
Referee 3: 
 

This manuscript attempts to view “atmospheric waves” as (scaling) turbulent 
phenomena by proposing the so-called turbulence-wave propagator with proper scaling. 
This study should be interesting to a broad audience and will have broad impact on 
research activities in both turbulence and atmospheric wave dynamics, which have been 
studied with different approaches separately, e.g., nonlinear vs. linear approaches. 
However, although a general term ``atmospheric waves” is used in this study, the 
mathematical foundations are based on the dispersion of the classical wave equation, 
which can only represent special kinds of atmospheric waves such as the Kelvin wave 
and 2D (x,y) gravity waves. Therefore, please be advised to construct the turbulence-
wave propagator using a more general dispersion relation and then to examine if different 
atmospheric waves can be viewed as (scaling) turbulent phenomena. Alternatively, the 
authors may consider to revise the manuscript as well as its title to focus on the specific 
type of atmospheric wave (i.e., the Kelvin wave). In recognition and appreciation for the 
interesting and challenging study, the reviewer recommends that the manuscript be 
accepted for publication after the following issues are addressed. General and specific 
comments and a note on two linear wave equations with more general dispersion 
relations are provided below. 

 
Au: Thank you for your positive evaluation.  The reviewer’s suggestion to somewhat 
widen the scope of the paper is a good one, which have followed to some extent.  First, 
we have added a two new appendices.  Appendix B gives the full general form of 
propagators satisfying scaling, causality and reality conditions and discusses the 
relations with group velocity and energy transfer.  We have also explicitly related the 
dispersion relations and propagators to the more usual wave description in terms of 
travelling and evanescent waves.  Finally – also as suggested -  we have discussed the 
WKB approximation (appendix C).  However, we have resisted the temptation to go much 
beyond this, in particular to attempt a re-evaluation of the many linear wave theories that 
the referee has kindly summarized in the second half of his comments.  The reason is that 
the aim of the present paper was to use the concrete case of equatorial waves viewed by 
satellite in order to pose the question about the validity of linear wave theories.  While it 
is obviously important to go beyond this case, it goes well beyond the framework of this 
paper, it is the subject of future work!  
 
General Comments: 
i. The authors are advised to use a more general dispersion relation (as discussed near the 
end of this comment file) to construct the turbulence-wave propagator. 
ii. Two types of linear wave solutions are (1) propagating wave solutions in the form of 
exp(iσt-­‐imz)	
  and (2) evanescent wave solutions in the form of exp(iσt-­‐Mz). Here σ, m, 
and M are real numbers, and represent the frequency, wavenumber, and the reciprocal of 
the scale height, respectively. While the Kelvin wave propagates in the x direction, its 
meridional component (in the y direction) is evanescent. Thus, the “scaling” for the 
Kelvin wave is different from other types of waves which may propagate in both x and y 
directions (e.g., gravity waves or other types of waves). In addition, under certain 
atmospheric conditions  (e.g., the occurrence of a critical level or critical latitude), the 



wavenumber in a specific direction may not be integers. Therefore, the existence of an 
isotropic scale really depends on type of wave. Several atmospheric waves with different 
dispersion relations are discussed in the note below. 
 
Au: See the above comments and appendix B. 
 
iii. A (linear) dispersion relation is derived from a set of linearized governing equations 
that describe the spatial distribution and temporal evolution of a flow with multiple fields  
(e.g., wind speeds, temperature etc) and the correlation among the different fields. The 
latter is often used to distinguish different weather systems. For example, the phase 
relationship between the low pressure center and convergence/divergence of wind fields 
is used to illustrate the differences between a mixed Rossby-gravity (MRG) wave and a 
tropical-depression- (TD-) type disturbance. Therefore, the reviewer is wondering if and 
how the concept of the fractional turbulence-wave propagator can provide something 
equivalent or similar (e.g., via a set of nonlinear governing equations) that can help 
identify different physical processes for different weather systems? 
 
Au: The basic form and exponent of the fractional turbulence propagator is likely to be 
fairly fundamental (e.g. the H=1/3 in the Kolmogorov law is determined by dimensional 
considerations).  However, the spatial scale function k  may vary considerably from one 
realization to another and the relative importance of the wave and turbulent aspects  
(Hwav and Htur) may similarly vary.  This is a subject for future research.  
 
iv. Linear wave theories have been developed to improve our understanding of the 
dynamics for terrain-induced or heating-induced mesoscale waves (e.g., Smith, 1979; Lin 
1987; Lin 2007 and references therein), and for large-scale equatorial tropical waves 
(e.g., Matsuno 1996; Wheeler and Kiladis 1999). These studies have suggested an 
effective means of detecting atmospheric waves in real data. By analyzing global analysis 
data, Frank and Roundy (2006) and Schreck et al. (2012) have shown the strong 
relationship between tropical wave activities and tropical cyclone (TC) genesis. These 
tropical waves may be viewed as precursors to TC genesis. The association of TC genesis 
with different (linear)  tropical waves has been illustrated with modeling studies (Shen et 
al., 2012; 2013 and 
references therein), leading to the hypothesis that the lead time of TC genesis prediction 
can be extended by improving the representation and evolution of (linear) tropical waves 
and their modulations on TC activities. In addition, the linear wave solutions have been 
used to verify the solutions of the numerical models. The aforementioned studies, just to 
name a few, have illustrated the usefulness of linear wave theories (for short-term 
weather simulations, at least). As the authors conclude that no linear theories are needed, 
it is important for the authors to provide strong justifications for the superiority of the 
proposed approach (with the turbulence wave propagator) with respect to the linear wave 
approaches. 
 
Au: The scaling propagator approach is superior since it does not make unrealistic 
assumptions about the dynamics in order to linearize them.  Obviously, it will need to be 
applied to the problem of TC genesis before it can be shown to be of practical value in 



that situation.  At the moment, in as much as linear wave theories mostly rely on 
dispersion relations, we mostly claim that we expect to be able to reproduce results 
consistent with linear wave theories (nearly the same dispersion relations).  One 
difference between the approaches is in the exponents determining the fall-off of wave 
amplitudes – if more realistic - this difference could represent a practical improvement of 
our approach. 
 
Specific Comments 
page 14798, line 18-19: please consider to expand the discussions on the linear 
atmospheric waves. Some references are provided below.   
 
page 14800, line 17-18: The authors state `` A key characteristic of linear theories is that 
they involve integer powers of the (space and time) differential operators’’. When 
atmospheric conditions are not “uniform,” the governing equation such as Eq. (2.71) in 
the section 2.3 of Nappo (2002) can be solved only by the so-called W.K.B. method. 
Therefore, is the above statement still valid? 
 
Au: Thank you. We have added a an entire appendix on the WKB method which combines 
both a theoretical and empirical assessment in the classical case of gravity waves. 
 
page 14801-14802, Eqs. (2) and (4): When other dispersion relations are used, can you 
always find the corresponding fractional propagators? if so, will the “anomalous” 
exponent H be the same or different? Is the value of H dependent of data type and length? 
 
Au: The general case is now given in appendix B, the classical wave equation was only 
used as a motivational example.  The overall scaling exponent H=Htur+Hwav is 
presumably basic and depends on the phenomena, however, it is quite possible that the 
individual values of Htur and Hwav depend on the meteorological situation (they are 
random variables).  
 
page 14805, line 25: please provide justifications for the scaling: (kx,ky,ω)	
  →	
  λ(kx,ky,ω)	
  	
  
for the Kelvin wave (whose meridional component is evanescent) and the other types of 
waves as well. 
 
Au: The justification for the overall scaling (kx,ky,ω)	
  →	
  λ(kx,ky,ω)	
  	
  is	
  empirical,	
  it	
  is	
  from	
  
fig.	
  1.	
  	
  The	
  proposed	
  dispersion	
  relation	
  satisfies	
  all	
  the	
  criterion	
  (including	
  scaling)	
  as	
  
discussed	
  in	
  detail	
  in	
  appendix	
  B. 
 
 page 14806-14807, line 25: The authors state: ``Although the dispersion relation is 
independent of the propagator exponent Hwav; the exponent does determine the (power 
law) rate of decay of the forcing so that the value of Hwav will affect the transport of 
momentum and energy.” The reviewer has two questions: 
 (1) when different dispersion relations are used, is the above statement still valid?  
 
Au: Yes, see the results in the new appendix B. 
 



(2) Given a specific Hwav, how can the transport of momentum and energy be 
determined? Namely, what are the mathematical expressions for the transport of 
momentum and energy? 
 
Au: See appendix B. 
 

page 14807, line 10-12: as is used, which is consistent with the 

characteristic of the Kelvin wave, the authors may want to make changes in Eq. (14) on 
page 14805. 
 
Au: the text has been modified accordingly. 
 
page 14808, line 9: ``Data were divided into five 277h (~12 day) blocks, and each block 
is 
calculated …’’ please provide justifications for the choice of 277h? In addition, is the 
spectral 
density analysis sensitive to the choice of this time scale? 
 
Au:  We added the following to the text:  
“The choice of 12 day blocks was made since the temporal scaling has a break at about 5 
- 10 days and we were only interested in analyzing the high frequency “weather” regime.  
Choosing a longer block period would allow us to examine lower frequencies, but would 
take us outside the unique scaling regime consider in the paper and would decrease the 
number of blocks and hence the amount of averaging.” 
 
page 14809, line 1: H=	
  Htur+Hwav	
   indicates that the total propagator exponent (H) is a 
linear superposition of Htur	
   and Hwav. Therefore, given the dispersion relation in this 
manuscript, the ``dynamics’’ (e.g., energy transfer) of the turbulence and waves depend 
on Htur	
  and Hwav,  respectively. However, how can this concept be generalized when other 
waves with dispersion relations are considered? 
 
Au: The equation H=	
   Htur+Hwav is actually a consequence of the assumption of a 
multiplicative structure of the propagator (following Wheeler and Kiladis).  As noted via 
an addition of a new comment, it is plausible since it means that  the space-time localized 
turbulent flux source ϕ can be replaced by a “smeared out” turbulent source 

ϕ′ = gtur ∗ϕ .  The amplitudes of propagation due to the wave part are indicated in 
appendix B. 
 
page 14809, Figure 3: was only the Kelvin wave analyzed? 
 
Au: Yes. 
 
page 14810, Eq. (19): if only the Kelvin wave was analyzed, Eq. (19) should be revised 

with . 

k = kx
2 − a2ky

2( )1/2

k = kx
2 − a2ky

2( )1/2



 
Au: Yes, thanks that was a typo. 
 
page 14811, line 11-14 and Figure 4: the authors state: ``A drawback of the method is 
that it does not distinguish maxima due to the turbulent contribution and from the 
(presumed) wave contribution and in the empirical case, the separation is not always 
evident.’’ The agreement between the theoretical dispersion curve (black) and 
empirically estimated one (blue) appears only at small wave numbers (i.e., for long 
waves). Does the black (or blue) line represent the Kelvin wave? If so, how can real ky be 
possible for the Kelvin waves? As discussed in Eqs. (5) and (6) below, the black line in 

Figure 4 should be revised with the usage of . 

Au:  Figure 4 shows the local maxima in the data (for ω fixed at different values) and 
compare it with singularities from eq.(19), associated with wave behaviour. In this 
framework, the form of the propagator is very general (with only a few constraints) and 
we used a simple form in eq.(19) (the black curve in fig.4) which leads to a dispersion 
relation similar to Kelvin waves. To provide an accurate description of Kelvin waves, we 
can also reproduce the fact they are "channeled" in the zonal direction with a slight 
modification of the wave propagator used in eq.(19) (see the discussion in the paragraph 
above eq.(18)). 
 
page 14811, Figure 4: The Kevin wave (grey in Figure 3) appears between ω=(4)-1 and	
  ω	
  
=(100)-1.	
   	
   However,	
   selected	
   values	
   of	
  ω	
   are	
   2,	
   3,	
   5,	
   and	
   10	
   h-1 in	
   Figure	
   4.	
   	
   Please	
  
explain	
  why	
  these	
  values	
  are	
  selected	
  and	
  then	
  add	
  discussions	
  on	
  the	
  differences	
  
among	
   different	
   panels	
   with	
   different	
   values	
   of	
   ω.	
   In	
   addition,	
   what	
   are	
   the	
  
corresponding	
  periods?	
  1/ω	
  or	
  2π/	
  ω.	
  
	
  
Au: Figure 4 is an attempt to detect the region of local maxima in the full 3D (kx, ky, ω) 
space, (associated with wave behaviour) and compare it with the singularity surface 
obtained from eq. (19). Ideally, this region should be visualized in 3D over the full ranges 
of (kx, ky, ω) values. Since it is more convenient to provide 2D graphs in a paper, different 
values of omega over its range were chosen in order to give the reader an idea of the 
shape of this maxima region in 3D. 

In contrast, figure 3 shows the residual in the 2D (kx, ω) space, after integration 
over ky; so that the singularities were effectively integrated out (since 0<Hwav<1). The 
grey region shows the local maxima, close to the Kelvin waves dispersion function. 
Indeed perfect coincidence would require the grey region to extend over the full range of 
omega. 

The proper relation is T=1/ ω. 
	
  
page	
  14813,	
  line	
  7-­‐10:	
  the	
  authors	
  made	
  the	
  following	
  strong	
  statement:	
  ``The	
  main	
  
conclusion	
   is	
   thus	
   that	
   strongly	
   turbulent	
   atmospheric	
   dynamics	
   are	
   a	
   priori	
  
compatible	
   with	
   the	
   observed	
   	
   waves,	
   that	
   to	
   understand	
   them,	
   that	
   one	
   needn’t	
  
invoke	
  the	
  existence	
  of	
   large	
  laminar	
  regimes	
  nor	
  linear	
  theories.”	
  It	
   is	
  difficult	
  for	
  
the	
   reviewer	
   to	
   agree	
   on	
   the	
   above	
   statement	
   because	
   (1)	
   	
   only	
   the	
  Kelvin	
  wave,	
  
which	
  has	
  a	
  very	
  special	
  dispersion	
  relation,	
  was	
  analyzed;	
  (2)	
  only	
  limited	
  data	
  sets	
  

k = kx
2 − a2ky

2( )1/2



(for	
   two	
   months)	
   were	
   analyzed.	
   Additional	
   comments	
   are	
   given	
   in	
   the	
   general	
  
comments	
  (iii)	
  and	
  (iv).	
  
	
  
Au:	
  	
  The	
  referee	
  is	
  correct	
  that	
  the	
  original	
  paper	
  essentially	
  only	
  analyzed	
  data	
  in	
  the	
  
space-­time	
  region	
  where	
  Kelvin	
  waves	
  were	
  likely	
  to	
  be	
  found.	
  	
  With	
  the	
  addition	
  of	
  the	
  
new	
   appendix	
   C	
   on	
   the	
   WKB	
   approximation	
   and	
   gravity	
   waves,	
   	
   the	
   scope	
   of	
   the	
  
empirical	
   treatment	
   has	
   been	
   somewhat	
   enlarged.	
   	
   However,	
   the	
   paper	
   argues	
   that	
  
these	
  examples	
  are	
  typical	
  of	
  the	
  general	
  problem:	
  linear	
  wave	
  theories	
  are	
  not	
  likely	
  
to	
   be	
   compatible	
   with	
   the	
   highly	
   turbulent	
   nature	
   of	
   the	
   atmosphere.	
   	
   Indeed,	
   we	
  
modestly	
  stated:	
  
	
  
“This	
  paper	
  is	
  simply	
  an	
  early	
  attempt	
  to	
  understand	
  waves	
  in	
  highly	
  turbulent	
  media	
  
using	
  scaling	
  symmetries	
  as	
  constraints”	
  
	
  
We	
  have	
  nevertheless	
  modified	
  the	
  conclusions	
  accordingly	
  so	
  that	
  it	
  now	
  reads:	
  
	
  

“Therefore, this paper should be seen more as a proof of concept than as providing 
definitive results. The main conclusion is thus that a priori, strongly turbulent atmospheric 
dynamics are compatible with the observed waves.  If this is true, to understand them, requires 
neither the existence of large laminar regimes nor linear theories.” 
 
 


