Referee 1	L
-----------	---

The presented work deals with experimental aspects of an important interfacial reaction of a NOy species for which considerable experimental backlog and remaining necessity exists regarding its role in numerical modeling of the troposphere. Definitive experimental results regarding the fundamental reactivity of "mineral dust" under tropospheric conditions are still outstanding and impatiently expected. The authors have investigated the reactions of	We thank the referee for the detailed review and positive assessment of the topical nature of the work and quality of the experimental tools.
N2O5 on the mineral dust proxies Illite and Arizona Test Dust (ATD) as a function of relative humidity at ambient temperature in order to discover a potential systematic trend of the uptake coefficient γ with the goal to extract fundamental chemical kinetic laws applicable to mineral dust of a given provenience. The authors have developed a superb, extremely sensitive and simple optical monitor of N2O5 and/or NO3•free radical, namely cavity ring-down spectroscopy at 662 nm, that they have successfully applied to this laboratory study. I generally concur with the results and discussion by the authors but have a few remarks that I would like to see answered to the benefit of the readership of Atmospheric Chemistry and Physics.	
Pg. 24864, lines 9 to 16, and pg. 24865, lines 21 and following: authors claim an exponential rate law for the sum of kd+ kw as a consequence of the correlation between [N ₂ O ₅] and Nd displayed in Figure 4, both for Illite and ATD. However, at a closer look, [N ₂ O ₅] visibly droops below the straight line that is heavily weighted towards the high values of [N ₂ O ₅] at the beginning (origin) of the plot (Figure 4). This is unusual, because in general the opposite is true owing to the increasing importance of the background as the signal decreases in amplitude. The measurement precision being what it is, and surmising that the authors do the best job they can, a slightly different interpretation may be proposed.	We write that the variation of the N_2O_5 signal with the number of dust particles is "consistent with" the expressions involving the terms kd and kw we have used to derive the uptake coefficient, which suggest an exponential dependence of N_2O_5 concentration on the dust numbers for a given interaction time. We use the word "consistent" as we indeed recognise that the data no not extend over an extended variation in N_2O_5 signal (factor of 10) as would be the ideal case. Within experimental scatter there is an exponential dependence between the N_2O_5 signal and the number of dust particles. The

One may claim that at these fairly large values of [N ₂ O ₅] partial saturation of uptake may occur at steady-state which would make the uptake rate constant kd faster at lower values of [N ₂ O ₅] under conditions of reversible and partial saturation of reactive surface sites. This "fall-off" effect of the apparently increasing value of kd with decreasing [N ₂ O ₅] may also be observed for N ₂ O ₅ /Saharan Dust in Figure 4 of the cited paper Tang et al. 2012 (PCCP, 2012, 14, 8551- 85561). The authors gloss over the single- exponential rate law a bit fast for my taste in order to arrive at the probable, but perhaps debatable conclusion of "first-order" rate law for uptake.	"droop" identified by the reviewer is present in only two of the six decays presented. In one case (Illite) it is not observed in the dataset taken at the longest interaction time (injector position), where a change in the uptake rate due to surface saturation should be most apparent. In a revised version, we write: "While the N ₂ O ₅ decay does not span a sufficient range to prove that these equations are appropriate, the experimental dataset displayed in Figure 4, plotting the measured N ₂ O ₅ concentrations versus the dust aerosol number concentration for both illite and ATD particles at three different injector positions, is consistent with this."
Knudsen flow reactor studies have shown over and over again that the rate constants generally do not follow first-order behavior, but the authors are a bit quick to dismiss these studies as not "atmospherically relevant". I in part agree – surprisingly - with this statement because the evidence is subtle. However, these studies teach one a lot about rate laws and reaction products that are not (yet) accessible using AFT's owing to experimental complexities. I am not so sure about the statement on top of pg. 24864 that γ is "in any case not dependent on the initial N ₂ O ₅ concentration". This rate law check is rarely performed, if at all, by flow tubers, more frequently by proponents of Knudsen flow reactor studies.	We are not entirely sure what the referee means when he says that, in Knudsen studies "rate constants generally do not follow first- order behavior". We assume he refers to the fact that the loss rates are not independent of the initial trace-gas concentration and that the uptake coefficient derived from these loss rates are not independent of the surface area (or mass) of the bulk substrate. There is no reason why an aerosol flow tube (which overcomes the problems with diffusion limited uptake experienced by coated wall flow tubes) cannot deliver the same information regarding rate laws as a Knudsen reactor. Likewise, detection of products (both gas and aerosol phase) is possible as described in Tang et al. 2012. The uptake coefficients we derive here and elsewhere for N ₂ O ₅ (Tang et al. 2012) are, within experimental uncertainty, independent of the initial concentration of N ₂ O ₅ . And show no systematic dependence on the surface area. There is nothing ambiguous about this statement.

A case in point related to the subject is made	We refer the referee to our previous study
by Karagulian et al. (2006) cited by the	(Tang et al. 2012) in which uptake
authors where k_d (or γ_{ss}) decreases by a factor	coefficients of N_2O_5 showed (within
of three upon increasing [N ₂ O ₅] by a factor of	experimental scatter) no dependence on N ₂ O ₅
ten at N_2O_5 concentrations equal to or lower	when the latter was varied by a factor of 60.
than used by the present authors. The same	J
behavior of partial saturation of reactive	
surface sites has been observed for NO ₃	
interacting with mineral dust (Karagulian et	
al PCCP 2005 7 3150) Over the years I	
have not come across a single uptake process	
that was independent of the concentration of	
the gas phase species with the exception of	
unitary systems such as H2O vapor on H2O	
ice	
The gas kinetic parameter 711 (gas wall	The surface grass used were of course
collision rate) of a gaseous ensemble of	calculated from the surface weighted
molecules is proportional to the total surface	distribution We already state this on page
area of the particles present. Figure 2 displays	24861 We did not derive an average surface
the distribution of the number concentration	area from the peak of the number distribution
as a function of the acrodynamic diameter A	area from the peak of the number distribution.
as a function of the aerodynamic diameter. A	The relation between stekes and perodynamic
surface distribution as a function of Stokes (-	diameters is given on page 24861. We prefer
surface distribution as a function of Stokes (-	to plot the distribution as measured rather
appropriately surface weighted average value	then subsequent to the conversion factors and
for A rother than the number concentration	assumptions listed in the text
voighted value	assumptions listed in the text.
weighted value.	We agree that the larger ATD particles will
Lassume that the outport have taken Figure 2	dominate the untake. This will however not
in order to deduce the "average surface area	lead to a change in our calculated untake
in order to deduce the average surface area	lead to a change in our calculated uptake
be instructive to compare the checkute values	coefficient as we have already used the
be instructive to compare the absolute values	correct surface area (see above).
of the so-derived γ with the procedure	On page 24801 the average surface areas for
presented by the authors. I am sure that the	ATD and finite are listed. Due to the large
Surface-weighting of the distribution of	diameter mode, the AID particles have
Figure 2 leads to the inverse shown: large	average surface areas a factor 6 farger than
particles are more important than the smaller	inte even though the small modes are both at
ones, which leads to the suppression of the	about 1.8 microns.
mode at 1.8 mm and the emphasis of the	To clarify, we now write:
mode at 8 mm for AID. For illite there will	10 ciarily, we now write:
be a snift of the mode towards higher values.	I ne average surface area were calculated by
As a result γ exp may become smaller if Ad	dividing the total surface area (per volume) of
snifts to higher values owing to surface-	all the particles with the number (per volume)
weighting.	of the particles"

It is not quite clear how absolute concentrations of N ₂ O ₅ have been obtained by the authors. Although this knowledge is not necessary in the present context if first-order behavior of the rate law is postulated, this question triggered my curiosity as the authors reveal the N ₂ O ₅ concentration, on the order of $(8-24)$ 10 ¹² molecule cm-3 (Table 1).	The flow tube concentration of N_2O_5 is derived from the CRD measurement (which is absolute) and the dilution factor between flow tube and CRD. This is described on page 24862.
A first-order rate constant for disappearance of NO ₃ , k ₁ = 0.6 \pm 0.27 s-1, was measured at ambient temperature by Karagulian et al. (2005, see above) for a FEP-coated Knudsen flow reactor. The authors measure k _w that is approximately a factor of six lower than this value (Schuster et al., 2009) at ambient temperature.	It is unclear what comparing wall loss rates in a FEP coated Knudsen reactor (mTorr pressure) or a FEP coated glass tube tells us. The former is limited by surface reactivity, the latter by diffusion.
However, caution needs to be exercized because N_2O_5 is undergoing dissociation at roughly 100°C such that the NO_3 disappearance may be faster. We routinely "sacrificed" about 50% of NO_3 in favor of NO_2 in our studies when we generate NO3from thermal dissociation of N2O5.	Knowledge of the first order loss of NO_3 in the cavity at 100 °C is important only for absolute determination of concentrations. As we measure relative changes in concentration of N_2O_5 here, cavity losses of N_2O_5 or NO_3 are not relevant.
What is the HNO_3 level in your experiment? This is another pegpoint for the quality of the used N2O5.	The N ₂ O ₅ crystals were carefully prepared using dried gases, and as N ₂ O ₅ will strip H ₂ O from glass and Teflon walls of H ₂ O after a while. Also, eluting the N ₂ O ₅ from a crystalline sample at -50 °C will favour transfer of N ₂ O ₅ rather than HNO ₃ to the gas- phase. We have not measured the HNO ₃ impurity in this study but do not expect it to be larger than the < 5 % reported previously from this lab (Wagner et al, Atmos. Chem. Phys. 8, 91, 2008) We mention this in the revised manuscript.

Pg. 24860, lines 13 to 18: Figure 2 conveys a fairly moderate aerosol number concentration for small diameters, and a reasonable one for larger particles. Nevertheless, the surface area of suspended particles is much smaller than the surface area of the vessel walls.	It is not the sensitive detection of N_2O_5 that enables the "separation" of kw and kd, but the stability of kw. As the referee correctly indicates, kw is stable ("independent of fluctuations") as it is diffusion limited.
I do not get a feeling for the importance of k_wvs . Kd while reading the paper, which would be useful in view of the highly reactive nature of the dust-laden walls of the flow tube. It is a clever idea by the authors to make the wall-loss rate independent of fluctuations, but I am left with the question of the absolute values of both contributions to the total rate of N_2O_5 disappearance. Is it the extremely sensitive detection of NO_3 that enables the successful separation of k_w and k_d ? This point should be belabored a bit more by the authors	As we state on page 24864, we do not need to know kw as long as relative changes in N ₂ O ₅ concentrations induced by dust pulses are larger than fluctuations in kw on the same time scale. However, we recognise that this information is useful and now write: "The wall loss constant, k_w was about ~0.04 s ⁻¹ which can be compared to a first-order loss rate constant due to uptake to illite of k_d ~0.1 when $N_d = 5000$ cm ⁻³ . Note that it is the stability (rather than size) of k_w during an experiment that limits the experimental accuracy."
Pg. 24866, lines 24 and following regarding surface OH-groups and pg. 24868, line 26 and following: What are the alternatives between reaction of N ₂ O ₅ with surface OH- groups and heterogeneous hydrolysis? It would be instructive to clearly formulate the different reaction paths.	As we monitor only the gas-phase loss of N_2O_5 , we cannot (and do not attempt to) derive detailed mechanistic information, but have simply shown that our RH dependences can be considered consistent with conclusions made in previous studies in which surface spectroscopy (Seisel et al., 2005) and theory (Messaoudi et al 2013) revealed an important role of OH groups for uptake of N_2O_5 to mineral substrates.
First remark: N ₂ O ₅ hydrolysis like any other organic or inorganic hydrolysis is either general acid- or base-catalyzed because both H ₂ O and N ₂ O ₅ are closed shell compounds and react only slowly in the absence of a catalyst. A second remark concerns the surface OH-groups which either behave as acids or bases. In the presence of adsorbed H ₂ O (which is seldom absent) it is probably immaterial (and impossible) to distinguish between hydrolysis and acid/base-catalyzed (hydrolysis) reaction. For instance, TiO ₂ (rutile, boehmite or anatase) have surface OH-groups ranging from very acidic to very basic all at once! I can think of the following in this regard: acidic OH group: $M^+OH^- + NO_2^+NO_3^- \rightarrow MO^- + HNO3(or$	The two reaction mechanisms, e.g. reaction with OH groups and hydrolysis by surface adsorbed water, have been proposed, formulate, and detailed by Seisel et al (2005). Therefore, we have referred to original work of Seisel. We do not see any gain in adding more speculative discussion of a mechanism on which we have no real handle in these experiments.

nitrate after neutralization) + NO_2^+	
basic OH group:	
$M^+OH^- + NO_2^+NO_3^- \rightarrow M^+ + HNO_3 + NO_3^-$	
In my view the basic pathway is favored	
because it generates the stable nitrate anion	
compared to the unstable nitronium ion. But	
surprises do happen: remember the	
heterogeneous reaction of N2O50n	
deliquescent sea salt particlesThere the	
nitronium ion was surprisingly stable.	
Pg. 24867, line 14 and following: This is the	This is true. We have revised the text as
first time I hear that quartz does not have	below. As we are blind to the surface, this
(intrinsic? What is that?) surface OH-	discussion is not intended to be more than
groups Fused and crystalline quartz and	speculative / qualitative in nature
Pyrex (75% fused SiO ₂) are slightly acidic	speculative / quantative in hatare.
iust because of surface OH-groups. You may	The results for ATD reveal a rather different
even titrate them as a function of rh. All	picture, with lower uptake coefficients (factor
inorganic oxide surfaces have surface OH-	~ 10 lower than illite at 0 % RH) and (at most)
groups capping (terminating) the surface. But	a weak dependence on RH. The lower uptake
perhaps the authors address a distinctly	coefficients may be related to the mineral
different point that I did not get	composition of ATD which consists mainly
different point that I did not get	of feldspar and quartz (Broadley et al. 2012)
	which may have less (and/or less reactive)
	surface OH groups. The weak dependence on
	RH is probably related to the fact that the
	hydroscopic growth of ATD particles is very
	small (Gustafsson et al. 2005:Vlasenko et al.
	2005) and therefore even at high PH the
	amount of adsorbed water on the surface does
	not contribute significantly to N.O.
	not contribute significantly to N_2O_5
	solvation/ionisation but may sum result in
	deactivation of surface OH groups as snown
	by Goodman et al. (2001). Surface sensitive
	methods would be required to confirm this
	postulate.
The equilibrium between N2O5, NO3 and NO2	This reaction has never been firmly
should perhaps make reference to the	established as the source of N_2O_5 loss (see
additional and irreversible pathway NO2+	Sander, S. P., et al.: Chemical Kinetics and
$NO_3 \rightarrow NO + NO_2 + O_2$ which is responsible	Photochemical Data for Use in Atmospheric
for the slow N2O5 degradation to NO2 in static	Studies, Evaluation No. 17," JPL Publication
or long-residence time (= slow flow)	10-6, Jet Propulsion Laboratory, Pasadena,
laboratory experiments, especially at elevated	nttp://jpidataeval.jpl.nasa.gov., 2011.
temperatures where the forward reaction of	T/ 11/ /1 1 1
IN2U5 decomposition is fast.	It might not be a gas-phase process and is
	usually ignored.
Pg. 24857, line 15 and following: laboratory	we have added a reference to the pioneering
experiments established the existence and	laboratory study (Finlayson-Pitts, 1989).
properties of CINO2long before they were	
detected in the field!	
Pg. 24861, line 24: "bin" instead of "pin"	correction will be made

(probably)	
Pg. 24867, line 3: "uptake coefficient (0.04)	correction will be made
on illite is similar to"	
Pg. 24867, line 26: "Bulk samples".	correction will be made
Pg. 24868, line 12: "studying"; line 26:	corrections will be made
"that under these"	
Pg. 24869, line 24: "deserts"	correction will be made
Amendment from Referee 1	
I would like to post an amendment to the	This comment has been answered as
third "bullet" in my referee comment: (a) the	described above.
length scale of the average size of the mineral	
dust particles (illite, ATD) are micrometers,	
not millimeters; (b) I stand by my point on	
surface-weighting of the size distribution	
function in terms of number concentration: at	
constant mass the total surface area decreases	
as does the gas-wall collision frequency	
"omega" on all particles considered in the	
volume. This should make "gamma" larger,	
not smaller, at a given (measured) value of	
the rate constant k according to: $k = gamma x$	
omega.	