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Abstract. Two complementary case studies are conducted to analyse convective system 

properties in the region where strong cloud-top lidar backscatter anomalies are observed as 

reported by Platt et al. (2011). These anomalies were reported for the first time using in-situ 

microphysical measurements in an isolated continental convective cloud over Germany 

during the CIRCLE2 experiment (Gayet et al., 2012). In this case, quasi collocated in situ 

observations with CALIPSO, CloudSat and Meteosat-9/SEVIRI observations confirm that 

regions of backscatter anomalies represent the most active and dense convective cloud parts 

with likely the strongest core updrafts and unusual high values of the particle concentration, 

extinction and ice water content (IWC), with the occurrence of small ice crystal sizes. Similar 

spaceborne observations are then analyzed in a maritime mesoscale cloud system (MCS) on 

the 20
th

 of June 2008 located off the Brazil coast between 0° and 3°N latitude. Near cloud-top 

backscatter anomalies are evidenced in a region which corresponds to the coldest 

temperatures with maximum cloud top altitudes derived from collocated CALIPSO/IIR and 

Meteosat-9/SEVIRI infrared brightness temperatures. The interpretation of CALIOP data 

highlights significant differences of microphysical properties from those observed in the 

continental isolated convective cloud. Indeed, SEVIRI retrievals in the visible confirm much 

smaller ice particles near-top of the isolated continental convective cloud, i.e. effective radius 

(Reff) ~ 15 µm against 22-27 µm in the whole MCS area. 94 GHz Cloud Profiling Radar 

observations from CloudSat are then used to describe the properties of the most active cloud 

regions at and below cloud top. The cloud ice water content and effective radius retrieved 

with the CloudSat 2B-IWC and DARDAR inversion techniques, show that at usual cruise 

altitudes of commercial aircraft (FL 350 or ~ 10700 m level), high IWC (i.e. up to 2 to 4 g m
-

3
) could be identified according to specific IWC-Z relationships. These values correspond to a 

maximum reflectivity factor of +18 dBZ (at 94 GHz). Near-top cloud properties also indicate 

signatures of microphysical characteristics according to the cloud-stage evolution as revealed 

by SEVIRI images to identify the development of new cells within the MCS cluster. It is 

argued that the availability of real time information of the km-scale cloud top IR brightness 

temperature decrease with respect to the cloud environment would help identify MCS cloud 



areas with potentially high ice water content and small particle sizes against which onboard 

meteorological radar may not be suitable to provide timely warning. 

 

1. Introduction 

 

Platt et al. (2011, called PL hereafter) investigated backscatter anomalies in mesoscale 

convective systems (MCSs) using CALIOP (Cloud Aerosol Lidar with Orthogonal 

Polarization, Hunt et al., 2009) observations onboard the CALIPSO (Cloud Aerosol Lidar and 

Infrared Pathfinder Satellite Observation, Winker et al., 2009) platform. They showed that the 

cloud microphysical properties are different in regions near the centre of large MCSs from 

surrounding clouds. These regions extending over a few tens of kilometres are the most 

active, with the coldest top temperatures and with maximum cloud extinction and altitude. 

Simultaneous CloudSat cloud profiling radar (CPR, Stephens et al., 2002) observations 

showed a cloud-top altitude similar to that measured by CALIOP. This feature likely suggests 

that relatively large ice crystals above the radar detection threshold were reaching cloud top. 

From the depolarization ratio measurements, PL suggested that the CALIOP and CloudSat 

returns were likely due to a mix of frozen drops or small ice droxtals with large crystals 

composed of thick hexagonal plates, hexagonal columns, spheroids, and irregular particles.  

The same phenomenon was observed for the first time over Europe with aircraft in-

situ microphysical observations in an isolated continental convective cloud during the 

CIRCLE2 experiment (Eichler et al., 2009) over Germany on 26 May 2007. Indeed, we have 

shown (Gayet et al., 2012, called GA hereafter) that unusual high values of the concentration 

of small ice particles, extinction and ice water content (up to 70 cm
-3

, 30 km
-1

 and 0.5 g m
-3

, 

respectively) were experienced at near-top of an overshooting convective cloud (11080 m / -

58 °C). Chain-like aggregate of frozen droplets was the main shape of the ice crystals with a 

maximum particle size and mean effective diameter of 300 µm and 43 µm, respectively. The 

airborne observations were coordinated with satellite observations which allow the cloud 

situation to be coherently described by combined remote sensing measurements. The very 

dense cloud causes a strong attenuation of the CALIOP lidar returns and the Meteosat-9 

(MET-9)/SEVIRI retrieved parameters (Bugliaro et al., 2011) confirm the presence of small 

ice crystals at the top of the convective cell. Due to chain-like aggregate shape of the small ice 

crystals, the power-law relationship between ice water content (IWC) and radar reflectivity 

appears to be different from those usually found in cirrus and anvil clouds. IWCs are 

significantly larger in the overshooting cell than in the cirrus cloud for a given equivalent 

reflectivity factor. Extrapolating the relationship for stronger convective clouds, IWC up to 5 

g m
-3

 could be experienced with 94 GHz reflectivity factors no larger than about 20 dBZ. This 

means that for similar situations, a rather weak radar echo could fail to indicate the occurrence 

of high ice water content carried by small ice crystals. This has been recognized as a 

significant hazard for air traffic safety (e.g., Mason et al. 2006). 

In anvils of intense mid-latitude storms over the Great Plains of USA, IWC from 1.5 

to 2.5 g m
-3

 were reported (Heymsfield and Palmer, 1986, Lawson et al., 1998). Ice water 

content exceeding 2 g m
-3

 and extinction up to 60 km
-1

 have been measured in tropical 

convective turrets clouds (Lawson et al., 2010). Heymsfield et al. (2005a, 2006) reported high 

concentration of small ice crystals in the order of 50 cm
-3

 in subtropical and tropical 

convection even in maritime tropical convective updrafts (Heymsfield et al., 2009). Although 

FSSP ice particle concentrations are generally overestimated due to shattering effects (see 

among others Korolev and Isaac, 2005) these unusual observations could be important 

regarding engineering issues related to the failures of jet engines and Pitot tubes commonly 

used on commercial aircraft during flights through areas of high ice water content (Lawson et 

al., 1998, Strapp et al., 1999 and Mason et al., 2006). Mason et al. (2006) mentioned that 



commercial aircraft often observe no flight-radar echoes at the location and altitude of such 

events. 

The objectives of this paper are first to apply PL’s analysis to the CALIPSO lidar 

(CALIOP) backscatter properties related to the isolated continental convective cloud (26 May 

2007 CIRCLE2 situation). Combined CloudSat and MET-9/SEVIRI observations with 

available quasi-collocated in situ measurements are analysed in order to obtain a consistent 

interpretation of these spaceborne remote sensing observations. Then, for comparison 

purposes we analyse similar spaceborne observations related to a maritime MCS on the 20 

June 2008 located off the Brazil coast between 0° and 3°N latitude, from measured near 

cloud-top backscatter anomalies, to select the most active MCS regions likely to have the 

densest clouds and strongest updrafts. The use of collocated MET-9/SEVIRI realtime data are 

then discussed to describe the properties of the likely most active MCS regions, which could 

be encountered by commercial aircraft at usual cruise altitudes (FL 350 or ~ 10700 m level). 

 

2. Satellite data 

 

In this paper we use CALIPSO, CloudSat and MET-9 observations. Satellite data have 

been described with detail in GA. We recall below the main payload and technical 

characteristics of the available observations.  

The payload of the CALIPSO satellite includes the Cloud-Aerosol Lidar with 

Orthogonal Polarization (CALIOP), the Imaging Infrared Radiometer (IIR) and the Wide 

Field Camera (WFC) (Winker et al., 2010). CALIOP is a laser operating at 532 nm and 1064 

nm, with parallel and orthogonal polarization detectors at 532 nm (Winker et al., 2003, Hunt 

et al., 2009). The vertical and horizontal resolutions of the attenuated backscatter coefficient 

product used here are 60 m and 1 km, respectively. IIR is a non-scanning imaging radiometer, 

nadir-viewing with a 69 km swath and a pixel size of 1 km which provides measurements in 

the thermal infrared atmospheric window region at 8.65 µm, 10.6 µm, and 12.05 µm with a 

bandpass of 0.9 µm, 0.6 µm and 1 µm respectively (Garnier et al., 2012). The CALIOP beam 

is nominally aligned with the center of the IIR image. WFC is a fixed, nadir-viewing imager 

with a single spectral channel covering the 620 - 670 nm region, selected to match the band 1 

of the MODIS (MODerate resolution Imaging Spectroradiometer) instrument on NASA’s 

Aqua satellite. The Instantaneous Field of View (IFOV) / swath are 125 m / 61 km.  

CloudSat carries a 94 GHz (3.2 mm) cloud profiling radar (CPR) to provide the 

vertical distribution of hydrometeors (Stephens et al., 2002). The CPR has a nominal vertical 

resolution of 500 m and a footprint of 1.4 x 1.7 km
2
 (cross and along track) for a CPR profile.  

The MET-9 satellite’s main payload is the Spinning Enhanced Visible and InfraRed 

Imager (SEVIRI). It provides image data in four visible and near-infrared channels (0.4 – 1.6 

µm) and eight InfraRed channels (3.9 – 13.4 µm). Sampling distances are 1 km for the High 

Resolution Visible Channel and 3 km for the infrared and the three other solar channels.  

 

3. Analysis of the CALIOP backscatter and CloudSat data of the 26 May 2007 isolated 

continental convective cloud 

 

Figures 1a-c displays a composite representation (from top to bottom) of IIR 

brightness temperature images at 10.6 µm, the vertical profiles from CALIOP (attenuated 

backscatter coefficient) and the equivalent reflectivity factor from CloudSat, respectively. 

These observations are plotted across the convective system on the 26 May 2007 along the 

CALIPSO track, i.e. between 48.0 and 50.0°N latitude. This situation has already been 

discussed in a previous paper (see GA) including a detailed in situ microphysical description. 

These observations address an isolated continental convective cloud over Germany. The 



CALIOP data (Fig. 1b) were obtained from the version 3.0 data-products (available at the 

NASA Langley Atmospheric Science data Center and the ICARE mirror site in France). The 

CALIOP profiles used correspond to resolutions of 1 km horizontally (e.g. averaged over 3 

laser shots) and 60 m, vertically. In Fig. 1d, the integrated attenuated backscatter is shown 

along the latitude and Fig. 1e represents the integrated volume depolarization ratio. Fig. 1b 

shows a typical increase of the backscatter coefficient in the overshooting cell (which reaches 

11000 m / -58 °C level) and in the adjacent growing clouds. IIR gives exactly collocated 

information in time and space with CALIOP. The temperature of the cloud top deduced from 

the IR brightness temperature is in good agreement with the lidar value, showing that this part 

of the cloud is dense. The value retrieved from the SEVIRI data (Bugliaro et al., 2011) is in 

good agreement with that from IIR, and offers an extended swath. Lower lidar return signals 

are observed in the surrounding outflow cirrus layer. The integrated attenuated backscatter 

(Fig. 1d) peaks up to 0.07 sr
-1

, a larger value than those reported by PL in tropical MCS (i.e. 

0.055 sr
-1

). In the surrounding outflow cirrus typical values range between 0.03 and 0.04 sr
-1

.  

The integrated depolarisation ratio (Fig.1e) changes concurrently with the largest 

values, increasing up to 0.54, whereas the mean value of 0.40 is observed in the surrounding 

outflow cirrus cloud. Cloud properties derived from CALIOP measurements are summarized 

in Table 1. As proposed by PL, we reported quantities for baseline and enhanced values. The 

values away from the enhanced backscatter correspond to the baseline. The enhanced values 

are the peak values of the integrated backscatter and the peak or minimum values of the 

depolarization ratio. Following PL, the isotropic backscatter-to-extinction ratio (k) is 

calculated considering the lidar signal fully attenuated by the cloud, i.e.: 

 

k = 2η γ'(π)            (1) 

 

with η the multiple scattering factor (0.6) and γ'(π)  is the integrated attenuated isotropic 

backscatter obtained by multiplying by 4π the CALIOP integrated attenuated backscatter 

(IAB). According to radiative transfer analyses, k values depend on the ice particle shape 

(Noël et al., 2004), but it has recently been found from CALIPSO observations that relatively 

constant values (k ~ 0.40) were observed in the atmosphere for non-opaque ice clouds (Josset 

et al., 2012), possibly due to mixture of habits. The enhanced value of  ke of 1.06 in Table 1 is 

fairly larger than theoretical values provided by PL (see Table 2) for randomly oriented ice 

crystals with different shapes. This may correspond to droxtals particles (Yang et al., 2003). 

Information on the particle shape may also be given by the values of the integrated 

depolarization ratio (∆e, see Table 1). A value of 0.54 corresponds closely to the calculations 

by Takano and Liou (1989) for hexagonal columns. It is also expected that ∆e should also 

increase with cloud optical depth and larger number of small particles due to multiple 

scattering as in water clouds (Hu et al., 2007). Thus small particles such as frozen droplets 

could be mixed with larger ice crystals. 

The in situ measurements performed near-top of the overshooting cell (see GA) reveal 

unusual high values of the concentration of small ice particles, extinction and ice water 

content (up to 70 cm
-3

, 30 km
-1

 and 0.5 g m
-3

, respectively). Although in situ observations 

were carried out 30 min after the CALIPSO overpass, these unusual microphysical cloud 

properties may explain backscatter anomalies near top of the overshooting cell. Chain-like 

aggregates of frozen droplets were the dominant shape of the ice crystals (see Figs. 8 and 10 

in GA) with a maximum particle size and mean effective diameter of 300 µm and 43 µm, 

respectively. Analysis of SEVIRI observations in the visible gave an average particle size of 

about 20 µm in good agreement with in situ observations (see GA). 



Fig. 2 displays the vertical profiles of the extinction coefficient and the reflectivity 

factor at the center of the overshooting cell (48.97 °N, see Fig. 1b). The extinction coefficient 

was derived from the CALIOP attenuated backscattering profiles using the technique 

described by Noël et al. (2007) to retrieve extinction in the tops of deep convective clouds. 

The reflectivity is obtained from the 2B GEOPROF product and is available from the Data 

Processing Center (DPC) operated by the Colorado State University. The results in Fig. 2 

show a sharp increase of the extinction coefficient from the cloud top (11000 m) to 10450 m 

(up to 5 km-1), then the signal is rapidly attenuated at lower altitudes. The reflectivity factor 

reveals detectable signal   (> -30 dBZ) even near the cloud top indicating the presence of ice 

particles large enough to be detected by CloudSat radar. According to PL, the minimum 

detectable particle size is 30 – 40 µm in terms of the effective radius of a distribution of 

equivalent-mass spheres, values which are within the range of in situ observations (see GA). 

To conclude, similar backscatter anomalies as reported by PL in maritime MCS were 

observed for the first time near the top of an isolated continental convective cloud during the 

CIRCLE2 experiment. Quasi collocated in situ observations confirm that these regions 

represent the most active and dense convective cloud parts with likely the strongest core 

updrafts and unusual high values of the concentration of small ice particles, extinction and ice 

water content. Retrieved extinction from lidar data analysis confirmed unusually large values 

near ice cloud top (in excess of 3 km
-1

). For ice cloud particles with 30 µm average diameter, 

this would lead to an average number of particles of about 1000 l
-1

, using geometric optics 

approximation. Vigorous updrafts could lift supercooled droplets, which are frozen extremely 

rapidly by homogeneous nucleation near the -37 °C level, producing therefore high 

concentrations of small ice particles at upper altitudes. Moreover, the observed dominant ice 

particle shape (chain-like aggregate of frozen droplets) are mostly observed in continental 

deep convective systems (Stith et al., 2002, Lawson et al., 2003 and Connolly et al., 2005) 

which generate intense electric fields causing efficient ice particle aggregation processes.  

The next section will describe a maritime mesoscale cloud system located off the 

Brazil coast on 20 June 2008 which presents similar near-cloud top backscattering anomalies.  

 

4. Description of the 20 June 2008 maritime mesoscale convective system 

 

For comparison purposes we looked for a case of a well-developed mesoscale 

convective cloud system over the tropical Atlantic Ocean. This system has to be observed by 

the CALIPSO and the CloudSat during daylight hours in order to simultaneously derive some 

of its parameters from visible radiometry. We selected the case of the 20 June 2008 for which 

the CALIPSO track was very close to the centre of an active cloud cell. The 

CALIPSO/CloudSat satellites overpassed this mesoscale convective cloud system located off 

the Brazil coast between 0° and 3°N latitude at 15:43 UTC. CALIPSO and CloudSat 

observations reveal backscatter anomalies similar to those described in the isolated convective 

cloud previously analyzed. This confirms the hypothesis that the satellites overpassed the 

most active MCS parts, with the coldest temperatures (simultaneously observed with the IIR) 

and with maximum cloud altitude.  

 We shall first analyse the MET-9/SEVIRI observations available in this area in order 

to assess the activity of the MCS in terms of cloud top temperature and altitude near the 

CALIPSO/CloudSat overpasses, as well as microphysical parameters. Then we shall discuss 

the active sensing measurements, and finally analyse retrieved parameters from CloudSat data 

(ice water content and effective radius) in order to describe cloud properties at usual cruise 

altitudes of commercial aircraft, that likely prevailed in the most active MSC parts in the mid 

tropical troposphere. 

 



 

4.1 Analysis of the MET-9/SEVIRI data 

 

Figs. 3a and 3b display the images of false colour composites from MET-9/SEVIRI 

data and brightness temperature (10.8 µm channel), respectively, over the scene defined from 

28° - 32° W longitude  and from -2° to +5°N  latitude range (20 June 2008 at 15:45 UTC). 

The pixel resolution is 3.2 x 3.1 km
2
 at 10.8 µm wavelength and the temperature colour scale 

is indicated on the right side of the Figure. The quasi-collocated CALIPSO track at 15:43 

UTC is superimposed on the satellite images. The time lag between CALIOP and SEVIRI 

(CALIOP – SEVIRI) amounts to -2 min at -2°N and +7 min at 5°N.  

Figs. 3c-g represent the evolution of retrieved parameters from SEVIRI observations 

along the CALIPSO track, namely: the brightness temperature in the IR channel at 10.8 µm, 

the optical depth, the effective radius, the differences in the brightness temperatures (∆BT1) 

between the 12.0 µm and 10.8 µm channels and the differences in the brightness temperatures 

(∆BT2) between the 6.2 µm and 10.8 µm channels. The inversion technique of the SEVIRI 

spectral data has been described by Bugliaro et al. (2011) for the retrieval of the cloud 

properties (optical thickness, effective radius, cloud water path, thermodynamic phase, top 

height, …). For validation purposes, this technique can provide retrieved cloud products along 

polar orbiting satellite overpasses by navigating the tracks within the satellite coordinates. In 

this study, ice crystal optical properties from Baum et al. (2005a, 2005b) have been used.  

According to the temperature colour scale the blue areas on Fig. 3b roughly defines the 

cloud clusters. The analysis of the images on Figs. 3a and 3b clearly shows an active 

mesoscale convective system linked to the intertropical convergence zone (ITCZ) usually 

found in the considered area (2°N latitude) in June (Xie and Carton, 2004). The coldest pixels 

retrieved are at 197 K (-76°C, see Fig. 3c) with the largest optical depths (see Fig. 3d, with 

100 being the upper limit of the SEVIRI optical thickness retrieval) are indicative of active 

updraft producing new cells at the tropopause region. Note Fig. 3 displays an overview of the 

cloud situation and in the following we shall focus our study on the cloud cluster located 

between 0° and 3°N latitude (the cluster located on the right of Fig. 3 is beyond the scope of 

this paper).   

Differences between the brightness temperatures at 12.0 and 10.8 µm (∆BT1) see Fig. 

3f) show values close to 0 at the latitude of the convective cell, indicative of large cloud 

optical depths (as seen on Fig. 3d) or the occurrence of large crystals. The differences in the 

brightness temperatures (∆BT2) between the 6.2 µm and 10.8 µm SEVIRI channels (see Fig. 

3g) give most-likely information on the tropopause level. Because the 6.2 µm channel is more 

sensitive to water vapour absorption than the 10.8 µm channel, a positive ∆BT2 difference 

means that the cloud overshoots the tropopause (Chaboureau et al., 2007). Results on Fig. 3g 

reveal that the ∆BT2 differences are quite small (± 2K) in the cloud maximum altitude areas 

and are located between 1.3°N and 1.9°N latitude. Therefore the active cloud cells do not 

overshoot the tropopause near the CALIPSO overpass. CALIOP profiles (see Fig. 4b next 

section) reveal apparent blow-off cirrus due to gravity wave breaking that may transport water 

vapour through the tropopause (Wang, 2007). Note that such cirrus clouds are not detected by 

the CloudSat radar (see Fig. 4c next section) indicating small ice particles no larger than 30 

µm in diameter.  

To summarize, the analysis of the MET-9/SEVERI observations reveals very cold 

pixels along the CALIOP/CloudSat track. This is the location of active updraft producing new 

cloud material in the upper troposphere. In the next section we analyse the CALIOP/CloudSat 

data in the same way as that previously described in section 3 for the continental isolated 

convective cloud (26 May 2007). 



 

4.2 Analysis of CALIOP backscatter and CloudSat data 

 

Figs. 4a-e with the same presentation of Figs. 1a-e display the IIR brightness 

temperature image, the vertical profiles of the attenuated backscatter coefficient from 

CALIOP (log scale) and the equivalent reflectivity factor from CloudSat, along the latitude 

ranged from 0° to 3°N on the 20 June 2008 at 15:43 UTC. The integrated attenuated 

backscatter and the integrated volume depolarization ratio along the latitude are also reported 

on Figs. 4d and 4e respectively. The results show that the system reached a maximum altitude 

of about 15700 m at two distinct locations (at ~1.40°N and ~1.90° N latitudes, see shaded 

areas labelled A and B, respectively). These two cloud areas are characterized by near-top 

backscatter anomalies where the IIR instrument measures coldest brightness temperatures 

(down to 198 K, -75°C) at 10.6 µm. For comparison purposes the IIR brightness temperatures 

along the track have been superimposed on the SEVIRI retrieved values on Fig. 3c. The two 

IR brightness temperatures fit remarkably well all along the cloud cluster overpass within 

±1K deviation, despite the different spatial resolutions indicating a good collocation of 

SEVIRI with the polar orbiting satellite data.  

 The integrated attenuated backscattering coefficient (Fig. 4d) peaks up in the two  

shaded cloud areas defined above (parts A and B) to 0.043 sr
-1

, a similar value than those 

reported by PL in tropical MCS (i.e. 0.055 sr
-1

). Note that a similar feature is observed 

between 0.6 – 0.9° but for a much lower cloud. In the surrounding outflow cirrus, the typical 

value is about 0.03 sr
-1

. The integrated volume depolarisation ratio (∆e, see Fig. 4e) changes 

concurrently with the largest values of the integrated backscattering ratio, with a value 

increasing up to 0.44 in cloud part A and decreasing down to 0.29 in part B, whereas a mean 

value of 0.38 is observed in the surrounding cloud clusters. Sharp ∆e increases are observed at 

the Northern fringes of parts A and B which reveal significant contrasts in microphysical 

properties as discussed below.  As for the 26 May 2007 situation described above, the cloud 

properties derived from CALIOP measurements are summarized in Table 1. Compared to the 

values found in the isolated continental convective cloud, the isotropic backscatter-to-

extinction ratio (ke) remains comparable to values obtained by PL over the Pacific Ocean 

warm pool system, but is significantly lower than in the previous CIRCLE2 case (0.65 against 

1.06) likewise the integrated depolarization ratio (∆e) (0.44 and 0.29 against 0.54). There is an 

additional difference concerning part B since ∆ decreases where the backscatter peaks (see 

Figs. 4d and 4e). 

The value of  ke of 0.65 (Table 1) could be compared with theoretical values for 

randomly oriented hexagonal solid columns (0.6 – 0.9) provided by Takano and Liou (1995). 

For increasing ∆ values in cloud part A, hexagonal column shaped ice crystals may be the 

dominant particles to explain the observed integrated depolarization ratio (∆e = 0.44) 

according to the calculations by Takano and Liou (1995) and Noël et al. (2004), i.e. 0.55 and 

0.44, respectively. In contrast, a significant ∆ decrease (-0.09, see Table 1) is observed in part 

B of the cloud system. Low ∆e values (0.29) may indicate hexagonal plates rather than 

columns (see Fig. 1 in Noël et al., 2004). As suggested by PL, a larger number of droxtal 

particles may explain low integrated depolarization ratio in the peak activity areas.  

A qualitative analysis of SEVIRI images animation (every 15 min, not show here) 

shows that the system had developed in the time period from 14:00 to 17:00 UTC with a weak 

advection and that the development of new cells occurred mainly on the north side of the 

cluster. Therefore, part B of the cloud system (see Fig. 4) should be likely a new fresh 

growing cell compared to the oldest cloud part A which has a larger horizontal extent (i.e. ~ 

40 km versus ~ 20 km). Consequently near-top cloud properties in terms of integrated 

depolarization ratios may indicate signatures of microphysical characteristics according to the 



cloud stage evolution. This feature is confirmed on the effective radius retrieved from SEVIRI 

data (see superimposed curve on Fig. 4e). Larger Reff (27 µm) are observed in the fresh cloud 

(part B) whereas smaller effective radius (22 µm) are found in part A. It is interesting to note 

that much smaller ice particles have been retrieved (Reff ~ 15 µm) near-top of the isolated 

continental convective cloud described in section 3 above (see also Fig. 6 in GA). This is a 

coherent feature regarding maritime/continental cloud microphysical properties (see among 

others Rosenfeld and Lensky, 1998). Finally, even in the likely fresh convective cell (part B), 

the CloudSat radar reflectivity profile (with the corresponding extinction coefficient) at 

1.840°N latitude (see Fig. 5) indicates the presence of ice particles large enough to be 

detected up to the cloud top identified by lidar. A similar feature is observed in part A.  

To summarize, the backscatter anomalies reported on the 20 June 2008 in the oceanic 

tropical MCS confirm the observations by PL, but reveal significant differences of near-top 

cloud properties to those observed in the continental isolated convective system (CIRCLE2, 

26 May 2007 situation). In order to explain the decrease of the depolarization ratio, PL 

assume a greater preponderance of frozen droplets or small ice crystals in the peak activity 

area. This hypothesis is based on previous works on sub-tropical and tropical convection 

(Heymsfield et al., 2005a, 2006) and even in maritime tropical convective updrafts 

(Heymsfield et al., 2009). Many small particles of frozen droplets or ice crystals (possibly 

droxtals, Yang et al., 2003) are mixed with less numerous larger ice crystals with different 

shapes (hexagonal columns, plates, irregular, see Noël at al., 2004). The smaller ice crystals 

contribute to high CALIOP extinction values (see GA) whereas CloudSat sensitive to large 

particles only, reveals the presence of larger ice crystals lofted to the cloud top. In other 

words, the CALIPSO and CloudSat satellites overpassed the most active MSC region with 

likely the strongest updrafts. This region corresponds to the coldest temperatures and with 

maximum cloud top altitudes derived from MET-9/SEVIRI data.  

 

 

5. Retrieved MCS cloud properties at usual cruise altitudes of commercial aircraft  

 

 In this section the cloud ice water content (IWC) and effective radius (Reff) retrieved 

with both the CloudSat 2B-IWC algorithm (Benedetti et al., 2003, called C2B hereafter) and 

the DARDAR (raDAR/liDAR) ice-cloud products (Delanoë and Hogan, 2008, 2010, called 

DAR hereafter) are analyzed. 

The C2B retrieval is designed to use CloudSat Radar (CPR) radar reflectivity and 

visible optical depth if both data streams are available. The source for the visible optical depth 

is the MODIS (Moderate Resolution Imaging Spectroradiometer) instrument on the Aqua 

platform. The retrieval technique described in detail by Benedetti et al. (2003) was adapted 

from the study by Austin and Stephens (2001). This technique is based on minimization of a 

cost function which calculates the distance between the model-derived and the observations 

variables. The forward model is assumed to describe cirrus size spectra via a modified gamma 

size distribution (Stephens et al., 1990). The model equivalent radar reflectivities in the 

Rayleigh regime and the visible optical depth are computed using analytical expressions from 

two parameters of the size distribution, i.e. the mean size and the number concentration. The 

radar reflectivities are corrected for non-Rayleigh and density effects. When ice particles are 

sampled, a constant correction factor (K) is introduced since radar reflectivity is 

conventionally defined with respect to water (equivalent radar reflectivity). The factor K 

introduces an implicit assumption about the density of ice crystals to be constant and is 

prescribed by size-density relationships proposed by Brown and Francis (1995) and Matrosov 

(1999).  



The DAR technique is a synergistic product combining the CloudSat radar and 

CALIOP lidar measurements. This synergy retrieval is based on the optimal estimation 

framework (Rodgers, 2000), it allows one to retrieve ice cloud properties seamlessly and 

accounting for instrumental random errors. For instance cloud properties are retrieved when 

lidar and/or radar measurements are available. The main advantage of the method is to 

characterize cloud properties for types ranging from thin cirrus (using lidar when radar 

sensitivity is limited) to very deep ice clouds (using radar when lidar is extinguished). In the 

optimal estimation framework a forward model is required to convert cloud properties in radar 

and lidar measurements. One starts with a first guess of the cloud properties, for example a 

constant value of extinction and number concentration. They are converted into synthetic 

measurements, which are compared to the real measurements. Then using an iteration process 

one minimizes the differences (at least square sense) between real and simulated 

measurements. The forward model assumes that the particles are mainly aggregates (adapted 

from Brown and Francis, 1995 and Mitchell, 1996) and their distribution is represented with 

the normalized particle size distribution (PSD) approach (Delanoë et al., 2005). Mass-size 

relationships are identified accordingly (Delanoë and Hogan, 2008). This technique allows 

one to link in an efficient way the different moments of the PSD and therefore the cloud 

properties to the measurements. Therefore cloud parameters such as IWC and Reff are 

retrieved at each radar and/or lidar gates (60 m vertical resolution).  

 

 

5.1 Ice water content 

 

 On Fig. 6a the vertical profiles of equivalent reflectivity factor from CloudSat along 

the orbit is again displayed (20 June 2008, 15:43 UTC) in order to facilitate the discussion of 

the results. We recall the pixel size resolutions are 250 m (vertical) x 2500 m (horizontal).  

The black line in Fig. 6a indicates the 10700 m altitude which corresponds to the usual flight 

level (FL 350 or 35,000 feet) of commercial aircraft. Fig. 6b displays the variation of the C2B 

and DAR retrieved IWCs along this level. Due to the log-scale presentation, the differences 

between the two satellite retrievals are not well evidenced but they will be detailed below 

(Fig. 8). The main feature of the results can be summarized as follows : the cluster extends 

from about 0.5° N to 2.5° N latitude (~ 220 km) with the core of the system observed between 

1.5°N and 2.0°N latitude (~ 55 km). As already discussed in the previous section, ice particles 

are large enough to be detected by CloudSat with significant IWCs observed up to the top of 

cloud core concurrently with backscatter anomalies and the lowest temperatures (see Fig. 5).  

Indeed, reflectivities up to 3 dBZ and subsequent IWC of ~ 0.5 g m
-3

 are observed 1000 m 

below the cloud top. At the 10700 m level, IWCs remain quite low (~ 0.1 g m
-3

) until 1.3°N 

latitude then significantly increases in the cloud core along the considered altitude. IWC 

values remain larger than 1.0 g m
-3

 for 55 km (which represents a flight duration of about 4:30 

min with an airspeed of Mach 0.80) and peaks up to 2.0-2.5 g m
-3

. Because the horizontal 

resolution of retrieved products is 2.5 km, higher IWC values on smaller scales may be 

encountered. The cloud particles are likely to be ice crystals since the temperature of -40°C at 

10700 m (CALIPSO additional meteorological parameters) is below the temperature for 

which the supercooled liquid water droplets freeze by homogeneous nucleation (-37°C). 

Fig. 7 displays the theoretical adiabatic liquid water content (LWC) assuming the 

most-likely thermodynamic properties of the cloud base (900 hPa/20°C or 850 hPa/18°C 

obtained from CALIPSO additional meteorological parameters). A maximum adiabatic LWC 

of ~5.0 g m
-3

 is found at 10700 m altitude. The retrieved high ice water contents (up to 2.0-2.5 

g m
-3

) are smaller than the maximum value of the theoretical adiabatic LWC at 10700 m (~ 



5.0 g m
-3

) which could be explained by entrainment of dry environmental air around the 

cluster and/or by precipitation removing significant amounts of cloud water.  

However, it is well known that cloud ice content estimates can have uncertainties as 

large as a factor 2 (see among others Heymsfield et al., 2005b). For instance, much larger 

IWCs are obtained (see superimposed red points on the results in Fig. 6b) with a maximum of  

4 g m
-3 

(rather close to the adiabatic value) if we consider relationship between W band radar 

reflectivity and ice cloud content proposed by Matrosov and Heymsfield (2008, called MH 

hereafter) for high-reflectivity clouds. Their relation accounts for particle aspect ratio and 

nonsphericity for larger particles via mass-size relation assumptions. 

In order to check the consistency of the results, the retrieved IWC-Z relationships 

obtained at 10700 m in the MCS system (20 June 2008) are displayed in Fig. 8 (green and 

yellow symbols for C2B and DAR, respectively) together with the relationships proposed by 

Protat et al. (2007) from mid-latitude and tropical field campaigns, by Sayres et al. (2008) in 

tropical anvils during CRYSTAL-FACE (dashed lines) and by Matrosov and Heymsfield 

(2008, full line) discussed above.  

A careful examination of the retrieved IWC dispersion shows that C2B overestimates 

DAR by up to 50% for IWC smaller than 0.6 g m
-3

 as already discussed in Protat et al. 

(2010a) and Delanoë et al. (2013). Then, for larger IWCs the agreement between the two 

methods is within ± 25%. The retrieved IWC-Z scatterplots (C2B and DAR) are roughly 

consistent with experimental relationships from Protat et al. (2007) and Sayres et al. (2008) 

with maximum IWC of 2.0-2.5 g m
-3

 for a radar reflectivity of 18 dBZ. Larger discrepancies 

are observed considering the MH relationship in regions of radar reflectivity at 94 GHz 

exceeding about 5 dBZ with a maximum retrieved IWC of 4.0 g m
-3

 at 18 dBZ. Discussing 

their experimental relationship, MH highlight that the data scatter in IWC-Z relations 

becomes progressively smaller as reflectivity increases (see their Fig. 4). The same scatterplot 

convergence at larger values is observed for different data sets originating from various cloud 

types and geographical regions. MH concluded that the derived relations are likely to be 

applicable to a wide variety of precipitating cloud systems although significant differences in 

cloud properties could be expected between MCS and continental clouds via different aerosol 

inputs and dynamical properties (weaker updrafts in maritime MCS, Mason et al., 2006), … 

Therefore the relationships obtained from in situ observations related to the outflow 

cirrus observations and the continental isolated convective cloud obtained on 26 May 2007 

(CIRCLE2, blue and red symbols, respectively) have been reported on Fig. 8. Despite large 

uncertainties about quantitative values of microphysical parameters (IWC, Reff, Z, …) 

derived from in situ instruments (see below), the results in Fig. 8 show that the retrieved 

IWC-Z relationships (C2B and DAR) roughly fit in situ observations (blue symbols) related to 

outflow cirrus (for Z <  10 dBZ). This is a consistent feature since the retrieving techniques 

use forward model assumptions mainly based on experimental results obtained in anvils 

and/or outflow cirrus.  

On the contrary, for the core of the convective cell (red symbols on Fig. 8), it is found 

that the IWC-Z relationship would produce much larger IWCs by about one order of 

magnitude than the more standard relationships. This feature is of crucial importance for 

aircrafts and may be explained as follows. 

(i) The in situ observations performed at very near-top of the core of the overshooting 

cell revealed numerous small chain-like aggregate crystals (leading to backscatter anomalies), 

whereas larger bullet-rosette particles were observed in the adjacent cirrus. Therefore the 

large differences between the red and blue IWC-Z in situ measurements on Fig. 8 are due the 

different mass-size relationships related to the subsequent ice particle shapes (see Fig. 9 in 

GA). This result need to be confirmed by additional observations because only a few data are 

available in such conditions (Stith et al., 2013).   



(ii) Significant shortcomings occur on IWC and Z derivations from in situ 

measurements mainly due to particle aspect ratio and ice density effects which are poorly 

described and non-sphericity via mass-size relationship assumptions. As discussed by 

Heymsfield et al. (2008) by testing 10 retrieval methods, IWC retrievals in regions of radar 

reflectivity at 94 GHz exceeding about 5 dBZ are subject to uncertainties of 50%. They are 

explained by the use of the Rayleigh approximation (e.g. assuming that the particle size is 

much smaller than the wavelength – 3.2 mm at 94 GHz-) at high reflectivities in some of the 

algorithms and differences in the way non-spherical particles and Mie effects are considered. 

(iii) Systematic errors on in situ measurements due to the contamination by the 

shattering of larger ice crystals on the probe tips may result in artificially high concentrations 

of small ice crystals with subsequent high extinction coefficients and low effective radii (see 

for instance: Korolev and Isaac, 2005, Lawson et al., 2006, Heymsfield, 2007, Protat et al. 

2010b).  

The great variability of the results on Fig. 8 (in situ observations, retrieved values, 

experimental relationships) lead to the conclusion that there are combined shortcomings in the 

derivation of the microphysical parameters which seriously hamper the quantitative 

interpretation of the results particularly in the denser part of the overshooting cell. From our 

knowledge IWC-Z relationships are not yet available to describe variety the core of deep 

various (continental/maritime) MCS with new generation of cloud instruments. These 

instruments have specially designed tips and electronics that may now provide much more 

accurate in situ measurements (see for instance, Korolev et al., 2013).  

 
 

5.2 Effective radius 

 

 Fig. 6c displays the variations of the C2B and DAR retrieved effective radius (Reff) 

along the latitude at the 10700 m level. It is found that the C2B effective radii are 

systematically about 30% larger than the DAR ones. DAR effective radii fluctuate between 40 

and 55 µm up to 1.3°N latitude, then increase in the cloud core to about 60 µm and reach 80 

µm concurrently with the highest IWC values (see Fig. 6b). The comparisons with in situ 

measurements in Fig. 9 (with the same representation and symbols as in Fig. 8) show that the 

C2B retrieved effective radii are a factor of about 2 larger than values obtained for the 

outflow cirrus observations (blue symbols). DAR effective radii are distributed closer to the in 

situ observations. Several hypotheses may explain these differences:  

 (i) Accurate in situ measurements of particle effective radius are not available in MCS 

clusters. Such data obtained with new generation of instruments (see above) will improve the 

comparisons of the retrieved Reff within the IWC-Z relationships. 

(ii) As discussed above, in situ measurements may be contaminated by the shattering 

of larger ice crystals on the probe tips, resulting in systematic errors with artificially high 

concentrations of small ice crystals with artificially low effective radius. As discussed in GA, 

there are still large uncertainties regarding the magnitude of the contribution of these small ice 

crystals to the bulk microphysical properties.  

(iii) Large errors may arise from uncertainties of the forward model used for the 

inversion techniques (Benedetti et al., 2003). Among the factors that may contribute to these 

errors is the choice of size distribution and related parameters. If such a distribution is 

completely unrepresentative of real clouds, this can degrade the accuracy of the solution. For 

instance, bimodal spectra are often observed in warm thick midlatitude cirrus (Ivanova et al., 

2001) making unrealistic the assumption of a monomodal gamma distribution. Likewise, a 

worse parameter-description of small ice crystals could conduct to oversized retrieved 



particles. Uncertainties due to nonsphericity of the ice crystals and ice densities (Mitchell et 

al., 1990) could also be important.   

 

 

6. Discussion and Conclusions 

 

Two complementary case studies have been presented analysing the properties of 

convective systems in the region where strong cloud-top backscatter anomalies are observed 

as reported by PL. These anomalies are observed for the first time in an isolated continental 

convective cloud over Germany during the CIRCLE2 experiment (26 May 2007). Quasi 

collocated in situ observations confirm that these regions represent the most active and dense 

convective cloud parts with likely the strongest core updrafts and unusual high values of the 

concentration of small ice particles, extinction and ice water content. Moreover, the 

theoretical shape derived from CALIOP data interpretation may roughly fit with the observed 

dominant ice particle shape (chain-like aggregate).   

Similar spaceborne data are observed in a maritime mesoscale cloud system (MCS) on 

the 20 June 2008 located off the Brazil coast between 0° and 3°N latitude. The analysis of the 

MET-9/SEVIRI observations reveals cold pixels along the collocated CALIPSO/CloudSat 

track (a time lag of max. 3 min). This is the area of active updraft producing new dense cloud 

material in the upper troposphere. This feature is confirmed by concurrently near cloud-top 

backscatter anomalies from CALIOP data and CloudSat reflectivities. Near-top cloud 

properties in terms of integrated depolarization ratios (∆) may indicate signatures of 

microphysical characteristics. They are found significantly different from those observed in 

the continental isolated convective cloud. Indeed, SEVIRI retrievals confirm much smaller ice 

particles near-top of the isolated continental convective cloud, i.e. Reff ~ 15 µm against 22-27 

µm in the MCS. Near-top cloud properties may also indicate signatures of microphysical 

characteristics according to the cloud-stage evolution as revealed by SEVIRI images to 

identify the development of new cells within the MCS cluster. For instance, randomly 

oriented solid columns may explain increasing ∆ values in older cloud cells. In contrast, a 

significant ∆ decrease is observed in new dense clouds that may indicate hexagonal plates 

rather than columns and a greater number of droxtal particles in the peak activity areas (Platt 

et al., 2011). This feature is confirmed with the effective radius retrieved from SEVIRI data. 

Larger Reff (27 µm) are observed in the fresh cloud whereas smaller effective radius (22 µm) 

are found in older cell. 

CloudSat and CALIPSO observations are used to describe the cloud properties which 

likely prevailed in the most active MCS region with the strongest updrafts at usual cruise 

altitudes of commercial aircraft (10700m/FL 350 or above). Cloud ice water content (IWC) 

and effective radius (Reff) have been estimated from the satellite observations using both the 

CloudSat 2B-IWC and DARDAR retrieval techniques. At the considered altitude, IWC 

significantly increases in the cloud core concurrently with backscatter anomalies and the 

lowest temperatures. IWC values remain larger than 1.0 g m
-3

 for 55 km (which represents a 

flight duration of about 4:30 min with an airspeed of Mach 0.80) and peaks up to 2.0-2.5 g m
-3 

or even more (4 g m
-3

) according to different IWC-Z relationships. This range of deviation 

illustrates shortcomings in both IWC retrievals for high-reflectivity clouds (due to Rayleigh 

approximation, nonspherical ice particles, multiple scattering and Mie effects, see Battaglia et 

al., 2011) and IWC estimates from in situ measurements (due to particle aspect ratio effects 

and non-sphericity for large particles via mass-size relationship assumptions). Because the 

pixel horizontal resolution of retrieved products is 2.5 km, higher IWC values at smaller 

scales could be encountered. The retrieved IWC-Z relationships from the CloudSat 2B-IWC 

and DARDAR retrieval techniques are roughly consistent with in situ observations in the 



outflow cirrus region (CIRCLE2 data). It should be noticed that at the considered altitude the 

temperature (-40°C) is lower than the temperature for which the supercooled liquid water 

droplets freeze by homogeneous nucleation (-37°C), the cloud particles are likely pure ice 

crystals. The vertical velocity in the MCS active region may lead to a rapid freezing of the 

droplets, leading to a large number of small size particles. 

The retrieved effective radius (DARDAR Reff) increases in the cloud core to about 60 

µm and reaches 80 µm concurrently with the highest IWC values. The comparisons with in 

situ observations in cirrus ice clouds show systematic larger retrieved Reff. Several 

hypotheses may explain these differences:  

(i) Systematic errors on in situ measurements due to the contamination by the 

shattering of larger ice crystals on the probe tips, resulting in artificially high concentrations 

of small ice crystals with subsequent high extinction coefficients and low effective radius.  

(ii) Large errors may arise from uncertainties of the forward model used for the 

CloudSat inversion. Among the factors that may contribute to these errors is the choice of size 

distribution and parameters related to this size distribution. Likewise, a worse parameter-

description of small ice crystals could conduct to oversized retrieved particles and 

uncertainties due to non-sphericity of the ice crystals and ice densities could also be 

important.  

 To conclude, quite high IWC within a range between from 2 to 4 g m
-3

 (according to 

the specific IWC-Z relationship derived from in situ measurements) could be encountered at 

usual cruise altitudes of commercial aircraft. These values appear to correspond in the active 

MCS region to a maximum reflectivity factor of 18 dBZ (at 94 GHz). Because the radar 

reflectivity depends on the 6
th

 moment of the size distribution, the particle size is a critical 

parameter for which the measurement accuracy must be considerably improved. New 

generation of cloud instruments with specially designed tips and electronics may now provide 

much more accurate in situ measurements (see for instance, Korolev et al., 2013). In the same 

way, relevant IWC-Z relationships should be obtained in order to describe the core of deep 

MCS. To complete this study, the analysis of radar echoes obtained simultaneously by radars 

at 94 GHz and 35 GHz (onboard radars) in ice clouds with different properties would be 

important to assess more relevant IWC – Z relationships.  

 Finally, it is argued that the availability of real time information of the km-scale cloud 

top IR brightness temperature decrease with respect to the cloud environment would help 

identify MCS cloud areas with potentially high ice water content and small particle sizes 

against which onboard meteorological radar may not be sensitive enough to be able to provide 

timely warning. This should be an issue for further studies by generalizing the results from a 

statistical approach and by considering relevant criteria like for instance, optical depth  and/or 

brightness temperature differences (see Figs. 3d and 3f, respectively) to identify these MCS 

cloud areas. 
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Date γ’b γ’e kb ke ∆b ∆e d∆ Tt 

26 May 2007 0.04 0.070 0.60 1.06 0.40 0.54 +0.14 -58°C 

20 June 2008 

Part A 
0.38 0.44 +0.06 

20 June 2008 

Part B 

0.03 0.043 0.45 0.65 

0.38 0.29 -0.09 

-75°C 

 

 

Table 1. Baseline and enhanced integrated attenuated backscatter values (γ’b   and  γ’e 

respectively), baseline and enhanced values of isotropic backscatter-to-extinction ratio (kb and 

ke) for η = 0.6, baseline and  enhanced (or reduced) of the integrated depolarisation ratios (∆b  

and ∆e), change in depolarization ratio from baseline value (d∆  = ∆e - ∆b) and cloud top 

temperature (Tt). The results are reported for the two cloud situations described in this paper 

(May 26
th

 2007 and June 20
th

 2008). 

 

 

 

Figure captions. 

 

Figure 1. (a):Imaging Infrared Radiometer (IIR); (b): Vertical profile of the CALIOP 532 nm 

attenuated backscatter coefficient; (c): Vertical profile of the equivalent reflectivity factor 

from CloudSat; (d): Integrated attenuated backscatter (log-scale); and (e): Integrated 

depolarization ratio. These observations, are plotted along the CALIPSO track, i.e. between 

48.5 and 49.5°N across the convective system on 26
 
May 2007 (12:32 UTC). The shaded area 

indicates the active part of the overshooting cell. 

 

Figure 2. Vertical profiles of the extinction coefficient and the reflectivity factor at the center 

of the overshooting cell (48.97 °N, see Fig. 1). 26 May 2007 cloud situation. 

 

Figure 3.  MET-9/SEVIRI observations on 20 June 2008 at 15:45 UT. (a) and (b): Images of 

false colour composites from SEVIRI data and brightness temperature (10.8 µm channel), 

respectively. The pixel resolution is 3 x 3 km
2
 at 10.8 µm wavelength and the temperature 

colour scale is indicated on the right side of the Figure. The quasi-collocated CALIPSO track 

at 15:43 UTC is superimposed on the satellite images. (c), (d), (e), (f) and (g): Retrieved 

parameters from SEVIRI observations along the CALIPSO track, namely: brightness 

temperature in the IR channel at 10.8 µm, optical depth, effective radius, differences in the 

brightness temperatures (∆BT1) between the 12.0 µm and 10.8 µm channels and differences 

in the brightness temperatures (∆BT2) between the 6.2 µm and 10.8 µm channels. Brightness 

temperature from the IIR imaging radiometer is superimposed to the SEVIRI retrieved 

temperature on Fig. 3c.  

 



Figure 4. As Figs.1, but for the cloud system of 20 June 2008 (15:43 UTC). Shaded areas 

indicate the active parts (A and B) of the MCS. The effective radius retrieved from SEVIRI 

data are superimposed on the curve in (c). 

 

Figure 5. As Fig. 2, but profiles obtained at the center of  part B of the convective cell 

(1.840°N, see Figs. 4) for the 20 June 2008 MCS.  

 

Figure 6. (a) Vertical profiles of the equivalent reflectivity factor from CloudSat. (b) and (c): 

Variations of the retrieved IWC (log scale) and effective radius, respectively  along the 10700 

m level. IWC is retrieved from both the CloudSat 2B-IWC (C2B, green curve) and DARDAR 

(DAR, blue symbols) algorithms and from the relationship proposed by Matrosov and 

Heymsfield, 2007 (MH, red symbols for reflectivities > 0 dBZ).  

 

Figure 7. Profiles of the theoretical adiabatic liquid water content (LWC) assuming the most-

likely thermodynamic properties of the cloud base (900 hPa/20°C and 850 hPa/18°C) 

obtained from the CALIPSO additional meteorological parameters.  

 

Figure 8. Retrieved IWC-Z relationship obtained from both the CloudSat 2B-IWC (green 

symbols) and DARDAR (yellow symbols) algorithms obtained at 10700 m (FL350) in the 

MCS system on 20 June 2008. IWC-Z relationships obtained from in situ observations the 26 

May 2007 for continental isolated convective cloud and the outflow cirrus observations (red 

and blue symbols, respectively). The relationships proposed by Matrosov and Heymsfield 

(2008), Protat et al. (2007) and Sayres et al. (2008) are reported.  

 

Figure 9. Same as Fig. 8. Reff –Z relationships.  
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