACRI is calculated from the CRI of pure

species. In the core-shell mixing case, each particle is assumed to have a structure : the core (BC)185

and the shell (all the other components). The hypothesis of an internally homogeneous mixing state

seems to be unphysical as BC can not be well-mixed in the particle because of its complex geometry

and solid state (Katrinak et al., 1993; Sachdeva and Attri, 2007). Tombette et al. (2008) have shown

that the use of these two mixing states leads to negligible differences on AOD, but non-negligible

differences on single scattering albedo and absorption process, in agreement with illustrations of190

Jacobson (2000). Thus, a core-shell mixing hypothesis is used in this study. The Maxwell-Garnett

approximation is used to calculate ACRI from the core CRI (i.e., BC in this study) and the shell CRI

(where all the other components are well mixed).
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3.1 Estimation ofzref

The altitude used to normalise the lidar signal does not needto correspond exactly to the beginning195

altitude of the molecular zone, but it could be any arbitrarychosen altitude in the molecular zone,

where there is almost no aerosol. However, it is better to usean estimation of the normalisation

altitude as close as possible to the beginning of the molecular zone, because lidar signals are attached

to higher uncertainties at high altitudes. Although the molecular zone is often determined visually

from lidar vertical profiles, this method is not efficient to treat large amounts of lidar profiles. We200

therefore created a new algorithm which can automatically estimate the normalisation altitudezref

from the lidar vertical profile.

The normalisation altitudezref is estimated from the lidar signal and the simulated molecular

signalSRay

SRay(z)=βm(z)exp

(

−2

∫ z

0

αm(z′)dz′
)

, (10)205

as follows :

– Define a weight for each vertical point of the lidar signal (the vertical resolution is 1.5 m). The

weights should be larger for the points that are more likely to be in the molecular zone, i.e. at

high altitudes. We usedw(h) = exp((h−hmax)/L)/L, whereh is the altitude of the points,

hmax is the maximal altitude considered (e.g. 4 km) and the parameter L is taken equal to210

200 m.

– Fit all lidar signal vertical points (noted as a vectory) with a weighted least absolute deviations

(LAD) regression (DasGupta and Mishra, 2007). In detail, weminimise

‖(y−(ah+b))
T
w‖L1 =

∑

i

|wi(yi−ahi−b)| (11)

to finda andb (cyan lines in Fig. 2).215

– Calibrate the simulated molecular signalSRay with the LAD regression line at altitudehmax,

and calculate the difference between the calibratedSRay and the LAD regression line at each

vertical point of the lidar signal in a loop starting from high altitudes to low altitudes. The

altitude at which the difference becomes larger than a pre-assigned value (1% of the value

corresponding to the LAD regression line) corresponds tozref .220

Figure 2 shows comparisons between the lidar signal and the simulated molecular signalSRay

for different lidar measurement days during MEGAPOLI. The simulated molecular signal (red lines

in Fig. 2) agrees well with the lidar observations (blue points in Fig. 2) at high altitudes in the

molecular zone, leading to the determination of the molecular zone andzref .
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4 Model evaluation225

To evaluate air quality models, Boylan and Russell (2006) recommended PM model performance

goal and criterion that are based upon an analysis of numerous PM and visibility modelling studies.

The PM model performance goal corresponds to the level of accuracy that is considered to be close to

the best a model can be expected to achieve. The PM model performance criterion corresponds to the

level of accuracy that is considered to be acceptable for modelling applications. The Mean Fractional230

Bias (MFB) and the Mean Fractional Error (MFE) are proposed to evaluate model performances

against observations. RMSE and correlation are also often used in the aerosol modelling community.

The statistical indicators are defined in appendix A.

4.1 Model evaluation with Airparif data

Table 2 shows statistics for the month of simulation and for the 6 lidar measurement days. For the235

month of simulation, for PM2.5, the MFB and MFE are respectively in the range [-30 %, 30%] and

[0, 50 %], i.e. the PM model performance goal is met. For PM10, the MFB and MFE are respectively

in the range [-60 %, 60%] and [0, 75 %], i.e. the PM model performance criterion is met. For each

lidar measurement day, the PM model performance goal is always met for PM2.5, and the PM model

performance criterion is met for PM10 except for 29 July.240

As shown in Table 2, the model simulates well PM2.5 concentrations, but PM10 concentrations

are underestimated. In other words, coarse particles (particulate matter with a diameter higher than

2.5 µm and lower than 10 µm) are underestimated. This may be because emissions and boundary

conditions of coarse particles are underestimated, e.g. road resuspensions of PM is not considered

in the model and boundary conditions are obtained from nested simulations over Europe and France245

where coarse particles were underestimated.

4.2 Model evaluation with AERONET data

Table 3 presents statistics for hourly data: the simulationunderestimates the AOD, in agreement

with the result of the comparisons between the simulation and Airparif observations (see section

4.1). The simulated and the observed AOD agree well on 01, 04,16 and 26 July 2009, according to250

the criteria of Boylan and Russell (2006). However, the correlation is only -8% on 01 July, which is

a day of high pollution (see Table 2). To understand why the correlation is low on 01 July, Figure

3 presents the hourly evolution of the PM10 concentration (resp. simulated AOD) against Airparif

(resp. AERONET) surface measurements at the station ”Paris”. At the surface, there is a good

agreement (90.38 % correlation) between the simulation andAirparif observations for the PM10255

concentration on 01 July 2009. However, the hourly simulated AOD and the surface measured PM10

do not correlate well with AERONET data at this station. Although the surface PM10 concentration

starts to increase from 02:00 UTC, the AOD only begins to increase from 09:00 UTC. It means that

8



between 02:00 and 09:00 UTC, PM10 concentration is high near the surface but not at high altitudes.

However, in the model, the AOD increases from as early as 05:00 UTC. A possible explanation of260

the discrepancy between observed and simulated AOD is that the particles are mixed by turbulence

more effectively and earlier in the model than in the true state of the atmosphere on 01 July (Wang

et al., 2013). As shown in Fig. 3, there is a time difference (about 2 hours) between the peak of

AOD and the peak of simulated/measured surface PM10 concentrations, probably because a strong

thermic mixing occurring in the late morning during this lidar measurement day (Royer et al., 2011).265

5 Comparisons with lidar vertical profiles

The simulated lidar signal is compared with GBML observations performed during the MEGAPOLI

summer experiment on the different measurements days (01, 04, 16, 21, 26 and 29 July 2009). The

purpose of this section is to validate the ability of POLYPHEMUS to simulate lidar backscattered

profiles and then choose suitable measurement days to do assimilation tests.270

On 01 July 2009, GBML measurements are performed leeward inside the pollution plume in the

Southwest of Paris between Saclay and Chateaudun during 3 hours (the black track in Fig. 1). It is the

most polluted day of the MEGAPOLI experiment. High levels ofPM10, on average about 45 µg m−3

(see Tab. 2), are measured by the Airparif network. Figure 4 presents the comparison between

lidar observations and the simulation at 11:00 , 12:00 and 13:00 UTC. It shows that POLYPHEMUS275

underestimates the lidar signal at 13:00 UTC, but it overestimates it at 14:00 UTC and it agrees

well with observations at 15:00 UTC. While the boundary layerheight increases from about 1.2

to 1.8 km from 11:00 to 13:00 UTC and the GBML runs out of the pollution plume (Royer et al.,

2011), both the observed and simulated lidar signals decrease. Figures of the comparison between

the simulation and observations from a ground-basedin-situ lidar at Saclay are shown later in this280

paper. The pollution plume covers Saclay because of the Northeast wind. Thus high lidar signal

values in both the simulation and observations are seen after 10:00 UTC, although the simulated

lidar signals are underestimated. Data assimilation will be performed for this day, as it is the most

polluted day with observations from both the GMBL and a ground-based in-situ lidar.

On 04 July 2009, GBML measurements are performed around Paris with a circular pattern from285

14:49 to 17:24 UTC. Particle AOD and concentrations are underestimated in the simulation. The

daily averaged AOD from the AERONET network is about 0.25, respectively 0.14 in the simulation

(see Tab. 3). The daily averaged PM10 concentration from the Airparif network is about 18.37

µg m−3, respectively 11.11 µg m−3 in the simulation (see Tab. 2). Figure 5 shows the comparison

between the GBML measurements and the simulation at 15:03 UTC and 16:00 UTC. The simulated290

lidar signals are underestimated. Moreover, lidar measurements show an aerosol layer between 2.0

km and 3.0 km (probably from long-range transport), which isnot present in the simulation.

On 16 July 2009, GBML measurements are performed in the Northof Paris from Saclay to
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Amiens between 11:00 UTC and 14:30 UTC. The lidar signal is overall underestimated, as shown

in Fig. 6, in agreement with the underestimation of PM10 shown by the statistics in Tables 2 and295

3. Surface PM10 concentration from the Airparif network and from the simulation are respectively

26.25 and 16.47 µg m−3 (low-moderate level of pollution, see Tab. 2). The observedand simulated

AOD are respectively 0.26 and 0.18 (see Tab. 3). The simulated AOD has a good correlation with

AERONET data (up to 80%). As deduced from the comparisons of the modelled and observed

lidar signals in Fig. 6, the PBL height is well modelled until12:00 UTC, but it is underestimated300

afterwards, e.g. the PBL height is about 2.1 km from the observed lidar signal but it is about 1.6

km in the simulation. These differences in PBL height explain that the simulated lidar signal agrees

better with the observation until 12:00 UTC.

On 21 July 2009, the GBML travels from Saclay to the North of Paris across the city centre of

Paris. As shown in Fig. 7, the lidar signal is overestimated for this measurement day. However, the305

surface PM10 concentration is underestimated. It is 27.84 and 16.84 µg m−3 (low-moderate level

of pollution, see Tab. 2) from the Airparif network and from the simulation respectively. The large

simulated lidar signals originate in high aerosol concentration at high altitudes, i.e. between 2.0

km and 2.5 km, which leads to higher backscattering and extinction coefficients. This high-altitude

aerosol layer originates in boundary conditions, but it is not present in the observations. It impacts310

the lidar signal until low altitudes. This is why surface PM10 is underestimated while lidar signal is

overestimated.

On 26 July 2009, the GBML followed two circular patterns (theyellow and cyan tracks in Fig. 1).

One is performed from 12:40 to 15:30 UTC at a distance between15 and 30 km from the city centre.

Another one is performed from 16:44 to 18:18 UTC in the South-Southwest of Paris. Low levels315

of pollution are observed and simulated. Surface PM10 concentration and AOD are underestimated.

The daily averaged PM10 concentration from Airparif is 18.04 µg m−3, against 10.12 µg m−3 in the

simulation. The mean observed AOD value is 0.15, against 0.08 in the simulation. Although the

lidar signal is slightly underestimated in the simulation,simulated and observed lidar signals agree

fairly well, as shown in Figure 8. The pollution from Paris istransported by the South wind to the320

North. This is why the lidar signal is higher at 14:00 UTC in Fig. 8. Because as much as 5 hours

of lidar measurements are performed, which is longer than on04, 16, 21 and 29 July 2009, we will

perform data assimilation for this day.

On 29 July 2009, GBML measurements are performed from 12:22 to 15:10 UTC in the North of

Paris and in peri-urban and rural areas. While low levels of pollution (12.33 µg m−3 of the mean325

PM10 concentration in Tab. 2) are simulated, moderate levels of pollution (29.25 µg m−3 of the

mean PM10 concentration in Tab. 2) is observed by the Airparif network. As deduced from Figure

9, at the beginning of measurement period, the PBL height is about 1.5 km and the simulated lidar

signal agrees well with lidar observations. At 15:00 UTC, the observed lidar signal has increased,

because of an aerosol layer between 2.0 and 3.5 km. This layeris not simulated and the simulated330
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lidar signal is underestimated.

6 Assimilation test of lidar observations

As mentioned in the previous section of comparisons betweenthe simulation and the lidar observa-

tions during the MEGAPOLI summer experiment in July 2009, DArun is performed for 01 (5 hours

of measurements) and 26 (13 hours of measurements) July 2009.335

In air quality, the large number of state variables leads to high computational costs when imple-

menting DA algorithms. Among the widely used DA algorithms,the optimal interpolation (OI) is

used here, as it is the most computationally efficient (Denbyet al., 2008; Tombette et al., 2008;

Wu et al., 2008; Li et al., 2013). In applications of DA to aerosol forecast, Tombette et al. (2009)

have used the OI over western Europe for assimilating observations from the BDQA network, which340

covers France. Denby et al. (2008) have used two different DAtechniques, the OI and EnKF, to as-

similate PM10 concentrations over Europe. Pagowski et al. (2010) have used the OI over the United

States of America for data assimilation of PM2.5 observations. Li et al. (2013) have used the OI

for multiple aerosol species and for prediction of PM2.5 in the Los Angeles basin. And Wang et al.

(2013) have used the OI over Europe to investigate the potential impact of future ground-based lidar345

networks on analysis and short-term forecasts of PM10.

6.1 Basic formulation

The basic formulation of DA of lidar signals with OI is now described. Particles are represented

in the model by mass concentrations of different chemical species for the different particle size

sections.350

The state vectorx is defined by

x= {xh
i,j,k}1≤i≤Nb,1≤j≤Ns,1≤k≤n,1≤h≤l, (12)

wherexh
i,j,k is the mass concentration of the aerosol speciesj in sectioni for the horizontal spatial

grid k at the model vertical levelh, Nb is the number of size sections,Ns is the number of chemical

species,n is the number of horizontal grid points at each vertical level h andl is the total number of355

vertical levels. The lidar observation operator isH(x) = L ·S(x), whereS is a nonlinear operator

from the model statex to the lidar signal state, andL is a linear spatial interpolation operator.

The analysed state vector is a solution to the variational optimisation problem:

xa =Argmin J(x), (13)

whereJ is the cost function defined by360

J(x) =
1

2
(H(x)−y)

T
R−1(H(x)−y)+

1

2

(

x−xb
)T

B−1
(

x−xb
)

≃
1

2

(

H(xb)+LS(x−xb)−y
)T

R−1
(

H(xb)+LS(x−xb)−y
)
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+
1

2

(

x−xb
)T

B−1
(

x−xb
)

, (14)

whereS is the tangent linear of operatorS, B andR are the matrices of error covariances for

backgrounds and observations respectively, andy is the vector of observations. In this way, we have365

∇J(xa) = (LS)TR−1
(

H(xb)−y
)

+
(

B−1 +(LS)TR−1(LS)
)

(xa−xb)= 0, (15)

which leads to

xa−xb =
(

B−1 +(LS)TR−1(LS)
)−1(

y−H(xb)
)

(16)

= B(LS)T
(

(LS)B(LS)T +R
)−1(

y−H(xb)
)

. (17)

6.2 Construction of error covariances370

As the measurements at different levels originate from the same lidar, the matrixR should not be

diagonal because of measurement error correlations. However, in order to simplifyR in the first tests

of DA of lidar observations, one takesR= rI as a diagonal matrix whereI is the identity matrix and

r is an error variance. The value of the observation error variancer is determined by aχ2 diagnosis

(Ménard et al., 1999), in which the scalar375

χ2 =
(

y−H(xb)
)T(

(LS)B(LS)T +R
)−1(

y−H(xb)
)

(18)

should be equal, on average, to the number of observations (N ) at each DA step.

Specifically,B plays a role in determining how the corrections of the concentrations should be

distributed over the domain during DA. In practice, however, it is impossible to accurately know all

coefficients ofB. In our simulation, the number of model grid points is of the order of105. Thus380

the number of coefficients in the matrixB is about1010 multiplied by the square of the number of

analysis variables (about 100 variables for particles are used here). Therefore,B is too large to be

handled numerically.

In order to reduce the size of the error covariance matrices for background, we model the matrix

B as follows385

B=PDPT, (19)

whereD is the error covariance matrix for PM10, defined by the Balgovind approach (Balgovind

et al., 1983) obtained by considering the RMSE and correlation of simulated PM10 concentrations.

Thus, the size ofD is much less than the one ofB. The matrixP is defined by

P=















v1 0 ... 0

0 v2 ... 0

...
...

. ..
...

0 0 ... vM















(M ·Nb·Ns)×M

,390
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whereM is equal to the dimension of the domain (l ·n), vk is a vector of sizeNb ·Ns (the number

of state variables). Each component ofvk corresponds to the proportion of the mass of particles for

a given species in a given size section in PM10 mass concentrations at grid pointk.

Let S′ =SP be the directional derivative ofS along a given direction, and letcb andca be PM10

concentration states before and after analysis respectively. We multiply each side of equation (17)395

by the matrixZ in order to convertx into the PM10 statec :

Z=















1 ... 1 0 ... 0 0 ... 0 0 ... 0

0 ... 0 1 ... 1 0 ... 0 0 ... 0
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...

0 ... 0 0 ... 0 0 ... 0 1 ... 1















M×(M ·Nb·Ns)

.

We obtain

ca−cb =D(LS′)T
(

(LS′)D(LS′)t +R
)−1(

y−H(xb)
)

. (20)

After the analysis, the concentrationsca are redistributed over particle species and size sections400

following the initial chemical and size distributions.

6.3 DA setup

DA experiments are carried out for 01 and 26 July 2009. All DA experiments are performed with

time step600 s and from 200 to 1800 m above the ground (10 model levels), since the lidar measure-

ments are not available below the altitude of full overlap (200 m above the ground) and since aerosol405

concentrations above the PBL have limited impact on surfacePM10 in the short term (Wang et al.,

2013). In the Balgovind approach, the horizontal correlation length is set to0.2◦, which is estimated

from numerical DA tests. The error variances are separatelyset for each DA level, depending on the

RMSE of PM concentrations and the variability of PM concentrations at each model level.

Two new algorithms are tested for the assimilation of lidar observations. In the first algorithm,410

we use the assimilation of lidar observations to analyse PM10 concentrations and the analysed PM10

concentrations are redistributed over particle species and size sections following the initial chemical

and size distributions (see section 6.2). The background error variances (PM10) are estimated by the

simulation without DA and Airparif observations. The valueof the observation error variancer is

determined by aχ2 diagnosis, which yieldsr = 1 µg2 m−6 andr = 0.006 µg2 m−6 respectively for415

01 and 26 July, depending on the level of uncertainties (see section 5). LetN be the number of lidar

observations at one DA step. Figure 10 shows the time evolution of χ2/N (blue lines) for DA runs

on 01 and 26 July. The mean over DA window ofχ2/N is 1.02 (resp. 1.02) for 01 (resp. 26) July.

In the second algorithm, we separately analyse PM2.5 and PM2.5−10 (particulate matter with

a diameter higher than 2.5 µm and lower than 10 µm) in the assimilation of lidar observations.420

We modify the matrices used in section 6.2 to obtainc2.5 andc2.5−10, the mass concentrations of

PM2.5 and PM2.5−10 respectively (see Appendix B for details). We separately set the error variances
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for PM2.5 and PM2.5−10 in matrix D. Because of the lack of PM2.5−10 observations, we can not

directly estimate the background error variances. They aredetermined by theχ2 diagnosis using the

observation error variancer found in the first algorithm.425

In the following, we note the assimilation with the first (resp. second) DA algorithm as “DA

(PM10)” (resp. “DA (PM2.5 and PM2.5−10)”).

6.4 Results and discussions

In these DA tests, the purpose is to verify if these new algorithms are functional. Because we work

on a small scale, the corrections of DA are transported out ofthe simulation domain very quickly.430

Thus we only compute the statistics for the DA window to validate the DA tests.

Table 4 presents statistics of the simulation results without DA and with DA. Statistics are com-

puted for both PM10 and PM2.5 concentrations. Overall, both DA algorithms lead to betterscores

(lower RMSE, MFB and MFE, and higher correlation) than the simulation without DA for PM10

concentrations. Comparing two DA algorithms, the simulation with DA (PM2.5 and PM2.5−10)435

leads to better scores than the simulation with DA (PM10) for PM10 concentrations (see Tab. 4).

The RMSE of PM10 is 11.63 µg m−3 in the simulation with DA (PM2.5 and PM2.5−10), against

13.69 µg m−3 in the simulation with DA (PM10) on 01 July. The RMSE of PM10 is 4.73 µg m−3

in the simulation with DA (PM2.5 and PM2.5−10), against 6.08 µg m−3 in the simulation with DA

(PM10) on 26 July. It is because higher background error variancesare set for the coarse sections440

in the simulation with DA (PM2.5 and PM2.5−10). However, the simulation with DA (PM2.5 and

PM2.5−10) leads to similar scores to the simulation with DA (PM10) for PM2.5 concentrations (see

Tab. 4). It is because similar background error variances for PM2.5 in the simulation with DA (PM2.5

and PM2.5−10) to the simulation with DA (PM2.5) are used in theχ2 diagnosis, since fine particles

contribute to more than 80% of the lidar signal (Randriamiarisoa et al., 2006). In the following, we445

compare the simulation without DA and the simulation with DA(PM2.5 and PM2.5−10).

On 01 July, the averaged RMSE of PM10 is 11.63 µg m−3 with DA (PM2.5 and PM2.5−10),

against 17.74 µg m−3 without DA. The decrease of the RMSE are explained by the correlation

length in the matrixD, since no Airparif station performs measurements in the Southwest of Paris

(the Northeast wind). At stationISSY-LES-MOULINEAUX, the closest station to Saclay, the RMSE450

of PM10 is 14.72 µg m−3 with DA (PM2.5 and coarse), against 22.81 µg m−3 without DA. However,

the averaged RMSE of PM2.5 is about 10.4 µg m−3 with DA (PM2.5 and PM2.5−10), against 8.54

µg m−3 without DA. This is due to the larger horizontal correlationlength (see section 6.3). Figure

11 shows that the model underestimates the lidar signal at Saclay. While DA runs increase PM

concentrations in the lidar measurement grids, PM concentrations are increased at Airparif stations,455

where PM2.5 concentrations is well simulated and coarse particles are underestimated. This problem

can be solved by decreasing the horizontal correlation length.

On 26 July, the averaged RMSE of PM10 is 4.73 µg m−3 with DA (PM2.5 and PM2.5−10), against
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6.67 µg m−3 without DA. Because two circular GBML travelling patterns were performed around

Paris (see Fig. 1), most of Airparif stations are leeward (the South wind) or they are close to the460

patterns of GBML. They could validate improvements of PM concentrations. At stationPARIS 1er

Les Halles, the RMSE of PM10 is 1.96 µg m−3 in the simulation with DA (PM2.5 and PM2.5−10),

against 4.71 µg m−3 in the simulation without DA. Moreover, DA runs lead to better scores than the

simulation without DA for PM2.5. At leeward stationCREIL FAIENCERIE, the RMSE of PM2.5 is

4.1 µg m−3 in the simulation with DA (PM2.5 and PM2.5−10), against 4.9 µg m−3 in the simulation465

without DA.

7 Conclusions

In order to investigate the ability of the CTM POLAIR3D of the air quality modelling platform

POLYPHEMUS to simulate lidar vertical profiles, we have performed a simulation in the Greater

Paris area for the summer month July 2009. The results (PM10 and PM2.5 concentrations) are470

evaluated by Airparif data. We have simulated aerosol optical properties and lidar signals from

the model aerosol concentration outputs using the aerosol complex refractive index (ACRI) and the

wet particle diameter. Hourly comparisons between simulated lidar signals and lidar observations

have been described for six measurement days during the MEGAPOLI summer campaign. These

comparisons have shown a good agreement between GBML measurements and the simulation except475

21 July 2009, where an aerosol layer was presented at higher altitude in the model. The results show

that the optical property module of POLYPHEMUS would reproduce correctly lidar signals in the

model, if the aerosol layer is well simulated.

Two new algorithms for the assimilation of lidar observations have been presented. That depends

on whether PM10 is analysed or PM2.5 and PM2.5−10 are both analysed. DA tests were performed480

for 01 and 26 July 2009. On the whole, both of these algorithmslead to better scores (lower RMSE,

MFB and MFE, and higher correlation) for PM10. However, they did not work for PM2.5 on 01

July 2009, because of the larger horizontal correlation length. The simulation with DA (PM2.5 and

PM2.5−10) leads to better scores than the simulation with DA (PM10) by setting separately the error

variances for backgrounds in fine sections and coarse sections. The results shown in this paper485

suggest that the assimilation of lidar observations for analysing PM2.5 and PM2.5−10 would perform

better than assimilating the lidar signal for analysing PM10, but it is computationally more costly.

Comparing the simulation without DA and the simulation withDA (PM2.5 and PM2.5−10), the

averaged RMSE of PM10 is 11.63 µg m−3 with DA (PM2.5 and PM2.5−10), against 17.74 µg m−3

without DA on 01 July 2009. The averaged RMSE of PM10 is 4.73 µg m−3 with DA (PM2.5 and490

PM2.5−10), against 6.67 µg m−3 without DA on 26 July 2009.

A forthcoming paper will present results about the assimilation of continuous measurements from

the ACTRIS/EARLINET network during a 72-hour period of intensive observations.
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Appendix A Statistical indicators

{oi}i=1,n and{si}i=1,n are the observed and the modelled concentrations at timei, respectively.500

n is the number of available observations. The statistical indicators used to evaluate the results

with respect to observations are: the Root Mean Square Error(RMSE), the (Pearson) correlation,

the Mean Fractional Error (MFE), the Mean Fractional Bias (MFB). MFE and MFB bound the

maximum error and bias and do not allow a few data points to dominate the statistics. They are

often used to evaluate model performances against observations for aerosol mass concentrations and505

optical properties (Boylan and Russell, 2006). The statistical indicators are defined as follow:

RMSE=

√

√

√

√

1

n

n
∑

i=1

(oi−si)2, (A1)

correlation =

∑n
i=1(oi− ō)(si− s̄)

√
∑n

i=1(oi− ō)2
∑n

i=1(si− s̄)2
, (A2)

MFE=
1

n

n
∑

i=1

|si−oi|

(si +oi)/2
, (A3)

MFB=
1

n

n
∑

i=1

si−oi

(si +oi)/2
, (A4)510

whereō= 1
n

∑n
i=1oi ands̄ = 1

n

∑n
i=1si.

Appendix B Update formula for DA (PM 2.5 and PM2.5−10)

In order to separately analyse PM2.5 and PM2.5−10 in the assimilation of lidar observations, the

matrixB is modelled as follows

B=PDPT, (B1)515

whereD is the error covariance matrix for PM2.5 and PM2.5−10. The matrixD is defined by

D=





D2.5 0

0 D2.5−10



,

and the matrixP is defined by

P=





P2.5

P2.5−10



,

16

Cross-Out

Replacement Text
Laboratory



where each columnk of P2.5 (resp.P2.5−10) corresponds to the proportion of the mass of particles520

for a given species in a given size section in PM2.5 (resp. PM2.5−10) mass concentrations at grid

pointk as section 6.2 shown.

The matrixZ is defined by

Z=





Z2.5

Z2.5−10



,

where the matrixZ2.5 (resp.Z2.5−10) is aM×(M ·Nb ·Ns) matrix, which converts the state vector525

x into the PM2.5 (resp. PM2.5−10) statec2.5 (resp.c2.5−10).

Let S′ =SP. After multiplying each side of equation (17) by the matrixZ, we obtain




ca
2.5−cb

2.5

ca
2.5−10

−cb
2.5−10



 =D(LS′)T
(

(LS′)D(LS′)t +R
)−1(

y−H(xb)
)

.

17



References

Balgovind, R., Dalcher, A., Ghil, M., and Kalnay, E.: A Stochastic-Dynamic Model for the Spatial Structure of530

Forecast Error Statistics, Mon.Weather Rev., 111, 701–722, 1983.

Bouttier, F. and Courtier, P.: Data assimilation concepts and methods, Meteorological Training Course Lecture

Series, ECMWF, 2002.

Boylan, J. W. and Russell, A. G.: PM and light extinction model performance metrics, goals, and criteria for

three-dimensional air quality models, Atmos. Environ., 40, 4946–4959, 2006.535

Brandt, J., Christensen, J. H., Frohn, L. M., Geels, C., Hansen, K. M., Hedegaard, G. B., Hvidberg, M.,

and Skjøth, C. A.: THOR – an operational and integrated model system for air pollution forecasting and

management from regional to local scale, in: Proceedings of the 2nd ACCENT Symposium, 2007.

Chazette, P., Sanak, J., and Dulac, F.: New Approach for AerosolProfiling with a Lidar Onboard an Ultralight

Aircraft: Application to the African Monsoon Multidisciplinary Analysis, Environ. Sci. Technol., 41, 8335–540

8341, 2007.

Chazette, P., Bocquet, M., Royer, P., Winiarek, V., Raut, J.-c., Labazuy, P., Gouhier, M., Lardier, M., and

Cariou, J.-p.: Eyjafjallaj̈okull ash concentrations derived from both lidar and modeling, J. Geophys. Res.,

117, 1–17, doi:10.1029/2011JD015755, 2012.

Collis, R. T. H. and Russell, P. B.: Lidar measurements of particles and gases by elastic backscattering and545

differential absorption, Top. Appl. Phys., 14(8), 8997, 1976.

Couvidat, F., Debry, E., Sartelet, K., and Seigneur, C.: A hydrophilic/hydrophobic organic (H2O) aerosol

model: Development, evaluation and sensitivity analysis, J. Geophys. Res., 117, 1–19, doi:10.1029/

2011JD017214, 2012.

Couvidat, F., Kim, Y., Sartelet, K., Seigneur, C., Marchand, N., Sciare, J., and Environnement, L. C.: Modeling550

secondary organic aerosol in an urban area: application to Paris, France, Atmos. Chem. Phys., 13, 983–996,

doi:10.5194/acp-13-983-2013, 2013.

DasGupta, M. and Mishra, S. K.: Least Absolute Deviation Estimation of Linear Econometric Models : A

Literature Review, MPRA Paper, 2007.

de Rooij, W. A. and van der Stap, C. C. A. H.: Expansion of Mie scatteringmatrices in generalized spherical555

functions, Astron. Astrophys., 131, 237248, 1984.

Debry, E., Fahey, K., Sartelet, K., Sportisse, B., , and Tombette, M.: Technical Note: A new SIze REsolved

Aerosol Model (SIREAM), Atmos. Chem. Phys., 7, 1537–1547, doi:10.5194/acp-7-1537-2007, http://dx.

doi.org/10.5194/acp-7-1537-2007, 2007.

Denby, B., Schaap, M., Segers, A., Builtjes, P., and Hora, J.: Comparison of two data assimilation methods560

for assessing PM10 exceedances on the European scale, Atmospheric Environment, 42, 7122–7134, doi:

10.1016/j.atmosenv.2008.05.058, 2008.

Dockery, D. and Pope, A.: Epidemiology of acute health effects: summary of time-series, in: Particles in Our

Air: Concentration and Health Effects, Harvard University Press, pp.123–147, 1996.

Hess, M., Koepke, P., and Schult, I.: Optical Properties of Aerosolsand Clouds: The Software Package OPAC,565

Bull. Amer. Meteor. Soc., 79, 831–844, 1998.

Hodzic, A., Chepfer, H., Vautard, R., Chazette, P., Beekmann, M., Bessagnet, B., Chatenet, B., Cuesta, J.,

Drobinski, P., Goloub, P., Haeffelin, M., and Morille, Y.: Comparisonof aerosol chemistry transport model

18



simulations with lidar and Sun photometer observations at a site near Paris, J. Geophys. Res., 109, 1–19,

doi:10.1029/2004JD004735, 2004.570

Hodzic, A., Vautard, R., Chazette, P., Menut, L., and Bessagnet, B.: Aerosol chemical and optical prop-

erties over the Paris area within ESQUIF project, Atmos. Chem. Phys., 6,3257–3280, doi:10.5194/

acp-6-3257-2006, 2006.
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Fig. 1. The blue square shows the location of the ground-basedin-situ lidar station, the red squares (resp. the

magenta triangles) show the locations of Airparif stations for PM10 (resp. PM2.5) measurements and the green

discs show the locations of AERONET stations. The black pattern shows the GBML track on 01 July 2009.

The yellow and cyan patterns show two GBML tracks on 26 July 2009. The rectangle area is detailed in the

bottom figure.
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Fig. 2. Blue points (resp. red lines) indicate lidar signalsPR2 (resp. simulated molecular signalsSRay) at

13:00 UTC 01, 16:00 UTC 04, 12:00 UTC 16, 15:00 UTC 21, 14:00 UTC 26 and 14:00 UTC 29 July 2009

(blue points). LAD regressions of weighted lidar measurement points are indicated by cyan lines.
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Fig. 3. Left (resp. right) figure shows the hourly evolution of the PM10 concentration (resp. AOD) at station

Paris for 01 July 2009.
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Fig. 4. Comparisons between the vertical profiles observed by GBML (blue points) and simulated by POLYPHE-

MUS (red lines) on 01 July 2009 from 11:00 to 13:00 UTC. Lidar observations below the altitude of full overlap

are not represented.
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Fig. 5. Comparisons between the vertical profiles observed by GBML (blue points) and simulated by POLYPHE-

MUS (red lines) on 04 July 2009 at 15:03 and 16:00 UTC. Lidar observations below the altitude of full overlap

are not represented.

Table 1. Dry CRI and density for different aerosol species atλ = 355 nm. Re (resp. Im) stands for the real

(resp. imaginary) part of CRI.

Species Re Im density (g cm−3)

Nitrate 1.53 -0.005 1.5

Ammonium 1.53 -0.005 0.91

Black carbon 1.75 -0.4645 2.25

Mineral dust 1.53 -0.0166 2.33

Organics 1.53 -0.008 1.3

Sulfate 1.45 -1e-08 1.84

Sodium 1.509 -2.946e-07 0.97

Chlorate 1.509 -2.946e-07 1.15

Water 1.35738 2.72875e-08 1.0
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Fig. 6. Comparisons between the vertical profiles observed by GBML (blue points) and simulated by POLYPHE-

MUS (red lines) on 16 July 2009 at 11:03, 12:00, 13:25 and 14:09 UTC. Lidar observations below the altitude

of full overlap are not represented.

Table 2. Statistics (see Appendix A) of the simulation results for the Airparif network during the MEGAPOLI

summer experiment. Obs. stands for observation. Sim. stands for simulation. Corr. stands for correlation.

Day PM10 PM2.5

Obs. mean Sim. mean RMSE Corr. MFB MFEObs. mean Sim. mean RMSE Corr. MFB MFE

µg m−3 µg m−3 µg m−3 % % % µg m−3 µg m−3 µg m−3 % % %

All 21.53 14.14 10.79 64 -42 49 12.59 12.78 6.02 68 4 39

01 44.99 29.39 18.08 78 -45 47 28.82 27.14 7.94 74 -10 23

04 18.37 11.11 8.34 8 -48 48 10.80 9.99 3.90 -25 -4 31

16 26.25 16.47 12.28 16 -41 46 12.60 15.76 5.41 31 25 34

21 27.84 16.84 13.13 28 -46 50 15.46 16.19 5.84 14 6 31

26 18.04 10.12 9.52 -4.6 -52 53 12.32 10.27 5.05 7.1 -16 34

29 29.25 12.33 18.49 28 -76 78 14.82 11.78 7.32 38 -20 37
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Fig. 7. Comparisons between the vertical profiles observed by GBML (blue points) and simulated by POLYPHE-

MUS (red lines) on 21 July 2009 at 12:15, 13:16, 14:10 and 15:10 UTC. Lidar observations below the altitude

of full overlap are not represented.

Table 3. Statistics (see Appendix A) of the simulation results for the AERONET networkfor different lidar

measurement days.

Day Obs. mean Sim. mean RMSE Corr. MFB MFE

% % %

01 0.59 0.47 0.20 -8 -21 29

04 0.25 0.14 0.12 37 -58 58

16 0.26 0.18 0.08 80 -33 33

26 0.15 0.08 0.07 45 -53 53

27

Sticky Note
missing units

Highlight



0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
Lidar signal

0

500

1000

1500

2000

2500

3000

3500

4000

A
lt
it
u
d
e

Obs.
Sim.

260709 13:00 UTC

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
Lidar signal

0

500

1000

1500

2000

2500

3000

3500

4000

A
lt
it
u
d
e

Obs.
Sim.

260709 14:00 UTC

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
Lidar signal

0

500

1000

1500

2000

2500

3000

3500

4000

A
lt
it
u
d
e

Obs.
Sim.

260709 15:00 UTC

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
Lidar signal

0

500

1000

1500

2000

2500

3000

3500

4000

A
lt
it
u
d
e

Obs.
Sim.

260709 17:00 UTC

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
Lidar signal

0

500

1000

1500

2000

2500

3000

3500

4000

A
lt
it
u
d
e

Obs.
Sim.

260709 18:00 UTC

Fig. 8. Comparisons between the vertical profiles observed by GBML (blue points) and simulated by POLYPHE-

MUS (red lines) on 26 July 2009 at 13:00, 14:00, 15:00, 17:00 and 18:10 UTC.Lidar observations below the

altitude of full overlap are not represented.
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Fig. 9. Comparisons between the vertical profiles observed by GBML (blue points) and simulated by POLYPHE-

MUS (red lines) on 26 July 2009 at 13:00, 14:00 and 15:00 UTC. Lidar observations below the altitude of full

overlap are not represented.
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Fig. 10. Time evolution ofχ2/N (blue lines) for DA runs on 01 and 26 July 2009. The mean over DA window

of χ2/N is 1.02 (resp. 1.02) for 01 (resp. 26) July 2009.
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Fig. 11. Lidar vertical profiles observed by the ground-basedin-situ lidar at Saclay (blue points), simulated

without DA (red lines) and simulated with DA (magenta lines) on 01 July 2009.
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Table 4. Statistics (see Appendix A) of the simulation results (PM10 and PM2.5) without DA and with DA

for the Airparif network for 01 and 26 July 2009. “With DA (PM10)” stands for the assimilation of lidar

observations correcting directly PM10. “With DA (PM2.5 and PM2.5−10)” stands for the assimilation of lidar

observations correcting separately PM2.5 and PM2.5−10.

Day Species Sim. Obs. mean Sim. mean RMSE Corr. MFB MFE

% % %

01 PM10 Without DA 47.26 32.35 17.74 84 -41 43

With DA (PM10) 36.20 13.69 90 -29 32

With DA (PM2.5 and PM2.5−10) 39.85 11.63 84 -19 25

PM2.5 Without DA 30.52 30.21 8.54 69 -5 23

With DA (PM10) 33.04 10.44 59 5 27

With DA (PM2.5 and PM2.5−10) 33.08 10.45 58 5 27

26 PM10 Without DA 16.25 9.96 6.67 -20 -47 47

With DA (PM10) 10.55 6.08 15 -42 42

With DA (PM2.5 and PM2.5−10) 12.80 4.73 26 -25 30

PM2.5 Without DA 10.25 8.99 2.80 7 -9 25

With DA (PM10) 9.64 2.51 22 -2 22

With DA (PM2.5 and PM2.5−10) 9.49 2.54 21 -4 22
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