1 Strong Wintertime Ozone Events in the Upper Green River

2 Basin, Wyoming

- 3
- 4 Bernhard Rappenglück^{1, *}, Luis Ackermann¹, Sergio Alvarez¹, Julia Golovko¹, Martin Buhr²,
- 5 Robert Field³, Jeff Soltis³, Derek C. Montague³, Bill Hauze⁴, Scott Adamson⁴, Dan Risch⁴,
- 6 George Wilkerson⁴, David Bush⁵, Till Stoeckenius⁶, Cara Keslar⁷
- 7
- ⁸ ¹ Department of Earth and Atmospheric Sciences, University of Houston, Houston, Texas,
- 9 USA
- 10 ² Air Quality Design, Boulder/CO, USA
- ³ University of Wyoming, Laramie/WY, USA
- ⁴ Meteorological Solutions Inc., Salt Lake City/UT, USA
- 13 ⁵ T&B Systems, Santa Rosa/CA, USA
- 14 ⁶ Environ, Novato/CA, USA
- 15 ⁷ Wyoming Department of Environmental Quality, Cheyenne/WY, USA
- 16

^{*} Corresponding author: University of Houston, Department of Earth and Atmospheric Sciences, 4800 Calhoun Rd, Houston, TX 77204-5007,

Tel.: 713-893-1298, Fax: 713-748-7906, e-mail: brappenglueck@uh.edu

17 Abstract

18

During recent years, elevated ozone (O₃) values have been observed repeatedly in the Upper 19 20 Green River Basin (UGRB), Wyoming during wintertime. This paper presents an analysis of 21 high ozone days in late winter 2011 (1-hour average up to 166 ppby). Intensive Operational 22 Periods (IOPs) of ambient monitoring were performed which included comprehensive surface 23 and boundary layer measurements. On IOP days, maximum O₃ values are restricted to a very 24 shallow surface layer. Low wind speeds in combination with low mixing layer heights (~50 m 25 above ground level around noontime) are essential for accumulation of pollutants within the 26 UGRB. Air masses contain substantial amounts of reactive nitrogen (NO_x) and non-methane 27 hydrocarbons (NMHC) emitted from fossil fuel exploration activities in the Pinedale 28 Anticline. On IOP days in the morning hours in particular, reactive nitrogen (up to 69%), 29 aromatics and alkanes (\sim 10-15%; mostly ethane and propane) are major contributors to the 30 hydroxyl (OH) reactivity. Measurements at the Boulder monitoring site during these time 31 periods under SW wind flow conditions show the lowest NMHC/NO_x ratios (~50), reflecting 32 a relatively low reactive NMHC mixture, and a change from a NO_x-limited regime towards a 33 NMHC limited regime as indicated by photochemical indicators, e.g. O₃/NO_v, O₃/NO_z, and O₃/HNO₃ and the EOR (Extent of Reaction). OH production on IOP days is mainly due to 34 35 nitrous acid (HONO). On a 24-hr basis HONO photolysis on IOP days can contribute ~83% to OH production on average, followed by alkene ozonolysis (~9%). Photolysis by ozone and 36 37 HCHO photolysis contributes about 4% each to hydroxyl formation. High HONO levels 38 (maximum hourly median on IOP days: 1,096 pptv) are favored by a combination of shallow 39 boundary layer conditions and enhanced photolysis rates due to the high albedo of the snow 40 surface. HONO is most likely formed through (i) abundant nitric acid (HNO₃) produced in 41 atmospheric oxidation of NO_x, deposited onto the snow surface and undergoing photo-42 enhanced heterogeneous conversion to HONO (estimated HONO production: 10,206 pptv/hr) 43 and (ii) combustion related emission of HONO (estimated HONO production: ~ 70 pptv/hr). 44 HONO production is confined to the lowermost 10 m of the boundary layer. HONO, serves as the most important precursor for OH, strongly enhanced due to the high albedo of the snow 45 46 cover (HONO photolysis rate <u>10,276</u> pptv/hr). OH radicals will oxidize NMHCs, mostly 47 aromatics (toluene, xylenes) and alkanes (ethane, propane), eventually leading to an increase 48 in ozone.

49 Key word index: wintertime ozone, Upper Green River Basin, HONO, oil and gas production

Deleted: Until noon on IOP days, HONO photolysis contributes between 74-98% of the entire OH-production.

Deleted: Ozone photolysis (contributing 2-24%) is second to HONO photolysis. However, both reach about the same magnitude in the early afternoon (close to 50%). Photolysis of formaldehyde (HCHO) is not important (2-7%).

Deleted: 2	
Deleted: 50	
Deleted: 585	

-{	Deleted: 2	
-{	Deleted: 900	

50 **1 Introduction**

51 The Upper Green River Basin (UGRB) has one of the largest natural gas reserves of the 52 United States (US). In 2009, the proven gas reserves for the Jonah field (11.1 billion cubic 53 meters) ranked seventh and for the Pinedale Anticline field (13.8 billion cubic meters) ranked 54 third among the top 100 natural gas fields in the US (EIA, 2009). Oil and Gas extraction 55 including drill rigs, production equipment and compressor stations are operating continuously 56 and represent the only significant emission source in the UGRB with overall emissions of 9.9 57 metric tons/day of reactive nitrogen (NO_x) and 41.7 metric tons/day of volatile organic 58 compounds (VOC) (WDEQ, 2011).

59 The UGRB is a high plateau located about 2,000 m above sea level (asl). It is surrounded by 60 mountain ranges which reach heights up to 3,500 m asl to the West (Wyoming Peak) and 61 4,200 m asl to the Northeast (Gannett Peak). Winters are usually cold and frequently 62 associated with snow cover. During recent years, elevated hourly ozone values above 150 ppbv have been observed in the UGRB during wintertime (Schnell et al., 2009; Carter and 63 64 Seinfeld, 2012). As of July 2012, the U.S. Environmental Protection Agency (EPA) declared 65 the UGRB as a non-attainment area for the 2008 ground-level 8-hour ozone standard, which is 75 ppby. Recent publications have focused on some observational findings in the UGRB in 66 67 the year 2008 (Schnell et al., 2009) or sensitivity analysis using a box model approach 68 together with VOC (Volatile Organic Compound) incremental reactivities for selected ozone 69 episodes in 2008 and 2011 (Carter and Seinfeld, 2012). Still, there are major uncertainties in 70 our understanding of the occurrence of high ozone levels in the UGRB under wintertime 71 conditions. Apart from specific meteorological conditions for the UGRB (i.e. low mixing 72 layer heights, light winds, extensive snow cover, at times recirculation of air masses), these 73 include processes in the nitrogen oxide (NO_x) and VOC cycles, such as the role of nitric acid 74 (HNO₃) and the radical precursors such as formaldehyde (HCHO) and nitrous acid (HONO). 75 In particular, high daytime HONO levels were found (Rappenglück, 2010 and 2011). 76 Although HCHO levels were moderate, the sources and role of HCHO in the UGRB is not 77 fully understood, particularly with regard to the overall relatively low alkene reactivity as 78 shown by Carter and Seinfeld (2012). A better quantification of these hydroxyl (OH) sources 79 is needed to improve the description of ozone chemistry in the UGRB, which is required to 80 develop efficient strategies to reduce pollution in that area.

81 In this paper we analyze high ozone days in late winter 2011 (1-hour average up to 166 ppbv)

82 observed in the area of the Boulder station and describe the meteorological and chemical

83 processes leading to these extreme events using the comprehensive surface and boundary

84 layer measurements collected during the Upper Green Winter Ozone Study (UGWOS) 2011

85 (MSI, 2011).

86

87 2 Methods

Surface air quality data used in this paper were collected continuously at the Boulder site and Boulder South Road site from January - March 2011 (for Boulder South Road site data see also Field et al., 2011). Boundary layer measurements including radiosonde and ozonesonde launches were performed at the Boulder site during Intensive Operational Periods (IOPs). Data from the tethered balloon were obtained at the "Tethered Balloon" site. S1 lists the details of the instrumentation and Figure 1 shows the location of these sites in the UGRB including the locations of oil and gas wells.

95 Surface measurements included routine measurements for ozone (O_3) , reactive nitrogen 96 compounds (NO/NO₂/NO_x), total non-methane hydrocarbon (NMHC), methane (CH₄) and 97 trace level measurements for nitrogen monoxide (NO), nitrogen dioxide (NO₂), and total 98 reactive nitrogen (NO_v). Additional measurements included nitric acid (HNO₃), nitrous acid 99 (HONO), formaldehyde (HCHO), carbon monoxide (CO) and online speciated NMHC. If not 100 otherwise indicated the term NMHC denotes total, i.e. non-speciated NMHC measured at the 101 Boulder or "Tethered Balloon" site. A specific measurement design was applied for the 102 HONO measurements. The sampling unit for the HONO measurements was attached to a 103 small tower. The sampling unit stayed at the surface (10 cm above the ground) for 15 min, 104 then moved to the top of the tower (1.80 m above the ground), where it stayed for another 15 105 min, afterwards the unit returned back to the surface and resumed a new cycle. Upward and 106 downward motions lasted 2 min and were accomplished by a step motor. The purpose was to 107 explore whether HONO gradients close to the surface could be detected. Note: for comparison 108 of HONO data with any ancillary chemistry and meteorological data obtained in this study 109 (e.g. as shown in table S2), HONO data collected at 1.80 m above the surface was used. 110 At all sites, basic meteorological measurements were made. Additional details beyond the information provided in S1 can be found in MSI, 2011. Here we briefly describe the 111 112 methodology for the HONO measurements. For the UGWOS 2011 study a commercially available LOPAP[®] (Long Path Absorption Photometry) instrument was used (QUMA 113

- 114 Elektronik & Analytik GmbH, Wuppertal, Germany). The LOPAP[®] is described thoroughly
- 115 in Heland et al. (2001) and Kleffmann et al. (2002). It is a wet-chemical in situ instrument

116	which consists of an external sampling unit where ambient gaseous HONO is directly
117	sampled in a stripping coil using a mixture of sulfanilamide in hydrochloric acid. No sampling
118	lines are used thus minimizing sampling artifacts on surfaces. The stripping reagent is
119	transferred through an insulated transfer line (length: 3 m; outer diameter 5 cm; kept at 20°C)
120	to the instrument where it is converted to an azodye by the reaction with N-
121	naphtylethylendiamine-dihydrochloride. The absorption, more precisely the logarithm of the
122	ratio between the spectral intensity at 650 nm and 550 nm, is measured in long path
123	absorption tubes made of Teflon AF2400 using a two channel minispectrometer (Ocean
124	Optics S2000). In the external sampling unit two stripping coils are used in series. In the first
125	channel HONO as well as possible interferences are determined, while in the second channel
126	only the interferences are quantified. The difference of these two channels yields the HONO
127	signal.
128	For routine zeroing ultra-high purity nitrogen (UHP N2) was applied every 8 hrs for 30 min
129	directly to the inlet of the external sampling unit by a 1/32" PFA tubing which was partially
130	inserted into the tip of the stripping coil. A linear (or polynomial) fit was calculated for the
131	stable reading and used as the zero baseline. Calibrations were always preceded by zero-
132	measurements. For calibration itself the stripping solution was replaced by 0.01 mg NO2- per
133	liter stripping solution, while UHP N2 was flowing into the inlet of the external sampling unit.
134	Final calibration values were calculated using the calibration standard concentration and the
135	measured gas and liquid flow rates.
136	The sampling time is 30 s. The response time, i.e. the time it takes for the signal to go from
137	100% to 10% of the initial value or from 0% to 90% of the final value, changes every time a
138	new set of peristaltic pump tubing is installed, yet is stable for any given set of tubings. The
139	response time was determined for each set of tubing and ranged between 3.45 - 6.15 min. The
140	time correction used to create the time stamp reported was equal to the sum of the time delay
141	and half the response time, which ranged accordingly between 6.67 - 10.08 min. This time
142	stamp was used to properly allocate air samples to the bottom or up position of the small
143	tower.
144	The LOPAP® instrument has been tested against DOAS measurements both in smog chamber
145	studies as well as in field campaigns (Kleffmann et al., 2006). Excellent agreement was
146	obtained between these techniques during daytime as well as nighttime. The UH LOPAP
147	instrument recently participated in a large intercomparison chamber instrument (Ródenas et
148	al., 2011) and in a recent field intercomparison (Pinto et al., 2013). So far, interferences were

found to be negligible in most atmospheric air masses (Heland et al., 2001; Kleffmann et al.,
2002). Some interferences were found for nitrites (Ródenas et al, 2013), however at nitrite
levels orders of magnitude above atmospheric concentrations. The instrument has been tested
under polar conditions (Kleffmann and Wiesen, 2008; Villena et al., 2011). Interferences with
peroxynitric acid (HO₂NO₂) were found to be less than 0.5% (Ammann, 2013).

154

155 **3 Results and discussion**

156 **3.1. General observations**

157 The Upper Green River Basin had continuous snow cover throughout the winter months 158 January-March 2011. Figure 2 shows that ambient temperature was below freezing most of 159 time, ranging from -28.0°C in early February to +5.1°C in mid-March. Also displayed in the 160 same figure are ambient ozone observations. A slight increase in background ozone from 45 161 ppbv in January to about 50 ppbv in March is discernible. Apart from this longer term variation, it can clearly be seen that at times significant day-to-day variations in the ozone 162 163 mixing ratios may occur. While decreases of ozone are reflecting NO titration effects, strong 164 increases of ozone well above the ozone background level are likely due to a combination of 165 dynamic and photochemical processes. During the time frames February 28 - March 02 and 166 March 9 - 12, 2011, the highest hourly ozone readings were observed with up to 166 ppbv at 167 the Boulder surface site on March 02. IOPs were performed during these two periods (IOP#1: 168 02/28-03/02; IOP#2: 03/09-03/12), which included additional information about the vertical 169 distribution of meteorological parameters as well as some selected trace gases. The following 170 discussions will focus on the time period 2/28 - 3/16/2011. This time period includes the two 171 IOPs and has the most complete data availability with regard to continuous as well as discrete 172 measurements. The non-IOP days during this time frame will be used as reference days. 173 Figures 3a and b display mean diurnal variations of O₃, NO, NO_x,NMHC, CH₄, NO_y, HNO₃, 174 HONO, and HCHO split into IOP and non-IOP days. Most species show 2-3 times higher 175 mixing ratios on IOP days compared with non-IOP days throughout the day. Ozone shows 176 this enhancement during the afternoon and early evening only. Primarily emitted species like 177 NO show maximum values during the time frame 9:00-12:00 MST (Mountain Standard 178 Time). Species which also can be formed secondarily (e.g. NO_{y} , HNO_{3} , HONO, and HCHO) 179 exhibit enhanced levels during sunlit daytime hours from about 07:00 - 18:00 MST, in

180 particular on IOP days. Ozone mixing ratios start to increase by 09:00 MST, reach maximum

181 levels around 15:00 MST and remain at higher levels until early evening. Quite surprisingly,

HONO mixing ratios are high during the daytime on non-IOP days and even higher on IOP days (maximum median around noontime 1,096 pptv) which, compared to other locations, is quite unusual (see e.g. Stutz et al., 2010a). Conventional thinking suggests that HONO levels would instead decrease due to both photolysis and to increased mixing in the boundary layer during the day. The median HONO levels on IOP days are similar to those observed at a

187 highly frequented Houston highway junction (Rappenglück et al., 2013).

188 A statistical summary for IOP and non-IOP days is given in S2. In the following discussion, 189 we refer to median values. It shows that in the morning hours (0500-0900 MST), the median 190 mixing ratios of most species are enhanced by a factor of 2 on IOP days vs non-IOP days. 191 Some are almost unchanged (e.g. HNO₃, NO_y, ozone). During photochemically active 192 daytime periods (11:00-17:00 MST), the median of most compounds is enhanced by 50-193 100%, HCHO is enhanced by 171% and HONO by as much as 278%, which hints to 194 significant secondary daytime formation of these species. During the nighttime period, NO_x 195 (mostly composed of NO_2) and HNO_3 show the highest enhancements on IOP days (121%) 196 and 138%, respectively). HONO and HCHO are also enhanced (98% and 64%, respectively). 197 Overall, on IOP days trace gases relevant to O_3 formation are all significantly enhanced 198 throughout the day compared with non-IOP days.

199 The only major anthropogenic emissions in the remotely located UGRB are associated with 200 oil and gas extraction. As a benchmark for this study we compare some results to a highly 201 polluted urban area. Luke et al. (2010) report results of reactive nitrogen compounds for 202 Houston, Texas, a city exposed to complex emissions including emissions from large 203 petrochemical sources (e.g. Parrish et al., 2009; Lefer and Rappenglück, 2010; Olaguer et al., 204 2013). An investigation of the same daytime periods shows that, while NO_x is significantly 205 higher in the urban air of Houston (about 2-4 times higher when compared to IOP days at 206 Boulder), the picture is different for NO_{v} . Although NO_{v} is higher in Houston in the morning 207 and during the night (275% and 186%, respectively), it is lower in Houston than in Boulder 208 during daytime on IOP days. These differences are largely due to HONO and HNO₃. While 209 HONO is slightly lower in the morning and during the night, it is about three times higher 210 during the daytime on IOP days. HNO₃ on the other hand is higher throughout the day on IOP 211 days in Boulder compared to the Houston case. On non-IOP days at Boulder, HONO and 212 HNO₃ levels are mostly lower than in Houston. The HNO₃ fraction of NO_y is around 18% 213 during daytime on non-IOP days, while it is around 22% during daytime on IOP days (Luke et 214 al., 2010, report an overall daytime HNO₃ fraction of 15.7% of NO_y in Houston). For HONO

Deleted: emissons

the corresponding numbers are around 2% (non-IOP days) and 4.5% (IOP days), while Luke

216 et al. report an overall daytime HONO fraction of 1.7% of NO_y.

217 Luke et al. (2010) also report temporally highly resolved data for particulate nitrate NO_3^- (p-

218 NO₃⁻). Median values were 0.234 ppbv (05:00-09:00 CST), 0.091 (11:00-17:00 CST), and

0.135 ppbv for nighttime (21:00-05:00 CST). At Boulder, 24 hour samples were collected.
Although not exactly comparable, it may provide us with some estimate. On IOP days, the

Although not exactly comparable, it may provide us with some estimate. On IOP days, the median value for p- NO_3^- was equivalent to 0.58 ppbv (maximum equivalent to 1.54 ppbv),

while on non-IOP days the corresponding values were equivalent to 0.47 ppbv and 0.74 ppbv,

respectively, which indicates that p- NO₃⁻ may be higher at the Boulder site than in Houston.

224 S3 shows a comparison of NO_v measurements versus individual NO_v compounds for the 225 Boulder site. Particulate data was only collected on a 24 hour basis. Therefore this data set 226 only comprises a small number of observations. The deviation from the 1:1 line is within the 227 accuracy of the NO_v and the combined individual NO_v measurements (see S1) for ranges above 20 ppbv. For NO_y values below 20 ppbv, NO_y tends to be larger than the sum of the 228 229 individually measured NO_v components. According to S3, still some fraction of NO_v 230 compounds may be missing, even when particulate NO_3 was included. Potential candidates 231 for this NO_v deficit include the nitrate radical (NO₃), dinitrogen pentoxide (N₂O₅), 232 nitrylchloride (ClNO₂), peroxy acetylnitrate (PAN) and alkyl nitrates. While NO₃, N₂O₅, and 233 ClNO₂ would be present at nighttime (e.g. McLaren et al., 2004; Edwards et al., 2013), PAN 234 and alkyl nitrates are produced photochemically and tend to reach maximum values during 235 daytime (e.g. Hayden et al. 2003; Sommariva et al., 2008 and references therein). No 236 measurements of these species were performed at the Boulder site, however some 237 assumptions can be made. Maximum NO₃ and N_2O_5 levels typically range from about 50 pptv 238 and 300 ppty, respectively, in polluted continental air masses (McLaren et al., 2004) to about 239 150 pptv and 500 pptv, respectively, in urban areas (Stutz et al., 2010b). NO₃ and N_2O_5 can 240 constitute 7-30% of NO_v (McLaren et al., 2004 and references therein). NO_3 is formed 241 through the reaction of NO_2 with O_3 . It is likely that this reaction may be efficient at the 242 Boulder site due to the observed appreciable ambient levels of NO_2 and O_3 (see S2 and Figure 243 2). Loss mechanisms for NO_3 include reactions with alkenes and biogenic hydrocarbons, and 244 reaction with NO₂ to form N₂O₅. As alkenes and biogenic hydrocarbons are found at low 245 levels in the UGRB (Field et al. 2012a; 2012b), while abundant NO2 is present, the latter 246 reaction to form N_2O_5 is likely the dominant removal process for NO_3 . In addition, low 247 ambient temperatures would favor this process. The homogeneous and heterogeneous 248 hydrolysis of N_2O_5 may ultimately lead to appreciable amounts of gaseous HNO₃ and 249 particulate nitrate according to McLaren et al, 2004. While no direct measurements of ClNO₂ 250 were performed at the Boulder site, particulate chloride (Cl⁻) data show low median levels of 251 0.015 μ g/m³ (based on 6 24-hr filter samples). This may indicate that Cl⁻ is not abundantly 252 available to form CINO₂ in appreciable amounts, likely less than 600-800 ppty found in the 253 Uintah Basin in Utah (Edwards et al., 2013). Earlier studies in the UGRB also included PAN 254 measurements (Environ, 2010). The results showed up to 1 ppbv PAN during daytime and up 255 to 400 pptv as an estimated 24 hour average, while corresponding ozone values were 85 ppbv 256 and 51 ppby, respectively, i.e. PAN was $\sim 1\%$ of the ozone mixing ratios, which lies in the 257 range observed in remote areas (e.g. Rappenglück et al., 2003). Most important precursor candidates for PAN in the UGRB will be ethane, toluene and xylenes. As high PAN values 258 259 would also coincide with high NO_v values, we assume that PAN would only account for a 260 negligible amount of around 1% percent of the NO_v budget based on the results shown in S3. 261 Alkyl nitrates may account for about 10% of NOv (Sommariva et al., 2008 and references 262 therein). As alkyl nitrates have an atmospheric lifetime of more than a week they may 263 accumulate under favorable meteorological conditions and contribute to the NO_v budget not 264 only during the day, but also at night. We predominantly found lower values for NO_v at night 265 (see Figure 3b), i.e. at a time when the missing NO_v components NO₃, N₂O₅, ClNO₂, and also 266 alkyl nitrates would contribute most to the NO_v budget. This may explain the deficit found in 267 the NO_v budget at NO_v mixing ratios below 20 ppbv. 268 Corresponding analysis for NO_x oxidation products NO_z (NO_z = NO_y-NO_x) versus the sum of 269 individual NOz compounds NOzi, i.e. HNO3, HONO and p-NO3⁻ based on a 24 hour data base yielded NO_z [ppbv] = Σ NO_{zi} [ppbv] * 1.09 - 0.38 ppbv (r²=0.87) for IOP days and NO_z [ppbv] 270 = ΣNO_{zi} [ppbv] * 1.12 + 0.28 ppbv (r²=0.82) for non-IOP days, which is of similar magnitude 271 272 as found in Houston (Luke et al., 2010), for instance. Luke et al. point out that higher 273 nighttime NO_z/NO_{zi} ratios and the magnitude of NO_z - NO_{zi} differences may point to the 274 presence of nighttime ClNO₂. Based on our limited data we cannot make similar statements, 275 but cannot rule out this possibility. Our measurements did not include PAN. Using our 276 previous assumptions of about 400 pptv as an estimated 24 hour average value, PAN could

Deleted: MSI, 2009

Deleted:

277 contribute up to 5% of the NO_z budget. The atmospheric lifetime of PAN (τ_{pan}) is primarily 278 determined by the following reactions:

279

$$280 \quad CH_3C(O)OONO_2 \rightarrow CH_3C(O)OO + NO_2 \tag{1}$$

$$281 \quad CH_3C(O)OO + NO_2 \rightarrow CH_3C(O)OONO_2 \tag{2}$$

$$282 \quad CH_3C(O)OO + NO \rightarrow CH_3C(O)O + NO_2 \tag{3}$$

 $\tau_{PAN} = \frac{1}{k_1} \left(1 + \frac{k_2 [NO_2]}{k_3 [NO]} \right)$

283

The atmospheric lifetime of PAN thus critically depends on the NO₂/NO ratio and also the ambient temperature, since reaction constant k_1 is proportional to exp(-1/T). Based on reactions (1)-(3), τ_{pan} can be calculated according to Ridley et al. (1990):

(4)

287

288

289

For the Boulder site, the shortest τ_{pan} for IOP#1 was 10.6 days and for IOP#2 2.6 days and reached almost 1 day on the last day of the field study (March 16) when temperature reached +5.1°C. It is thus unlikely that PAN may serve as a NO₂ source and contribute to ozone formation under the environmental conditions found during the study. However, it can serve as a reservoir for NO_x and radicals and remove NO_x and radicals out of the UGRB.

Deleted: reservoir

- **3.2. Role of Meteorological Parameters**
- 297

295

298 3.2.1 Dependence on Wind Direction

S4 and b display daytime and nighttime wind roses of O_3 , primarily emitted pollutants NO_x , NMHC, CH₄, and trace gases that may have both primary and secondary sources, i.e. NO_y , HNO₃, HONO, and HCHO. S4a and b include both IOP and non-IOP days in order to obtain larger and more representative data sets. Regardless of IOP and non-IOP days, night-time data will most likely be useful to point to potential emission sources as photochemical processes are at a minimum.

305 The daytime ozone wind rose clearly shows enhanced mixing ratios for SSW to WSW and 306 SE/ESE directions (median 64-73 ppby). During nighttime, maximum median ozone of about 307 60 ppbv occurs under NNE-ENE wind directions. These wind directions only have small 308 amounts of NO₂ (median about 1.5 ppbv; not shown) and are likely more aged air masses. 309 Primarily emitted NO_x , NMHC, and CH_4 display pronounced enhancements during the 310 daytime in the similar directions as for O_3 . During nighttime there are significant peaks under 311 SW-W wind directions. While NO_x and NMHC are distinctly enhanced (NO_x \sim 10 ppbv, NMHC ~900 pptv), still CH₄ with about 4 ppm is a factor of 2 above its background levels. 312

This hints to sources which emit nitrogen oxides, NMHC and CH_4 or different sources located in the same area which may overlap. This is likely consistent with locations of compressors and drill rigs operating during January – March 2011 (which emit primarily NO_x) relative to

316 well head production equipment (which emits primarily CH₄ and NMHC).

 NO_y , HNO₃, HONO, and HCHO (S4b) largely follow the same directional pattern as NO_x and

- 318 hydrocarbons (S4a). However, contrary to the primarily emitted pollutants NO_x, NMHC, and
- CH₄, species which may be formed secondarily, i.e. HNO₃, HONO, and HCHO, generally
 show higher values during daytimes. It is known that HCHO may be emitted primarily from
 incomplete combustion in either mobile or stationary sources (Zweidinger et al., 1988;
 Altshuller, 1993; Chen et al., 2004; Dasgupta et al., 2005; Rappenglück et al., 2013). Also,
 HONO can be emitted primarily from various combustion processes (Kirchstetter et al., 1996;
 Kurtenbach et al., 2001; Rappenglück et al., 2013) with traffic emissions being an important
- 325 <u>contribution to ambient HONO (Sarwar et al., 2008).</u>

326 NO_v behaves somewhat similarly to the primary pollutants, most likely due to the large fraction of NO_x in NO_y (see S2). Interestingly, HONO clearly shows an anisotropic 327 328 dependence on wind direction, both during night- and daytime, which indicates a point source 329 rather than an area source like the surface. During daytime, HONO mixing ratios are highest 330 from WSW to SSW (median 477 pptv to 545 pptv, respectively), while at night maximum 331 mixing ratios occur under WSW wind direction (median 347 pptv). While the nighttime 332 HONO peak for WSW flow is in accordance with those for other trace gases and hints at a 333 point source, the high daytime HONO levels (see also S2) are at odds with the conventional 334 understanding of HONO diurnal variability, suggesting that additional processes other than 335 point source emissions (e.g. Czader et al., 2012 and references therein) may be important.

336

337 3.2.2 Backward Trajectories

338 For further analysis, we calculated HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) backward trajectories (Draxler and Hess, 2013, Rolph, 2013) based on 12 km 339 340 resolution meteorological data provided by NAM (North American Mesoscale model). 341 Uncertainties stated by Draxler and Hess are in the range of 15-30% of the travel distance. As 342 an additional test, we calculated back and forward trajectories within the UGRB for the times 343 of interest and found only negligible difference among those. Although, there might be some 344 limitations associated with the accuracy of backward trajectories, they at least may provide 345 information about major regimes. The results of trajectory calculations are shown in Figure 4

Deleted: also

Deleted: This indicates their dual nature, i.e. primarily emitted (as reflected in the nighttime data) and, in addition, secondarily formed (as seen in the daytime data).

Deleted: similarily

346 and they indicate three major regimes during the 2/28 - 3/16/2011 period. Non-IOP days 347 mostly showed consistent air mass flows out of the NW wind sector (example shown 348 3/8/2011). Also, they are associated with higher wind speeds and enhanced atmospheric 349 dispersion. This coincides with the generally low to modest levels of pollutants (S4a and b). 350 The days with the highest ozone levels during each IOP may show recirculation processes 351 during the day (as for March 03, 2011); however, they are usually characterized by the fact 352 that at least once during the day, trajectories eventually pass through the area Southwest of 353 Boulder before arriving at Boulder. According to Figure 1, air masses would then pass the oil 354 and gas well locations of the Pinedale Anticline and also a large number of compressor 355 facilities (Figure 5). According to the trajectories on March 12, air masses would have passed 356 this sector at the most 1-2 hours before arrival at Boulder and would have stayed in that 357 region for about 1 hour. As seen in S4a and b, air masses coming from the SW quadrant carry 358 maximum amounts of both primary and secondary pollutants. As shown later, they are also 359 associated with the highest VOC reactivity and a change of NO_x sensitivity towards a VOC 360 sensitivity regime.

361

362 3.2.3 Boundary Layer Height

363 Tethersonde data taken on IOP days indicate very shallow boundary layer heights. Based on 364 the data in S5 and using approaches by Stull (1988), average morning boundary layer heights 365 (09:00-11:00 MST) would be estimated to be about 35 m above ground level (agl) around 366 noon (11:00-13:00 MST), around 50 m agl in the early afternoon (13:00-15:00 MST), reach a 367 daily maximum around 80 m agl, and in the late afternoon (15:00-17:00 MST) decrease to 368 around 45 m agl. This is largely in agreement with SODAR data (not shown). Figure 6 shows 369 vertical profiles of ozone and wind direction on IOP days. Generally, IOP days were 370 characterized by W to NW flows above 600 m agl and appreciable temporal and spatial 371 changes in wind direction below this level. These lower level changes are also reflected in the 372 backward trajectories previously shown in Figure 4. Below 600 m agl, windspeed was 373 generally less than 5 m/s. Above 600 m agl, wind speed rapidly increased above 10 m/s (not 374 shown). The strong changes in atmospheric flow around 600 m agl certainly helps to maintain 375 inversions and stable boundary layer conditions beneath this layer throughout IOP days. Since 376 surrounding mountain ranges of the UGRB reach heights up to 3,500 m asl to the West 377 (Wyoming Peak) and 4,200 m asl to the Northeast (Gannett Peak), the boundary layer air 378 masses are easily trapped within the basin and recirculation processes as shown for March 02

in Figure 4 are likely. This is in accordance with earlier wintertime meteorological studies in
similar areas of the Rocky Mountains (Yu and Pielke, 1986).

381 Figure 6 shows that ozone exhibits a distinct behaviour associated with the atmospheric 382 dynamic pattern: above 600 m agl, ozone mixing levels are quite stable around 60 ppbv 383 regardless of the day and time of the day. It represents background ozone levels in the well 384 mixed lower troposphere. Below 600 m agl, ozone mixing ratios clearly show diurnal changes 385 with lower than background values in the early morning and strongly enhanced values in the 386 afternoon. The maximum deviations are clearly restricted to a very shallow surface layer. 387 There is no evidence of ozone carry over from previous days. Ozone deposition over dry 388 surfaces is about 0.4 cm/s (Hauglustaine et al., 1994); however, it is about 0.07 cm/s over 389 snow surfaces (Hauglustaine et al. 1994), i.e. ozone removal through turbulent diffusion is 390 significantly reduced. Recent studies over polar snow indicate even lower deposition 391 velocities in the range of 0.01-0.07 cm/s (Helmig et al., 2009). As deposition may play a 392 minor role during snow covered periods in the UGRB, the ozone deviation from the 393 background ozone level is instead determined by removal (e.g. nighttime titration) and 394 daytime in-situ formation processes.

395 As an example, Figure 7 shows selected data obtained by the tethersonde system for the IOP 396 day March 02, 2011. The results for ΔT (Delta-T in the plot) indicate well defined inversion 397 and stable conditions in levels with $\Delta T > 0$ °C. Again, it can be seen that highest ozone levels 398 are restricted to the surface levels. Precursors such as NO₂ and NHMC may exhibit a layered 399 distribution. Highest levels may occur close to the mixing layer height as defined by ΔT . This 400 hints to pollution plumes which may have originated from either elevated sources and/or 401 sources which show some plume rise due to higher than ambient temperatures. Potential 402 ozone O_x as expressed by the sum of O_3 and NO_2 provides information about the potential 403 presence of O₃ formation processes. Using the tethersonde data and segregating it into time 404 frames like in S5, we obtain S6. This figure shows two main features: (i) formation of O_3 405 from early morning to the afternoon throughout the surface layer and (ii) apart from the late 406 afternoon, a tendency towards higher O_x values in higher layers of the surface layers. Highest 407 O_x mixing ratios at the surface occur only in the late afternoon.

408 In an attempt to investigate other trace gases for which no vertically resolved data is available,

- 409 we segregated surface data into 5 m bins of hourly SODAR mixing layer height (MLH) data
- 410 and split it into day- and nighttime observations. Results are shown in S7. For ozone, daytime
- 411 data is clearly higher than nighttime data regardless of the MLH. However, during daytime,

412 maximum ozone levels are observed under lowest MLH. Speciated NMHC data obtained at 413 the Boulder South Road site generally show enhanced values under MLH \leq 40 m agl and 414 decreasing concentrations with increasing MLHs regardless of the time of day. However, 415 while higher nighttime concentrations of speciated NMHC classes are found at lower MLHs, 416 during daytime, the lowest MLHs are associated with lower concentrations of NMHC classes. 417 Assuming NMHC sources which do not change emission strength during the day, this points 418 to photochemical degradation of NMHCs in the lowermost surface layers. The change in the 419 median values is about -20% for alkanes, - 45% for alkenes, and almost -50% for aromatics. 420 CO does not change significantly with MLH and time of day. NO_x shows significantly higher 421 values during daytime and, contrary to NMHC classes, there is no change at lowermost MLHs 422 when comparing daytime with nighttime observations. However, nighttime data clearly shows 423 decreasing NO_x levels with increasing MLHs. Both HCHO and HONO show higher values 424 during the daytime than nighttime regardless of MLHs. In accordance with other primary 425 pollutants like NMHC and NO_x, HCHO and HONO exhibit a trend towards lower mixing 426 ratios with increasing MLHs during nighttime. 427 In general, results from IOP days, such as March 02 and 12, indicate that slightly variable

428 wind directions (including <u>recirculation</u>) and low wind speeds in combination with low 429 boundary layer heights are essential for accumulation of both primary and secondary 430 pollutants. The occurrence of low boundary layer heights in presence of snow cover in 431 mountainous regions is in accordance with previous model simulations (Bader and McKee, 432 1985). These studies also showed that these conditions can hold a stable layer until very late 433 in the day.

434

435 3.2.4 HONO and relationships with radiation and relative humidity

436 Some photo-enhanced heterogeneous reactions are currently being discussed as likely daytime 437 HONO sources (Kleffmann, 2007). S8 shows a comparison of HONO data obtained close to 438 the surface (10 cm above the surface) and at about 1.80 m above the surface. The plot contains 439 all data of the 2/28-3/16/2011 period, as segregation into IOP and non-IOP days would have resulted into patchier time series with larger intermittent data gaps. To some extent S8 may 440 441 provide some general characterization. S& reflects the main results of Figure 3b with higher 442 HONO levels during the daytime. However, two additional observations are evident: (i) 443 scatter in the HONO data is greater at the 1.80 m level, where maximum concentrations are 444 found in the morning and early afternoon. The absence of these early morning high levels in

Deleted: reciruclation

Deleted: It

the surface data suggest that the observed maximum at 1.80 m may be due to transport of 446 HONO rather than a surface source most likely due to the stratified properties of the planetary 447 boundary layer (PBL) with suppressed vertical mixing during these times (see chapter 3.6), 448 (ii) The median HONO values at the surface show a significant increase around noon 449 coinciding with the strongest solar irradiation, and surpass those at the 1.80 m level. This 450 suggests a strong surface source of HONO which is most efficient around noontime. 451 According to Villena et al. (2011), HONO photolysis can be the most important OH radical 452 source in polar regions under clean conditions (e.g. in polar regions), in particular when 453 HONO was not correlated to CO and NO_x, which would otherwise hint to direct emissions. From S8 and S4b, it is evident that daytime photochemical processes contribute to HONO 454 455 formation at the Boulder site, while transport is important throughout the day. Potential direct 456 combustion related emissions will be discussed later.

457 As pointed out by Stutz et al. (2004), relative humidity may be favorable for HONO 458 formation, at least in urban environments. S9 shows that on IOP and non-IOP days, HONO 459 levels are higher during the day than at night, regardless whether the measurements were 460 taken close to the surface or at 1.80 m agl. During nighttime, photochemical processes are at a 461 minimum. A trend towards higher HONO levels with increasing higher relative humidity can 462 be discerned, with a maximum around 80%, Again, this does not seem to depend on the 463 measurement height. A dependency of the HONO/NO₂ ratio on relative humidity as described 464 by Stutz et al. (2004) could not be identified in our data set, likely due to the fact that the 465 snow cover itself provided a constant amount of water, which would be in line with 466 observations by Wojtal et al. (2011) for aqueous surfaces.

467

445

468 3.3. Role of Emissions and Chemistry

469

470 3.3.1 Potential combustion emissions for radical precursors HCHO and HONO

471 Primary sources for HCHO and HONO are important sources for the hydroxyl radical (e.g. 472 Ren et al., 2013; Czader et al., 2013). While HCHO may have a variety of primary sources, its 473 secondary formation during daytime usually exceeds primary HCHO emissions significantly 474 (e.g. Rappenglück et al., 2010 and references therein). This is also reflected in the Boulder site 475 data when comparing daytime HCHO data on IOP vs. non-IOP days (see S2 and Figure 3b). 476 However, secondarily produced HCHO does not provide a net OH source as the formation of 477 OH already consumed OH.

Deleted:

478 Unfortunately, there were no CO measurements taken at the Boulder site, but linear regression 479 analysis of CO versus NO_x calculated for the Boulder South Road site indicate CO [ppbv] = $6.14 \times NO_x$ [ppbv] + 140 [ppbv] (r²=0.55) over all wind directions for the entire time period 480 481 2/28-3/16/2011. The slope is very close to values obtained for urban traffic rush hour, which 482 is 6.01 ± 0.15 ppbvv CO / 1 ppbv NO_x (Rappenglück et al., 2013). While the correlation coefficient is significantly weaker than found in the Rappenglück et al. (2013) study ($r^2=0.91$), 483 484 which may be due to higher degree of mixing of different air masses, it indicates the presence 485 of combustion sources; under remote unpolluted conditions CO and NO_x would be almost 486 unrelated (see e.g. Villena et al., 2011).

487 As previously mentioned, compressors and drill rigs were operating during January – March 488 2011 in the area located upwind of the Boulder site under SW flow conditions. These units 489 emit primarily NO_x relative to well head production equipment which primarily emits CH_4 490 and NMHC. As indicated in S4a and b, enhanced levels of primary pollutants occur under 491 SSW-W flows during daytimes and under SW-W flows during the night. In an attempt to 492 identify potential emission sources for HCHO and HONO, we performed correlation analyses 493 with various other trace gases measured at the Boulder site focusing on nighttime data, to 494 exclude daytime photochemical processes and SW-W wind directions which showed peak 495 values for all species in accordance with S4a and b. NO_z/NO_v ratios were around 0.35 under 496 these wind flow conditions and thus, significantly less than 0.6, indicating freshly emitted 497 pollutants.

498 S10 clearly shows the close relationship between HONO and NO₂, NO_x, and HNO₃ as 499 observed at the Boulder site. The good, although somewhat weaker, correlation of HONO 500 with total NMHC at the Boulder site is most likely due to the fact that emission sources which 501 emit NO_x may be located close to NMHC sources. HCHO shows overall weaker correlations 502 with NO_x, total NMHC, and CH₄ compared with HONO. HCHO has a longer atmospheric 503 lifetime than HONO (~6-7 hrs for HCHO vs. ~5-7 min for HONO at local noontime 504 conditions during the UGRB study) and thus some appreciable background, which may also 505 include remnants of previous day formation of HCHO. This background may get mixed into 506 freshly emitted plumes and cause higher data scatter. In any case, according to S10, HCHO 507 shows stronger correlation with total NMHC and CH₄ than with NO_x, while for HONO it is 508 the opposite behaviour. This hints to different source categories for HONO and HCHO.

- 509 Based on the CO/NO_x observations at the Boulder South Road, we assume that NO_x at the
- 510 Boulder site would also be primarily related to combustion sources. In a recent traffic related

Deleted: focussing

511 emission study, measurements of HONO versus NO_x yielded a slope of 15.86±0.82 pptv HONO / 1 ppbv NO_x (r^2 =0.75) and a slope of 25.00±1.06 pptv HCHO / 1 ppbv NO_x (r^2 =0.80) 512 for HCHO versus NO_x (Rappenglück et al., 2013). The slopes of HONO versus NO_x for the 513 514 Boulder nighttime data under wind direction 180°-270° and the Houston traffic related 515 measurements are almost identical. In the traffic emissions study, Rappenglück et al. argued 516 that the high HONO/NO_x emission ratios were likely due to heavy duty vehicles. In the case of the Upper Green River Basin, stationary diesel powered compressors may act similarly. 517 518 This may likely be favored in addition by altitude effects, as it has been demonstrated for 519 diesel vehicles up to an altitude of 2,400 m asl (e.g. Bishop et al., 2001; Wang et al., 2013) In 520 particular it seems that NO₂ emissions increase at the expense of NO emissions (Yin et al., 521 2013). For HCHO versus NO_x , the slopes are significantly lower than found in traffic related 522 combustion emissions. The correlation coefficient is also weaker. It is likely that different 523 emission sources overlap. Since HCHO shows a closer correlation with total NMHC at the 524 Boulder site and even closer with CH₄ as shown in S10, it is likely that well head equipment, 525 in addition to co-located compressors, may contribute to HCHO emissions. Interestingly, 526 contrary to HCHO, HONO displays a stronger correlation with total NMHC than with CH₄. 527 This may further support the ideas that HONO emissions are more related to combustion 528 (compressors) and HCHO has some overlapping emissions originating from drill rig 529 operations.

530

531 **3.4. NMHC versus NO_x limitation of ozone production**

532 Observation based methods like photochemical indicators such as O_3/NO_y , O_3/NO_z , and 533 O_3/HNO_3 and the EOR (Extent of Reaction) can be used to evaluate whether ozone 534 production at a given location may be VOC or NO_x limited (Sillman, 2002; Sillman and He, 535 2002). The EOR is defined as:

536

EOR =	$\left(1 - \frac{NO_x}{1.3 \cdot NO_y}\right)^0$	0.67	(5)
	(

538

539	Sillman and He (2002) point out that the photochemical indicators also depend on the
540	chemical environment, in particular for O ₃ /NO _z (which may not be applicable for highly
541	polluted scenarios). They classified relatively clean environments ($O_3 < 80$ ppbv), moderately
542	polluted (100 - 200 ppbv O_3) and highly polluted environments ($O_3 > 200$ ppbv). According to

543	Sillman and He, photochemical indicators would tend to increase with decreasing ozone
544	values. It is not certain, if these photochemical indicators can be applied to the environment
545	found in the UGRB without modifications, as the radical pool is largely dominated by the
546	photolysis of HONO, at least in the lowermost layer of the PBL (see discussion in chapter
547	3.6). While there might be some limitations to this concept, we followed this approach in an
548	attempt to explore whether an ensemble of photochemical indicators would at least point
549	towards common tendencies with regard to VOC and NOx limitation. S11 lists ranges of
550	indicator values which are representative of different regimes. We calculated the
551	photochemical indicators for the Boulder site. For this analysis, we focus on the IOP days, as
552	those were the days with maximum ozone levels. As shown in Figure 3a ozone mixing ratios
553	are usually below 80 ppbv before 11:00 MST and afterwards above 80 ppbv. It is common to
554	all photochemical indicators that they display significant changes throughout the day
555	depending on the wind direction (Figure 8). While there are no consistent patterns throughout
556	the day among all photochemical indicators, some general tendencies for the most critical
557	time periods with regard to regulatory purposes can be deduced. In most cases during morning
558	hours (07:00-11:00 MST: O ₃ < 80 ppbv) and/or under SW flow conditions, all indicators
559	reach minimum values. S12 shows that O ₃ /NO _y O ₃ /NO _z and the EOR would indicate VOC
560	limitation; the values of O ₃ /HNO ₃ , would fall into the transitional regime according to S11, if
561	not in the VOC limited regime assuming that photochemical indicators would be higher in the
562	case where $O_3 \le 80$ ppby. From 13:00-15:00 MST, i.e. the time period with $O_3 \ge 80$ ppby, all
563	indicators either point towards a NOx limited or a transitional regime. Any change from a
564	VOC-limited regime towards a NO _x limited regime or vice versa implies passing the
565	transitional regime, where ozone production can be most efficient and can reach maximum
566	values as shown by Mao et al. (2010). The periods with the lowest values for photochemical
567	indicators generally coincide with minimum values of the NMHC/NOx ratio as observed at
568	the Boulder site (Figure 9). This minimum value is about 50 and represents a relatively high
569	value compared to urban areas (Mao et al., 2010). This could be due to relatively low NMHC
570	reactivity, either caused by low temperatures or a NMHC mixture which is mostly composed
571	of slow reacting hydrocarbons (e.g. alkanes such as ethane and propane), or a combination of
572	both. Carter and Seinfeld (2012) found that regimes sensitive to VOC or NOx may vary from
573	year to year and depend on the specific location in the UGRB. For the Boulder site in 2011
574	they determined a VOC sensitive regime, which largely agrees with our analysis for the
575	morning hours on IOP days. Carter and Seinfeld also state that under such conditions

Deleted: Generally, median values of all indicators would point towards NO_x limitation of ozone production, which would be expected for rural areas. However,

Deleted: i

Deleted:

Deleted: the other indicator values

Deleted: On non-IOP days, the values for the photochemical indicators would be slightly higher but still show a similar diurnal and wind directional pattern. C Deleted: NO_x Deleted: VOC

Deleted: reaching or

576 additional OH generated by an increased level of HONO would favor O₃ formation, while NOx saturation would also have the potential to cause additional HONO formation. Carter and 577 578 Seinfeld (2012) modeled the Boulder 2011 case based on the HONO data presented in this 579 paper and found much better simulations of O₃ compared to the baseline scenario, when 580 HONO was added, which is very encouraging. In addition to the Carter and Seinfeld analysis 581 our paper also considers diurnal variations of the NMHC/NO_x ratio, including any 582 fluctuations in the NMHC mix, which is also subject to wind directional changes, at least for 583 the Boulder site. As mentioned above, our data shows that there is likely a transition phase after the morning NO_x saturation conditions towards a VOC saturation regime, which is not 584 585 described by Carter and Seinfeld and would require diversified speciated regulatory mitigation 586 strategies.

587

588 3.5. OH reactivity

In order to describe the importance of individual or classes of trace gases with regard to photochemical processes, it is important to consider both the reactivity and the amount of these trace gases in ambient air. One way to do this is to calculate the propene equivalent J as proposed by Chameides et al. (1992):

(6)

593

$$J = C_J \frac{k_{OH}(J)}{k_{OH}(C_3H_6)}$$

595

596 with C_i being the mixing ratio of hydrocarbon compound J in ppbC or any other compound J 597 in ppbv, the reaction rate of this compound with OH (k_{OH}) and normalized to the reaction rate 598 of propene with OH ($k_{OH}(C_3H_6)$). This approach expresses any individual or classes of trace 599 gases in terms of propene units. However, it is an approximation as reactions other than with 600 OH, i.e. with O₃, NO₃, and Cl, are neglected. In our approach, we merge data from the 601 Boulder South Road site (speciated NMHC, CH₄, CO, NO_x) with data collected at the Boulder 602 site (HCHO, HONO) to have a most comprehensive data set. During the winters of 2011 and 603 2012 nineteen canister surveys of speciated NMHC were performed at sites throughout the 604 UGRB. Boulder and Boulder South Road are located three miles from each other. The 605 Boulder site is closer to the spine of the Pinedale Anticline development and concentrations at this site are generally slightly higher than Boulder South Road. While the r^2 for the 606 607 comparison of data from these two sites for each of four surveys during February and March 608 2011 were each greater than 0.97, there is some variation of slope between the two sites with 609 values ranging from 1.2 to 1.7. The two Boulder sites share the characteristic of measuring air 610 that is influenced by a wide range of oil and gas emission sources (Field et al. 2012a; 2012b) 611 with similar contributions between NMHC classes. When considering speciated NMHC 612 alkanes are most correlated and aromatic are least correlated. Although there might be slight 613 differences in the atmospheric chemistry settings of both sites, we believe that this will not 614 have major impacts on the general findings. Figure 10 displays the diurnal variation of the 615 fractions of the propene-equivalent on IOP days. Within the speciated NMHC obtained at the 616 Boulder South Road site, the most important contributions to the overall OH reactivity stem from aromatics (50-60%), alkanes (30-40%) and the remaining ~10% alkenes. As expected, 617 618 the contribution from alkynes and isoprene is negligible due to their low reactivity (alkynes) 619 and low mixing ratios (isoprene). Although CH₄ accounts for the largest fraction of all 620 hydrocarbons (ranging from 90% around noon to 95% in the morning hours on a ppb basis), 621 its propene-equivalent fraction is quite modest with 1-2% due its low reactivity. This pattern 622 does not change much throughout the day and is not much different on non-IOP days (not 623 shown). It should be noted that in terms of absolute propene-equivalents, OH-reactivity on 624 IOP days reaches up to 48 ppbC before noon compared to 31 ppbC around the same time on 625 non-IOP days. While alkanes contribute to the propene-equivalent about twice as much on 626 IOP days than on non-IOP days, the contribution by aromatics increases by about 30%, 627 whereas the contribution by alkenes stays about the same. When other compounds are 628 included (CO, NO_x, HCHO, HONO), it becomes apparent that NO_x plays an important role 629 both in terms of contribution to reactivity as well as to the diurnal change of contributions. On 630 IOP days aromatics contribute about 35-40%, alkanes 20-30%, NO_x 20-40%, and alkenes 631 about 5-10% to the overall propene-equivalent. The remaining \sim 5% are due to CO, HONO, 632 HCHO, alkynes, and CH₄. The contribution from NO_x reaches its maximum from 05:00 -633 09:00 MST. The picture is different on non-IOP days, where NO_x contributions are 634 significantly lower throughout the day. More specifically, the contributions to the propene-635 equivalent on non-IOP days would be: aromatics 40-60%, alkanes, 20-40%, NO_x 10-35%, 636 alkenes 5-10%, and ~5% for the remaining trace gases CO, HONO, HCHO, alkynes, and 637 CH₄.

Figure 11 displays OH reactivity based on the sum of the reaction rate coefficients multipliedby the mixing ratios of reactants with OH (Mao et al., 2010):

640

642

$$k_{OH} = \sum_{OH+VOC_{i}} [VOC_{i}] + k_{OH+CO} [CO] + k_{OH+NO} [NO] + k_{OH+NO_{i}} [NO_{2}] + k_{OH+HOO_{i}} [HNO_{3}] + \dots$$
(7)

Deleted: On

643 Figure 11 clearly shows that on IOP days OH reactivity is higher than on non-IOP days by a 644 factor of 2. <u>During the daytime on IOP</u> days, the magnitude of OH reactivity is comparable to 645 that found in direct OH measurements for urban air in Houston, Texas (Mao et al., 2010) or in <u>Mexico City (Sheehy et al., 2010)</u>. Contrary to the urban Houston case, where NO_x may 646 647 contribute up to 50% to OH reactivity during the rush hour, for the Boulder case NO_x may 648 contribute up to 69% throughout the day. This may be due to NO_x emission sources in the 649 Boulder area whose emissions strength does not change much throughout the day (e.g. 650 compressors). Another distinction is that, at Boulder, alkenes may contribute around 5% to the 651 overall OH reactivity while for the Houston case, it can be up to 35%. The contribution from 652 alkanes is in the 10-15% range at Boulder, while in Houston it is about 5-10%. The 653 contribution of aromatics is about the same for both cases (10-15%).

In accordance with S4a and b, also the absolute propene-equivalent displays similar distribution with highest values under SW wind directions. The reactivity mix does not change that much with wind direction (i.e. mostly aromatics, alkanes, and NO_x), mostly from SW. Figure 12 shows that while alkanes contribute 80-85%, aromatics around 10-15%, and alkenes less than ~5% of NMHCs on a mass basis, aromatics contribute 50% and alkanes around 45% to the propene-equivalent as observed at the Boulder South Road site. Still, contributions by alkenes are low. Contributions from CH₄ and isoprene are negligible.

661 The major finding is that on IOP days in the morning hours in particular, NO_x (and to some extent HONO as it is closely associated with NOx), aromatics and alkanes (the latter ones 662 663 largely dominated by ethane and propane) are major contributors to the OH reactivity and 664 propene equivalent at Boulder. Highest reactivities are found in air masses arriving at the 665 Boulder site under SW flow conditions. This time period and wind flow condition largely 666 coincide with the lowest NMHC/NO_x ratios observed at the Boulder site and a switch from 667 NO_x limited to transitional, if not VOC limited regime, with the largest ozone production 668 efficiency as described in the previous chapter 3.4. Under VOC limited conditions, it is likely 669 that highly reactive aromatics, such as toluene and xylenes, may be most efficiently 670 competing with other NMHCs in reactions with OH. NO_x reactions with OH in turn will cause 671 substantial formation of HNO₃.

672

673 **3.6. Role of HONO**

674 As discussed, major removal processes for OH at the Boulder site involve reactions with NO_x,

- aromatics, and alkanes. Sources for OH are photolysis processes of O₃, aldehydes (foremost
- 676 HCHO), H₂O₂, ClNO₂, and HONO. <u>Alkene ozonolysis may also contribute to OH formation</u>.
- 677 Recent studies suggest that major OH formation occurs through HONO photolysis in the
- 678 morning, HCHO photolysis in late morning, and O_3 photolysis throughout the day, whereas 679 photolysis of H_2O_2 and alkene ozonolysis are of minor importance during the day (Elshorbany
- et al., 2009; Ren et al., 2013; Czader et al., 2013). According to an analysis by Elshorbany et
 al. (2009), HONO photolysis can contribute to about 52% of radicals on a 24-h average,
- followed by alkene ozonolysis (about 20%), HCHO photolysis (about 15%) and ozone photolysis (about 4%) in an urban area. On the other hand, in unpolluted polar regions HONO
- 684 is suggested to be a major radical source (98%) and ozone photolysis would account for the
- remaining 2% (Villena et al., 2011). Mao et al. (2010) report that contributions to the radical
- 686 pool from HONO photolysis may be highest in high NO_x environments.

 $P(HO_2)_{prim HCHO} = 2 \cdot J_{HCHO} [HCHO]$

The primary production of hydroxyl radicals from the photolysis of O₃, P(OH)_{prim_O3}, the
photolysis of HCHO, P(HO₂)_{prim_HCHO}, the photolysis of HONO, P(OH)_{prim_HONO}, and from
alkene ozonolysis, P(OH)_{prim_alkenes} can be calculated as follows (see also Elshorbany et al.,
2009; Sörgel et al., 2011):

692
$$P(OH)_{prim_{O_3}} = \frac{2 \cdot J_{O(^1D)}[O_3] \cdot k_{O(^1D)+H_2O}[H_2O]}{k_{O(^1D)+H_2O}[H_2O] + k_{O(^1D)+O_2}[O_2] + k_{O(^1D)+N_2}[N_2]}$$
(8)

691

694

695

696

070

698

699
700 where photolysis rates for photolysis of O(¹D) (J_{O(1D)}), HCHO (J_{HCHO}), and HONO (J_{HONO}),
701 temperature dependant reaction rates (Atkinson et al., 2004; 2006) and Φ_{OH}, the OH yield of

 $P(OH)_{prim HONO} = J_{HONO} [HONO] - k_{OH+NO} [NO] \cdot [OH] - k_{HONO+NO} [HONO] \cdot [OH] (10)$

702 gas-phase reactions of ozone with alkenes, are used (Rickard et al., 1999).

 $P(OH)_{prim alkenes} = \sum k_{O_3+alkene} [alkene] \cdot [O_3] \cdot \Phi_{OH}$

Deleted: Nighttime a

Deleted: For the Boulder site, we suspect that nightime alkene ozonolysis is negligible. Median values for ethene and propene are about 25% and 7% of those found in urban areas like Houston (Leuchner and Rappenglück, 2010) and thus may play an even lower role than in Houston where it was found to be of least importance (Ren et al., 2013). As mentioned earlier we presume that CINO₂ may not be present in appreciable amounts based on the low levels of particulate chloride. However, ozone and HONO (see also S2) at the Boulder site can exceed values found in urban areas.

(9)

(11)

703	Figure 13 displays results of calculation of OH-productions due to the above processes for	Deleted: photolysis of ozone, HCHO, and HONO
704	IOP and non-IOP days. Photolysis of ClNO2 is not included. As mentioned earlier we	
705	presume that CINO ₂ may not be present in appreciable amounts based on the low levels of	
706	particulate chloride. In Figure 13, median data for ozone, HCHO, HONO, and alkenes were	Deleted: M
707	taken. The results clearly indicate that OH production on IOP days is mainly due to HONO.	Deleted: and
708	Between 9:30-15:30 MST, HONO photolysis contributes between 83-94% of the entire OH-	80% for snow cover was considered, the data do not take into account the altitude of the Boulder site (2 000 m above sea
709	production, i.e. slightly less than observed in polar areas (Villena et al., 2011), whereas the	level). Thus OH -production may actually be even higher than shown in the plots.
710	contributions by other processes range between 2-7% each, On a 24-hr basis HONO	Nevertheless, t
711	photolysis on IOP days can contribute ~83% to OH production on average, followed by	Deleted: 74
712	alkene ozonolysis (~9%). Photolysis by ozone and HCHO photolysis contributes about 4%	Deleted: 8
713	each to hydroxyl formation. On non-IOP days the picture is different and more closely	Deleted: . Ozone photolysis (2-24%) is second to HONO photolysis
714	resembles the results by Elshorbany et al. (2009) for an urban area. The contributions to	
715	hydroxyl formation on non-IOP days were as follows: HONO photolysis (~54%), alkene	
716	ozonolysis (~28%), ozone photolysis (~13%), and HCHO photolysis (~5%). It is worth noting	Deleted: However, both reach about the same magnitude in the early afternoon (due to 50%). The nitration is different on
717	that the calculated OH-production due to HCHO photolysis represents an upper limit as we	(close to 50%). The picture is different on non-IOP days, where HONO surpasses the OH contribution by ozone photolycis
718	did not distinguish between primary and secondary HCHO in these calculations. These results	in the early morning hours only. The absolute contribution to OH-production
719	are different from the simulation analyses for a site in the Uintah Basin, Utah (Edwards et al.,	caused by ozone photolysis and HCHO photolysis on IOP days does not differ
720	2013). Potential reasons may include that Edwards et al. assumed a uniform increase of O_3	much from non-IOP days. In both cases the photolysis of HCHO contributes
721	precursors by a factor of 2 under cold pool events, that the site may have been exposed to a	to the overall OH-production and is thus
722	different ambient chemical matrix (e.g. HCHO is significantly higher, while HONO is	not important.
723	significantly lower at the Horse Pool site/UT compared to the Boulder site/WY) and that they	
724	assumed a primary fraction of 50% of the observed daily integrated HCHO mixing ratio.	
725	In environments with a significant amount of NOx the dominant terminal loss mechanism for	
726	OH is the reaction with NO ₂ , leading to the formation of HNO ₃ :	
727		
728	$\underline{\text{NO}_2 + \text{OH} + \text{M} \rightarrow \text{HNO}_3 + \text{M}} \qquad (\text{M} = \text{N}_2, \text{O}_2) \qquad (12)$	
729		
730	which translates into:	
731		
732	$L(OH) = k_{\rm even} \dots \left[NO_{\rm e} \right] \tag{13}$	
733	$\sum_{NO_2+OH} \sum_{1} \sum_{i=1}^{NO_2+OH} \sum_{i=1}^{N$	
73/	Thus a photostationary state OH concentration can be calculated as follows:	
735	Thus a photostationary state off concentration can be calculated as follows.	
133		

736	$[OH] = -\frac{P(OH)_{prim_O_3} + P(OH)_{prim_HONO} + P(OH)_{prim_alkenes} + P(HO_2)_{prim_HCHO} $ (14)
750	L(OH)
737	
738	Figure 14 shows that OH concentrations can reach very high values during the time period
739	11:00-16:00 MST on IOP days. These are in the ranges found in New York City (Ren et al.,
740	2003), Houston (Mao et al., 2010), Mexico City (Sheehy et al., 2010) and in the River Pearl
741	Delta (Lu et al., 2012), and at times exceed those. On non-IOP days maximum OH mixing
742	ratios are significantly lower, and are confined to noontime. The OH chain length ranges
743	between 10 and 13 between 12:00-15:00 MST on IOP days, which is of a similar magnitude
744	as found in Houston and Mexico City, and significantly higher than in New York City (Mao
745	et al., 2010). Figure S13 clearly shows that the OH net production occurs around noontime
746	and is on the order of 4×10^7 molecules cm ⁻³ s ⁻¹ . In urban areas the peak OH net production
747	occurs during morning rush hours (Mao et al., 2010) at similar or higher magnitude than in
748	our study, and decreases significantly afterwards. In NO _x rich environments such as New
749	York City the OH net production is maintained around noontime, albeit lower than during
750	rush-hours and slightly lower than in our study.
751	Based on the calculated OH concentrations it is possible to determine the photostationary state
752	concentration of HONO using the following equation:
753	
754	$[HONO]_{PSS} = \frac{k_{OH+NO}[OH] \cdot [NO]}{J_{HONO} + k_{OH+HONO}[OH]} $ (15)
755	
756	[HONO] _{PSS} was ~26% of the observed ambient HONO mixing ratios on IOP days and 44%
757	on non-IOP days during 11:30-15:30 MST, when P(OH) _{nrim HONO} was at a maximum, which is
758	significantly less than observed in the urban area of Santiago de Chile, for instance (~66%;
759	Elshorbany et al., 2009). These low fractions of [HONO] _{PSS} indicate that a strong daytime
760	source for HONO must be present. High daytime HONO/NO _x ratios are also usually
761	considered an indicator for strong additional photochemical HONO sources (Elshorbany et
762	al 2009) Figure 15 shows that the HONO/NO _x ratio is about the same value for IOP and /
763	non-IOP days throughout the nighttime. In particular in the morning hours from 05.00 - 09.00
764	MST when maximum levels of primary pollutants are present (Figure 3a) the HONO/NO_
765	ratio tends to be at a minimum and is between 2-5% in both cases which is similar to other
766	locations However it increases significantly from 12:00-14:00 MST on non-IOP days
766	locations. However, it increases significantly from 12:00-14:00 MST on non-IOP days

Deleted: For the Boulder site, it is the photolysis of HONO, which makes a significant difference from non-IOP days to IOP days, as it is 6 times higher on IOP days. The high OH-production rate of 2,900 pptv/hr by HONO-photolysis must be balanced by HONO sources of the same magnitude.¶ At the Boulder site no speciated photolysis rates measurements were available. As a surrogate, we plotted measured incoming ultraviolet (UV) radiation in Figure 14. On IOP days, incoming UV radiation was on the order of 10% higher than on non-IOP days. Data in Figure 14 shows that HONO increases as incoming UV radiation increases. T

767	(median values ~10%) and from 11:00-16:00 on IOP days (median values up to 30%).
768	According to Villena et al. (2011) the magnitude of the HONO/NO _x ratio is similar to the
769	magnitude of the ratio of the corresponding atmospheric lifetimes. Based on the calculated
770	J _{HONO} photolysis rates an atmospheric lifetime for HONO of about 5-7 min between 11:30-
771	15:30 MST on IOP days can be deduced. Using the calculated OH concentrations and
772	temperature dependant reaction rates for reactions with OH and O ₃ a corresponding
773	atmospheric lifetime of ~19 min for NO ₂ can be retrieved, which translates into a ratio of both
774	lifetimes on the order of ~26, which is close to the observed average median HONO/NO _x
775	ratios for that time period, which is ~21. On non-IOP days, the atmospheric lifetime of NO _x is
776	much longer (almost 1 hr), the ratio of the HONO and NO _x lifetimes is ~12, the observed
777	HONO/NO _x ratio is ~9. This indicates that more HONO is being formed in photochemical
778	processes, most likely through NO ₂ conversion, on IOP days during these time periods. At the
779	same time, <u>NO</u> , levels decrease (Figure 3a). <u>As meteorological conditions (PBL height; SW</u>
780	wind flow) do not vary much during this time of the day on IOP days, and NO_x deposition
781	velocity onto snow surfaces is low (Hauglustaine et al., 1994), rapid oxidation of NO _x leads
782	to a decrease in NO _x mixing ratios. Reactions of NO ₂ with OH and O ₃ will lead to the
783	formation of HNO ₃ accelerated through the enhanced availability of radicals due to the strong
784	HONO photolysis source. This decrease in ambient NO _x levels indicate that these removal
785	processes exceed other sources for NO _x , e.g. through photolysis of HONO.
786	For the Boulder site, it is the photolysis of HONO, which makes a significant difference <u>to</u>
787	hydroxyl formation, as it is up to a magnitude higher on IOP days than on non-IOP days
788	around noontime and the overall 24-hr production of OH due to HONO photolysis is 6 times
789	higher on IOP days versus non-IOP days. While also the contribution by HCHO photolysis to
790	hydroxyl formation is enhanced by 3-5 times, the contribution by ozone photolysis and alkene
791	ozonolysis remains at the same level.
792	The high OH-production rate of <u>10,726</u> , pptv/hr by HONO-photolysis must be balanced by Deleted: 2
793	HONO sources of the same magnitude. At the Boulder site no speciated photolysis rates
794	measurements were available. As a surrogate, we plotted measured incoming ultraviolet (UV)
795	radiation in Figure 15. On IOP days, incoming UV radiation was on the order of 10% higher
796	than on non-IOP days. We calculated photolysis rates using the TUV model (for specific
797	details see figure caption of Figure 13). Median noontime levels on IOP days were 3.14×10 ⁻⁵
798	[s ⁻¹] for $J_{O(1D)}$, 1.78×10 ⁻² [s ⁻¹] for J_{NO2} , 7.87×10 ⁻⁷ [s ⁻¹] for J_{HNO3} , 3.64×10 ⁻³ [s ⁻¹] for J_{HONO} , and
799	4.74×10^{-5} [s ⁻¹] for J _{HCHO} . Likewise, photolysis rates were reduced by about 10% on non-IOP

804 increases. Also during the same time periods, O_3 increases as well. It appears likely that 805 HONO is being produced through photo-enhanced formation processes which are most 806 efficient when snow cover is present. 807 It has become evident that ambient HONO concentrations are higher than can be accounted 808 for by direct emissions and that heterogeneous processes on surfaces may lead to enhanced 809 ambient HONO levels. In particular, these processes tend to occur on surfaces with adsorbed 810 water in the dark (Finlayson-Pitts et al., 2003; Jenkin et al., 1988; Kleffmann et al., 1998) 811 based on the following reaction (Goodman et al., 1999; Kleffmann et al., 1998): 812

 $2NO_{2(ads)} + H_2O_{(ads)} \rightarrow HONO_{(ads)} + HNO_{3(ads)}$

days. Those high photolysis rates are primarily due to the high snow albedo, already relatively

high solar zenith angles in March, high altitude (2,160 m) and relatively low latitude (42.7° N)

of the UGRB. Some of these factors differ significantly from conditions found in polar

regions. Generally, data in Figure 15 shows that HONO increases as incoming UV radiation

813

800

801

802

803

- 814
- 815 Recently, an additional nighttime formation of HONO that was not related to NO_2 was 816 reported on aqueous surfaces in the marine boundary layer by Wojtal et al. (2011), assuming a 817 surface nano layer saturated with NO₂ precursors and no irreversible loss of HONO from that 818 layer. Wojtal et al. observed that HONO/NO₂ ratios would increase during the night from 3-819 30% and even higher on some occasions, with HONO levels about 1 ppbv at night. While we 820 suspect that the snow surface could have been saturated with NO₂ precursors due to 821 appreciable amounts of these compounds in ambient air (see Figures 3a and b), we did not observe increasing HONO/NOx ratios throughout the night as shown in Figure 15, Also, 822 823 HONO mixing ratios were 3-10 times lower compared to the Wojtal et al. study. 824 Over the last decade a variety of photo-enhanced HONO formation mechanisms have been 825 discussed to explain observations of elevated daytime HONO levels (Kleffmann, 2007)... 826 These include: (i) the photolysis of surface adsorbed nitrate or nitric acid (Zhou et al., 2001; 827 Zhou et al., 2002; Ramazan et al., 2006), (ii) the photolysis of ortho-nitrophenols (Bejan et al., 828 2006), (iii) light-induced NO₂ reduction on surface adsorbed humic acid films (Stemmler et 829 al., 2007), (iv) gas-phase reaction of electronically excited NO_2 , due to photolysis, with water 830 (Li et al., 2008), and (v) the conversion of HNO₃ to HONO on primary organic aerosol
- 831 (Ziemba et al., 2010).

Deleted: This indicates that more HONO is being formed through NO₂ conversion.

Deleted: 8

(16)

Deleted: 4

832 As mentioned in chapter 3.1., observations at the Boulder site were characterized by 833 remarkably high ambient levels of HONO, HNO₃, and p-NO₃⁻ which on IOP days were higher 834 than in urban air measurements, e.g. in Houston, Texas. HONO showed close correlation with 835 HNO₃ not only during nighttimes (S10) but, contrary to NO₂ and NO_x, also during daytime 836 regardless of IOP or non-IOP days with correlation coefficients ranging from 0.73 and 0.80. 837 Contrary to Ziemba et al. (2010), who found that HONO was anticorrelated with HNO₃ 838 during morning traffic rush hours, our observations do not show any anticorrelation during 839 any time period. We thus assume that conversion of HNO₃ to HONO on primary organic 840 aerosol will be negligible in the UGRB. HNO₃ on IOP days formed a higher fraction of NO_y 841 than in Houston (22% vs 16%). Its fraction of NOz ranged between 30-40%, with maximum 842 values found under SW wind directions. Again, corresponding values in Houston were only 843 about 20% (Luke et al., 2010). Particulate NO₃⁻ at the Boulder site was closely related to EC, 844 elemental carbon, $(r^2=0.85)$ and OC, organic carbon $(r^2=0.73)$, but only showed poor correlation with sulfur ($r^2=0.09$) and sulfate ($r^2=0.03$). This fingerprint is likely associated 845 846 with fossil fuel combustion in industrial processes (Jacobson, 2012). Björkman et al. (2013) 847 studied dry deposition velocities for HNO₃ and p-NO₃ onto snow surfaces in the arctic. They 848 found that the dry deposition velocity for particulate NO₃⁻ critically depends on the particle 849 size; still, for particle sizes around 7 μ m, the dry deposition velocity is significantly lower 850 than for HNO₃. Overall, the dry deposition of $p-NO_3^-$ only accounts for 1-7% of the total nitrate dry deposition (Björkman et al., 2013). According to reaction (8) HNO_{3(ads)} can already 851 852 be formed through NO_{2(ads)}. Dry deposition velocity of HNO₃ onto snow surfaces is about 50 853 times greater than for NO₂ (Hauglustaine et al., 1994). Using median data for NO₂ and HNO₃ 854 mixing ratios as shown in S2 dry deposition flux of HNO₃ onto the snow surface may be 855 about 8 - 65 times greater than for NO_2 , with maximum values during daytime, as HNO_3 856 mixing ratios surpass those of NO_2 . While reaction (8) would likely contribute to HONO 857 formation throughout the day as shown by Wojtal et al. (2011) over aqueous surfaces, we 858 assume that deposition of HNO₃ would be of critical importance, in accordance with studies 859 by Zhou et al. (2003).

When adsorbed on a surface, the following reactions may occur (Mack and Bolton, 1999;
Zhou et al., 2002; Zhou et al., 2003):

862

863 $| HNO_{3(ads)} + hv \rightarrow [HNO_{3}]^{*}_{(ads)}$ 864 $| [HNO_{3}]^{*}_{(ads)} \rightarrow HNO_{2(ads)} + O(^{3}P)_{(ads)}$

(17)	Deleted: 9
	Deleted: 0
(1 <u>8)</u>	

(1<u>9</u>)

865	$[HNO_3]^*_{(ads)} \rightarrow NO_{2(ads)} + OH_{(ads)}$
866	I

Deleted: 9
Deleted: 1
Deleted: 8

Deleted: 1

867	Reaction (<u>17</u>) requires sunlit daytime conditions. $NO_{2(ads)}$ formed in (12) may then further
868	react according to reaction (16) and subsequently form HONO. According to Zhou et al.
869	(2003), the production yield of HONO from surface HNO3 photolysis is almost independent
870	of relative humidity between 20%-80%, although some moisture is necessary. Thus snow
871	cover would provide a favorable substrate. On the other hand, the negligible dependence on
872	relative humidity may explain, at least partly, why we did not find a clear correlation of
873	HONO with relative humidity.
874	Figure S14 shows that generally the HONO extra source, which balances the OH production
875	rate due to HONO photolysis (dOH/dt -HONO; see Figure 13) correlates better with $J_{O(1D)}$
876	$(\underline{R_{IOP}^2} = 0.86; \underline{R_{non-IOP}^2} = 0.85) \text{ and } \underline{J_{HNO3}}(\underline{R_{IOP}^2} = 0.82; \underline{R_{non-IOP}^2} = 0.88) \text{ than with } \underline{J_{NO2}}(\underline{R_{IOP}^2} = 0.71;$
877	$R_{non-IOP}^2 = 0.85$). According to Villena et al. (2010) and Elshorbany et al. (2012) a better
878	correlation of the daytime HONO extra source with $J_{O(1D)}$ would point to photolysis of HNO ₃
879	as a potential HONO source, whereas a better correlation with J _{NO2} would point to
880	photosensitized conversion of NO ₂ on humic acid surfaces.
881	Following the approach by Villena et al. (2010) we determined the correlation of the HONO
882	extra source with photolysis rates for each day. In our case we used photolysis rates based on
883	TUV calculation. In Figure S15 the slopes m of each daily correlation of the HONO extra
884	source versus J_{NO2} (m J_{NO2}) are plotted against median daytime NO ₂ mixing ratios for the
885	same time periods. For these plots any days with daily median NO mixing ratios > 500 pptv
886	were excluded to avoid potential bias due to freshly polluted air masses. The results are
887	segregated for IOP and non-IOP days. A similar approach is shown for mJ _{HNO3} against
888	median daytime HNO3 mixing ratios. The following observations can be deduced: (i) in both
889	cases IOP days show higher $mJ_{NO2, HNO3}$ values, (ii) the slopes of $mJ_{NO2, HNO3}$ are steeper on
890	IOP days than on non-IOP days, and (iii) correlation coefficients R^2 of $mJ_{NO2, HNO3}$ versus
891	NO2 and HNO3, respectively, are higher on IOP than non-IOP days. While this indicates
892	photo-enhanced HONO formation on IOP days, the stronger correlation coefficients in the
893	<u>case of mJ_{HNO3} versus HNO₃ mixing ratios ($R_{IOP}^2 = 0.97$; $R_{non-IOP}^2 = 0.89$) compared with the</u>
894	<u>case of mJ_{NO2} versus NO₂ mixing ratios ($R_{IOP}^2 = 0.84$; $R_{non-IOP}^2 = 0.39$) would indicate that</u>
895	photolysis of HNO3 may play an important role for HONO formation. According to Villena et

896 al. (2010) the correlation of mJ_{NO2} against the product of $[NO_2] \times 1/v$ (v being the horizontal 897 windspeed) used as an indication for turbulent vertical mixing, was even stronger, suggesting 898 a ground surface source. In our study, correlations of mJ_{HNO3} versus HNO3 mixing ratios $(R_{IOP_v}^2 = 0.98; R_{non-IOP_v}^2 = 0.97)$ as well as mJ_{NO2} versus NO₂ mixing ratios ($R_{IOP_v}^2 = 0.95;$ 899 $R_{non-IOP_v}^2 = 0.85$) also became stronger when windspeed was included. 900 901 As mentioned earlier Figure S8 provides some general characterization of HONO mixing 902 ratios obtained at 1.80 m above the ground versus HONO mixing ratios obtained 10 cm above 903 the ground. Quantitative flux measurements were not performed based on the small tower 904 measurements. However, some additional estimates on PBL properties can be deduced based 905 on meteorological measurements obtained at the Tall Tower site located about 10 km

906Southeast of the Boulder site (2,149 m; 42.4241°N; -109.5609°W; see Figure 1). For907describing atmospheric stability the Bulk Richardson number R_B can be applied (Stull, 1988):

908

909

910

$$R_{B} = \frac{g\Delta\overline{\Theta_{v}}\Delta z}{\overline{\Theta_{v}}\left[\left(\Delta\overline{U}\right)^{2} + \left(\Delta\overline{V}\right)^{2}\right]}$$
(20)

where $\overline{\Theta_{v}}$ is the virtual potential temperature averaged over a given time interval, Δz the 911 difference between two altitudes, $\Delta \overline{\Theta_{v}}$ the difference of the virtual potential temperature over 912 Δz , averaged over a given time interval, $\Delta \overline{U}$ and $\Delta \overline{V}$ the differences of the windspeed in u 913 914 direction and v direction, respectively, over Δz averaged over a given time interval, and g the 915 gravitational constant. The Bulk Richardson number relates the thermal buoyancy to 916 mechanical shear. For our calculations we used the meteorological data obtained at the 3 m 917 and 25 m level. In the absence of relative humidity measurements at the 25 m level we 918 calculated R_B using potential temperature instead of virtual potential temperature. Figure 14 919 indicates that on IOP days most of the time the PBL is stable and behaves like a laminar 920 stratified flow. This likely explains why figure S8 does not indicate a vertical gradient of 921 HONO mixing ratios and that the layers seem to be decoupled from each other. It is only 922 during the time frame 11:00-16:00 MST that the PBL becomes turbulent. During this time 923 frame also the mixing layer height tends to increase, albeit slightly, until the maximum 924 atmospheric instability is reached. More importantly, this time frame also coincides with the

925	time period of maximum OH mixing ratios as shown in Figure 14 and the development of a
926	vertical gradient in HONO mixing ratios as indicated in Figure S8. This is the time frame
927	when vertical exchange processes from the surface may occur. During other times of the day
928	these processes are largely suppressed.
929	The distribution of trace gases within the atmosphere depends on their atmospheric lifetime
930	and the atmospheric turbulent diffusion. The turbulent diffusion time Δt is determined by:
931	
932	$\Delta t = \frac{(\Delta z)^2}{2K_z} $ (21)
933	Likewise, a diffusion distance can be defined:
934	
935	$\Delta z = \sqrt{2K_z \cdot \Delta t} \tag{22}$
936	
937	where Δz is the vertical distance traveled by an eddy and K_z is the turbulent diffusion
938	coefficient or eddy diffusivity. K_z relates vertical fluxes of matter with properties of the PBL
939	(e.g. Stull, 1988 and references therein):
940	
941	$F = -K_z \frac{\partial C}{\partial z} = -\frac{ku_* z}{\Phi_M} \frac{\partial C}{\partial z} $ (23)
942	
943	where F is the vertical flux, C the mixing ratio of a trace gas, $k = 0.4$ the von Kármán
944	constant, u_* the friction velocity, and Φ_M an empirically derived stability function. Φ_M can
945	be described as a function of the Bulk Richardson number for specific cases (Arya, 1998):
946	
947	$\Phi_{M} = 1 - R_{B} = 0.25 < R_{B} < 1 $ (24)
948	$ \Phi_{M} = (1 - 15 \cdot R_{R})^{\frac{1}{4}} R_{R} < 0.25 $ (25)
949	
950	In our study K ₂ can only be calculated for cases $R_{\rm p} < 1$, i.e. for the time frame 11:00-16:00
951	MST (see Figure 14). For this time frame and for a height of 3 m the median K was 348 cm ⁻²
052	r_{1}^{-1} ranging from 252.840 cm ⁻² s ⁻¹ which is shout 5.10 loss than absorbed above the
932	5, ranging from 255-840 cm 5, which is about 5-10 less than observed above the

953	snowpack at Summit, Greenland (Honrath et al., 2002), but of the same magnitude found in
954	Alert, Canada (Zhou et al., 2001). Given the maximum mixing layer height of about 58 m
955	(Figure 14) this translates into a turbulent diffusion time of more than 13 hrs likely causing
956	the development of vertical gradients of trace gases whose atmospheric lifetime is shorter than
957	13 hrs. Given an atmospheric lifetime of 5-7 min for HONO around noontime, when turbulent
958	mixing is present, HONO mixing ratios may have decreased due to photolysis by 15% by the
959	time it reaches the 1.80 m sampling level and by 63%, when it reaches about 4.40 m, which is
960	significantly lower than found in Alert, which was 11 m (Zhou et al., 2001). At Boulder
961	HONO will almost be completely removed (by 99,6%) when it reaches 10 m above the
962	surface level. This means that OH formation due to HONO is likely confined to the lowermost
963	10% of the PBL, while other OH formation processes due to photolysis of HCHO, O_3 and
964	alkene ozonolysis may be active throughout the PBL. HONO measurements were taken at 10
965	cm and 1.80 m above the ground, which translates into turbulent diffusion times from the
966	ground of 0.15 s and 46.5 s, respectively. During the time frame 11-13:00 MST of Figure S8 a
967	vertical HONO gradient is visible. The average HONO photolysis rate during that time frame
968	is 3.44×10^{-3} s ⁻¹ . Considering an average HONO mixing ratio at 10 cm of ~700 pptv and a
969	vertical turbulent diffusion time of 46.35 s from the bottom sampling location to the 1.80 m
970	sampling location an average HONO mixing ratio of ~600 pptv at the 1.80 m level would be
971	expected, a decrease of ~14%. The data of S8 indicates an average HONO mixing ratio of
972	\sim 500 pptv, which would imply a doublefold decrease. Given the uncertainties and limitations
973	in our assumptions on the atmospheric stability as retrieved from the "Tall Tower" site, the
974	HONO small tower observations at the Boulder site, and the TUV calculated HONO
975	photolysis rate, the results are reasonable.

976Zhou et al. (2003) calculate HONO formation rates based on surface HNO3 photolysis. We977adopted this approach to explore whether this process may balance the median HONO978photolysis rate of 10,700 pptv/hr at the Boulder site around noontime on IOP days. According_979to Zhou et al. the upward flux F_{up} of NOx and HONO can be described as follows:

 $F_{up} = \alpha \cdot J \cdot v \cdot C \cdot t$

980

981 982

(26)	Deleted: 12
(<u>20</u>)	

Deleted: 2

Deleted: 9

983	where α represents the fraction of the average of the individual median values for the diurnal	
984	variation of the UV radiation (Figure 15) versus the noontime maximum value of the UV	Deleted: 4
985	radiation. This value is about 25% and is used to determine the fraction of deposited HNO_3	

986	exposed to noontime photolysis rate J_{HNO3} (s ⁻¹). The parameter v is the average HNO ₃ dry
987	deposition velocity, C is the ambient HNO ₃ concentration (moles m^{-3}) and t (s) is the
988	accumulation time since the last precipitation. Zhou et al. applied the following values for
989	their calculation: $J_{HNO3} = 2.5 \times 10^{-5} \text{ s}^{-1}$, $v = 2 \times 10^{-2} \text{ m s}^{-1}$, $C = 700 \text{ pptv} = 3.1 \times 10^{-8} \text{ moles m}^{-3}$,
990	and t =24 hrs = 86.400 s. Zhou et al. calculated a HONO production rate of \sim 150 pptv/hr for a
991	100 m boundary layer height. For the estimate at the Boulder site, we consider a different
992	HNO ₃ concentration and also assume a different photolysis rate J_{HNO3} due to higher albedo.
993	The median HNO ₃ mixing ratio on IOP days at Boulder was 2.1 ppbv (which equals 9.37×10^{-8}
994	moles m ⁻³). According to the TUV model J_{HNO3} is ~ 2.5 times higher over surfaces with 75%
995	albedo (e.g. over snow) compared with standard surfaces. For the Boulder site the effective
996	active layer for HONO is the lowermost 10 m of the PBL. This would result in a HONO
997	emission flux of <u>10,206</u> , pptv/hr, which is very close to the observed loss of HONO due to its
998	photolysis. Apart from surface emissions combustion related HONO emissions may
999	contribute to the HONO flux. As outlined earlier we found a robust HONO/NO _x emission
1000	ratio of 15 pptv HONO / 1 ppbv NO $_{\rm x}$ during nighttimes under SW flow conditions. In the
1001	quadrant southwest of Boulder multiple facilities related to oil and gas_drilling activities are
1002	distributed over an area of \sim 300 km ² . According to the WDEQ inventory (WDEQ, 2011) _a the
1003	overall NO_x emission from these facilities is ~1180 kg/hr with about 91% originating from
1004	drill rig and completion emissions. The overall NOx flux in this area would be ~4,000 $\mu g \ m^{-2}$
1005	hr^{-1} . Assuming a boundary height of 50 m agl this would result in an increase of ~39 ppbv/hr
1006	for NO_x and an increase of ~585 pptv/hr for HONO using the emission ratio of 15 pptv
1007	HONO / 1 ppbv NO _x . Given an average windspeed of 1.4 m s ⁻¹ between 11:00-16:00 MST on
1008	IOP days and a distance of about 3-5 km between the Boulder site and most local sources we
1009	estimate that photolysis will have removed 85% (for the closest sources) and up to 90% (for
1010	the most distant sources) of ambient HONO by the time air masses would reach the Boulder
1011	site based on a HONO lifetime of ~5-7 min during the same time period Thus during the
1012	transport HONO photolysis may likely have contributed to radical formation, At the Boulder
1013	site an estimated HONO production of 70 pptv/hr would still be due to combustion related
1014	HONO emissions. Together with the surface HONO flux due to photolysis of HNO ₃ adsorbed
1015	on the snow surface this would account for a total HONO production rate of 10,276 pptv/hr at
1016	around noontime on IOP days, which is in very good agreement with the photolysis rate of
1017	HONO of <u>10,726</u> pptv/hr. We therefore conclude that ultimately, NO_x emitted into the
1018	extremely shallow boundary layer during the wintertime season in the UGRB is causing high

Deleted: photolysis rates for ozone, HCHO, and HONO, which we used to calculate OH-production,

Deleted: are

Deleted: about

Deleted: 80

Deleted: We assume the same magnitude of change for J_{HNO3} . The specific conditions for the Boulder site would lead to ~7.5 times higher HONO emission than found in the Zhou et al. study, i.e. 1,125 pptv/hr. Boundary layer measurements at Boulder were around 50 m agl around noontime on IOP days, which

Deleted: 2

Deleted: 50

Deleted: We assume that these emissions may be transported to the Boulder site **Deleted:**

Deleted: and that removal processes may be negligible

Deleted: Both
Deleted: and the combustion related HONO emissions
Deleted: 2
Deleted: 835
Deleted: 2
Deleted: 900

HONO levels. This occurs from two processes: i) HNO₃ produced during atmospheric
oxidation of NO_x can be deposited onto the snow surfaces which facilitate subsequent photoenhanced heterogeneous conversion to HONO and ii) through combustion related emission of
HONO. HONO, in turn, will serve as the most important precursor for OH, strongly enhanced
due to the high albedo of the snow cover. The first process is the most dominant process.

1024

1025 4 Conclusions

1026 During the periods February 28 - March 02 and March 9 - 12, 2011, designated Intensive 1027 Operational Periods (IOPs), high hourly ozone readings up to 166 ppbv were observed at the 1028 Boulder surface site, located in the Upper Green River Basin, Wyoming. These values were 1029 well above the estimated surface background ozone of ~ 40 ppbv and lower tropospheric 1030 ozone background of ~60 ppbv in March. During the IOPs comprehensive surface 1031 measurements were performed and observations of vertical distributions of meteorological 1032 parameters and selected trace gases were carried out. The observed high ozone levels likely 1033 result from a combination of multiple factors.

1034 Maximum ozone values are restricted to a very shallow surface layer. There is no evidence of 1035 ozone carry over from previous days. Ozone levels may remain stable as ozone deposition 1036 velocity onto snow surfaces is low. On IOP days, slightly variable wind directions (including 1037 recirculation) and low wind speeds in combination with low mixing layer heights (~50 m agl 1038 around noontime) are essential for accumulation of both primary and secondary pollutants 1039 within the UGRB. IOP days are usually characterized by the fact that, at least once during the 1040 day, trajectories eventually pass through the area Southwest of Boulder before arriving at the 1041 Boulder site. Recirculation processes within the basin may also occur. Air masses would then 1042 pass the oil and gas well locations of the Pinedale Anticline and also a large number of 1043 compressor facilities at the most 1-2 hours before arrival at Boulder and would have stayed in 1044 that region for about 1 hour. Compressors and drill rigs emit primarily NO_x, relative to well 1045 head production equipment, which emits primarily CH₄ and NMHC. While compressors and 1046 drill rigs would also emit HONO and to some extent HCHO, well head production equipment 1047 would only contribute to emissions of HCHO. This is largely supported in an analysis of

1048 nighttime ratios of HONO and HCHO versus NO_x , NMHC, and CH₄ in air masses coming 1049 from this area. In general, these air masses contain maximum amounts of both primary and

- secondary pollutants. They are also associated with the highest VOC reactivity and a change
- 1051 $\frac{\text{from a}}{\text{NO}_x}$ sensitive towards a VOC sensitive regime.

Deleted:

Deleted: The high altitude of the UGRB (2,000 m asl), which we did not consider in our calculations, may likely intensify these processes.

Deleted: Intensive

Deleted: reciruclation

. {	Deleted: of
-{	Deleted: ity
-{	Deleted: ity

1052 On IOP days in the morning hours in particular, NO_x (up to 69%), then aromatics and alkanes 1053 $(\sim 10-15\%)$; mostly ethane and propane) are major contributors to the OH reactivity and propene equivalent at Boulder. Highest OH reactivities (up to 22 s⁻¹) are found in air masses 1054 arriving at the Boulder site under SW flow conditions. This time frame (and also wind 1055 1056 direction) largely coincides with the lowest NMHC/NO_x ratios at the Boulder site and a 1057 change from a NO_x-limited regime towards a VOC limited regime, which implies reaching or 1058 passing the transitional regime where ozone production can be most efficient and can reach 1059 maximum values. This is supported by photochemical indicators such as O_3/NO_x , O_3/NO_z , 1060 and O_3 /HNO₃ and the EOR (Extent of Reaction). The NMHC/NO_x at the Boulder site during 1061 these periods is ~ 50 and represents a relatively high value compared to urban areas. This 1062 could be due to relatively low NMHC reactivity, either caused by low temperatures or a 1063 NMHC mixture which is mostly composed of slow reacting hydrocarbons (e.g. alkanes), or a 1064 combination of both. Under VOC limited conditions, it is likely that highly reactive aromatics, 1065 such as toluene and xylenes, may be most efficiently competing with other NMHCs in 1066 reactions with OH. NO_x reactions with OH in turn will cause substantial formation of HNO₃. 1067 OH production on IOP days is mainly due to HONO. Until noon HONO photolysis 1068 contributes between 83-94% of the entire OH-production, whereas the contributions by other 1069 processes range between 2-7% each. On a 24-hr basis HONO photolysis on IOP days can 1070 contribute $\sim 83\%$ to OH production on average, followed by alkene ozonolysis ($\sim 9\%$). 1071 Photolysis by ozone and HCHO photolysis contributes about 4% each to hydroxyl formation. 1072 The contributions to hydroxyl formation on non-IOP days were as follows: HONO photolysis 1073 (~54%), alkene ozonolysis (~28%), ozone photolysis (~13%), and HCHO photolysis (~5%). 1074 We conclude that ultimately, NO_x emitted into the extremely shallow boundary layer during 1075 the wintertime season in the UGRB is causing high HONO levels (maximum hourly median 1076 on IOP days: 1,096 pptv) through (i) HNO_3 produced in atmospheric oxidation of NO_3 , 1077 deposited onto the snow surface and undergoing photo-enhanced heterogeneous conversion to 1078 HONO (estimated HONO production: 10,206 pptv/hr) and (ii) combustion related emission of HONO at the Boulder site (estimated HONO production: ~70, pptv/hr). HONO production is 1079 confined to the lowermost 10 m of the boundary layer. HONO, in turn, serves as the most 1080 1081 important precursor for OH, strongly enhanced due to the high albedo of the snow cover 1082 (HONO photolysis rate 10,276 pptv/hr). OH radicals oxidize NMHCs, mostly aromatics (toluene, xylenes) and alkanes (ethane, propane), eventually leading to an increase in ozone. 1083 1084 The data do not suggest that relative humidity favors the presence of high levels of HONO.

Deleted: 74
Deleted: 8
Deleted:
Deleted: Ozone photolysis (2-24%) is

second to HONO photolysis. However, both reach about the same magnitude in the early afternoon (close to 50%).

Deleted: On non-IOP days, HONO surpasses the OH-contribution by ozone photolysis only in the early morning hours. The absolute contribution to OHproduction caused by ozone photolysis and HCHO photolysis on IOP days does not differ much from non-IOP days. In both cases the photolysis of HCHO contributes mostly less than 10% (on IOP days 2-7%) to the overall OH-production and is thus not important. ¶

Deleted: 2	
Deleted: 50	
Deleted: 585	

Deleted: 2	
Deleted: 900	
Deleted: es	

1085	This may be due to the assumption that the surface HNO_2 photolysis is almost independent of	Deleted: s
1086	relative humidity (7hou et al. 2003) or the limitation of our data, which always showed	
1080 1087 1088	relative humidity (Zhou et al., 2005) of the initiation of our data, which always showed relative humidity well above 50% during nighttimes.	Deleted: The high altitude of the UGRB (2,000 m asl), which we did not consider in our calculations, may likely intensify these processes.
1089	Acknowledgements	
1090	The authors would like to thank the Wyoming Department of Environmental Quality	
1091	(WDEQ) for their support. Support by MSI, especially by Bill Hauze and Tyler Ward is	
1092	greatly appreciated.	
1093		
1094	References	
1095	Ammann, M.: priv. comm., Paul Scherrer Institute (PSI), Villigen, Switzerland, 2013.	
1096	Altshuller, A.P.: Production of aldehydes as primary emissions and from secondary	
1097	atmospheric reactions of alkenes and alkanes during the night and early morning hours,	
1098	<u>Atmos. Environ., 2/A, 21-32, 1993.</u>	
1099	Arya, S.P.: Air Pollution Meteorology and Dispersion, Oxford University Press, USA, 1998.	
1100	Atkinson, R., Baulch, D.L., Cox, R.A., Crowley, J.N., Hampson, R.F., Hynes, R.G., Jenkin,	
1101	M.E., Rossi, M.J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric	
1102	chemistry: Volume I – gas phase reactions of O_x , HO_x , NO_x and SO_x species, <i>Atmos. Chem.</i>	
1103	<u>Phys.</u> , 4, 1461-1738, 2004.	
1104	Atkinson, R., Baulch, D.L., Cox, R.A., Crowley, J.N., Hampson, R.F., Hynes, R.G., Jenkin,	
1105	M.E., Rossi, M.J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric	
1106	chemistry: Volume II - gas phase reactions of organic species, Atmos. Chem. Phys., 6, 3625-	
1107	<u>4055, 2006.</u>	
1108	Bader, D.C., and McKee, T.B.: Effects of Shear, Stability and Valley Characteristics on the	
1109	Destruction of Temperature Inversions. J. Clim. Appl. Meteor., 24, 822-832, 1985.	
1110	Bejan, I., Abd El Aal, Y., Barnes, I., Benter, T., Bohn, B., Wiesen, P., and Kleffmann, J.: The	
1111	photolysis of ortho-nitrophenols: an new gas phase source of HONO, Phys. Chem. Chem.	
1112	<i>Phys.</i> 8, 2028 –2035, 2006.	

- Bishop, G.A., Morris, J.A., Stedman, D.H., Cohen, L.H., Countess, R.J., Countess, S.J., Maly,
 P., Scherer, S.: The Effects of Altitude on Heavy-Duty Diesel Truck On-Road Emissions,
 Environ. Sci. Technol., 35, 1574-1578, 2001.
- 1116 Björkman, M.P., Kühnel, R., Partridge, D.G., Roberts, T.J., Aas, W., Mazzola, M., Viola, A.,
- 1117 Hodson, A., Ström, J., and Isaksson, E.: Nitrate dry deposition in Svalbord, Tellus B, 65,
- 1118 19071, http://dx.doi.org/10.3402/tellusb.v.65i0.19071, 1-18, 2013.
- Carter, W.P.L., and Seinfeld, J.H.: Winter ozone formation and VOC incremental reactivities
 in the Upper Green River Basin of Wyoming, *Atmos. Environ.*, 50, 255-266,
 doi:10.1016/j.atmosenv.2011.12.025, 2012
- 1122 Chameides, W.L., Fehsenfeld, F., Rodgers, M.O., Cardelino, C., Martinez, J., Parrish, D.,
- 1123 Lonneman, W., Lawson, D.R., Rasmussen, R.A., Zimmerman, P., Greenberg, J., Middleton,
- P., Wang, T.: Ozone precursor relationships in the ambient air, J. Geophys. Res., 97, 60376055, 1992.
- 1126 <u>Chen, J., So S., Lee H., Fraser M.P., Curl R.F., Harman T., and Tittel F.K.: Atmospheric</u>
 1127 <u>Formaldehyde Monitoring in the Greater Houston Area in 2002, *Appl. Spectrosc.*, 58, 2431128 247, 2004.
 </u>
- Czader, B.H., Li, X., and Rappenglueck, B.: CMAQ modeling and analysis of radicals, radical
 precursors and chemical transformations, *J. Geophys. Res.*, <u>doi: 10.1002/jgrd.50807, posted</u>
 online: 5 Sep 2013, 2013.
- Czader, B.H., Rappenglück, B., Percell, P., Byun, D., Ngan, F., and Kim, S.: Modeling nitrous
 acid and its impact on ozone and hydroxyl radical during the Texas Air Quality Study 2006,
- 1134 Atmos. Chem. Phys., 12, 6939-6951, doi:10.5194/acp-12-6939-2012, 2012.
- 1135 Dasgupta, P.K., Li J., Zhang G., Luke W.T., McClenny W.A., Stutz J., and Fried A.:
- 1136 Summertime Ambient Formaldehyde in Five U.S. Metropolitan Areas: Nashville, Atlanta,
- 1137 Houston, Philadelphia, and Tampa, Environ. Sci. Technol., 39, 4767-4783, 2005.
- 1138 Draxler, R.R., and Rolph, G.D.: HYSPLIT (HYbrid Single-Particle Lagrangian Integrated
 1139 Trajectory) Model access via NOAA ARL READY Website

36

Deleted: in revision, 2013.
- (http://ready.arl.noaa.gov/HYSPLIT.php). NOAA Air Resources Laboratory, Silver Spring,MD, 2013.
- 1142 Edwards, P. M., Young, C. J., Aikin, K., deGouw, J. A., Dubé, W. P., Geiger, F., Gilman, J.

1143 B., Helmig, D., Holloway, J. S., Kercher, J., Lerner, B., Martin, R., McLaren, R., Parrish, D.

1144 D., Peischl, J., Roberts, J. M., Ryerson, T. B., Thornton, J., Warneke, C., Williams, E. J., and

1145 Brown, S. S.: Ozone photochemistry in an oil and natural gas extraction region during winter:

1146 simulations of a snow-free season in the Uintah Basin, Utah, Atmos. Chem. Phys. Discuss.,

1147 13, 7503-7552, doi:10.5194/acpd-13-7503-2013, 2013.

1148 EIA (U.S. Energy Information Administration): Top 100 Oil and Gas Fields, 1149 | http://www.eia.gov/oil gas/rpd/topfields.pdf, accessed February 2013, 2009.

1150 Elshorbany, Y.F., Kleffmann, J., Hofzumahaus, A., Kurtenbach, R., Wiesen, P., Brauers, T.,

1151 Bohn, B., Dorn, H.-P., Fuchs, H., Holland, F., Rohrer, F., Tillmann, R., Wegener, R., Wahner,

1152 A., Kanaya, Y., Yoshino, A., Nishida, S., Kajii, Y., Martinez, M., Kubistin, D., Harder, H.,

- Lelieveld, J., Elste, T., Plass-Dülmer, C., Stange, G., Berresheim, H., and Schurath, U.: HO_x
 budgets during HOxComp: A case study of HO_x chemistry under NO_x-limited conditions, *J. Geophys. Res.*, 117, D03307, doi:10.1029/2011JD017008, 2012.
- Elshorbany, Y.F., Kurtenbach, R., Wiesen, P., Lissi, E., Rubio, M., Villena, G., Gramsch, E.,
 Rickard, A.R., Pilling, M.J., and Kleffmann, J.: Oxidation capacity of the city air of Santiago
 de Chile, *Atmos. Chem. Phys.*, 9, 2257-2273, 2009.
- 1159 Environ: Final Report 2009 Upper Green River Ozone Study, Report to Wyoming
 1160 Department of Environmental Quality (WDEQ), Cheyenne, WY, March 2010, available at
 1161 <u>http://deq.state.wy.us/aqd/downloads/AirMonitor/Wint09_Final_3-2010_a0.pdf</u>, accessed
 1162 2013, 2010.
- 1163 Field, R.A., Soltis, J., and Montague, D.: Pinedale Anticline Spatial Air Quality Assessment
- 1164 (PASQUA), Mobile laboratory monitoring of ozone precursors, Boulder South Road site
- 1165 10/29/2010 to 05/02/2011. Summary Report University of Wyoming, Laramie, Wyoming.
- 1166 Published on line at: http://www-das.uwyo.edu/ozone/index.html, 2011.
- 1167 Field, R.A., Soltis, J., and Montague, D.: Pinedale Anticline Spatial Air Quality Assessment
- 1168 (PASQUA), 2011-2012 Spatial Distribution Surveys. Summary Report University of

- 1169 Wyoming, Laramie, Wyoming. Published on line at: http://www-
- 1170 das.uwyo.edu/ozone/index.html, 2012a.
- 1171 Field, R.A., Soltis, J., and Montague, D.: Temporal and Spatial Distributions of Volatile
- 1172 Organic Compounds Associated with Oil and Gas Development in the Upper Green River
- 1173 Basin of Wyoming, Invited in Session: A21J American Geophysical Union, Fall Meeting, San
- 1174 Francisco CA/USA, 03.-07.12.2012, 2012b.
- 1175 Finlayson- Pitts, B. J., Wingen, L.M., Sumner, A.L., Syomin, D., and Ramazan, K.A.: The
- 1176 heterogeneous hydrolysis of NO_2 in laboratory systems and in outdoor and indoor
- 1177 atmospheres: An integrated mechanism, *Phys. Chem. Chem. Phys.*, 5, 223-242, 2003.
- Finlayson-Pitts, B.J., and Pitts Jr., J.N.: Chemistry of the upper and lower atmosphere,Academic Press, San Diego, 969 pages, 2000.
- 1180 Goodman, A. L., Underwood, G.M., and Grassian, V.H.: Heterogeneous reaction of NO₂:
- 1181 Characterization of gas-phase and adsorbed products from the reaction, $2NO(2)(g)+H_2O(a)$ ->
- HONO(g)+HNO₃(a) on hydrated silica particles, J. Phys. Chem. A, 103(36), 7217-7223, 1999.
- Hauglstaine, D.A., Granier, C., Brasseur, G.P., and Megie, G.: The importance of atmospheric
 chemistry in the calculation of radiative forcing on the climate system, *J. Geophys. Res.*, 99,
 1173-1186, 1994.
- Hayden, K.L., Anlauf, K.G., Hastie, D.R., Bottenheim, J.W.: Partitioning of reactive
 atmospheric nitrogen oxides at an elevated site in southern Quebec, Canada, *J. Geophys. Res.*,
 108, 4603, doi:10.1029/2002JD003188, 2003.
- Heland, J., Kleffmann, J., Kurtenbach, R., and Wiesen, P.: A new instrument to measure gaseous nitrous acid (HONO) in the atmosphere, *Environ. Sci. Technol.*, 35, 3207-3212, 2001.
- Helmig, D., Cohen, L.D., Bocquet, F., Oltmans, S., Grachev, A., and Neff, W.: Spring and
 summertime diurnal surface ozone fluxes over the polar snow at Summit, Greenland, *Geophys. Res. Lett.*, 36, L08809, doi:10.1029/2008GL036549, 2009.
- 1194 Honrath, R.E., Lu, Y., Peterson, M.C., Dibb, J.E., Arsenault, M.A., Cullen, N.J., Steffen, K.:
- 1195 Vertical fluxes of NO_x, HONO, and HNO₃ above the snowpack at Summit, Greenland, *Atmos.* 1196 *Environ.*, 36, 2629-2640, 2002.

- Jacobson, M.Z.: Air Pollution and Global Warming, History, Science, And Solutions,Cambridge University Press, 406 pages, 2012.
- Jenkin, M. I., Cox, R.A., and Williams, D.J.: Laboratory studies of the kinetics of formation
 of nitrous acid from the thermal reaction of nitrogen dioxide and water vapour, *Atmos. Environ.*, 22, 487-498, 1988.
- 1202 Kirchstetter, T. W., Harley, R.A., and Littlejohn, D.: Measurement of Nitrous Acid in Motor
 1203 Vehicle Exhaust, *Environ Sci Technol*, 30(9), 2843-2849, 1996.
- Kleffmann, J.: Daytime sources of nitrous acid (HONO) in the atmospheric boundary layer, *Chem. Phys.*, 8(8), 1137-1144, 2007.
- Kleffmann, J., Heland, J., Kurtenbach, R., Lörzer, J.C., and Wiesen, P.: A new instrument
 (LOPAP) for the detection of nitrous acid (HONO), *Environ. Sci. Pollut. Res.*, 9, 48-54, 2002.
- 1208 Kleffmann, J., Becker, K.H., and Wiesen, P.,: Heterogeneous NO₂ conversion processes on
 1209 acid surfaces: possible atmospheric implications, *Atmos. Environ.*, 32, 2721 2729, 1998.
- 1210 <u>Kleffmann, J., Lörzer, J.C., Wiesen, P., Kern, C., Trick, S., Volkamer, R., Ródenas, M., and</u>
 1211 <u>Wirtz, K.: Intercomparison of the DOAS and LOPAP techniques for the detection of nitrous</u>
 1212 acid (HONO), *Atmos. Environ.*, 40, 3640-3652, 2006.
- 1213 <u>Kleffmann, J., and Wiesen, P.: Technical Note: Quantification of interferences of wet</u>
 1214 <u>chemical HONO LOPAP measurements under simulated polar conditions, *Atmos. Chem.*1215 *Phys.*, 8, 6813-6822, 2008.
 </u>
- 1216 Kurtenbach, R., Becker K.H., Gomes J.A.G., Kleffmann J., Lörzer J.C., Spittler M., Wiesen
 1217 P., Ackermann R., Geyer A., and Platt U.: Investigations of emissions and heterogeneous
 1218 formation of HONO in a road traffic tunnel, *Atmos. Environ.*, 35(20), 3385-3394, 2001.
- Lefer, B., Rappenglück B: The TexAQS-II radical and aerosol measurement project
 (TRAMP), *Atmos. Environ.*, 44, 3997-4004, doi:10.1016/j.atmosenv.2010.05.053, 2010.
- 1221 Leuchner, M., and Rappenglück, B.: VOC Source-Receptor Relationships in Houston during
- 1222 TexAQS-II, Atmos. Environ., 44, 4056-4067, doi:10.1016/j.atmosenv.2009.02.029, 2010.

Li, S. P., Matthews, J., and Sinha, A.: Atmospheric hydroxyl radical production from l224 | electronically excited NO₂ and H₂O, *Science*, 319(5870), 1657-1660, 2008.

Lu, K.D., Rohrer, F., Holland, F., Fuchs, H., Bohn, B., Brauers, T., Chang, C.C., Häseler, R.,
Hu, M., Kita, K., Kondo, Y., Li, X., Lou, S.R., Nehr, S., Shao, M., Zeng, M., Wahner, A.,
Zhang, Y.H., and Hofzumahaus, A.: Observation and modelling of OH and HO2
concentrations in the Pearl River Delta 2006: a missing OH source in a VOC rich atmosphere, *Atmos. Chem. Phys.*, 12, 1541-1569, 2012.

- Luke, W.T., Kelley, P., Lefer, B.L., Flynn, J., Rappenglück, B., Leuchner, M., Dibb, J.E.,
 Ziemba, L.D., Anderson, C.H., and Buhr, M.: Measurements of Primary Trace Gases and NO_y
 Composition in Houston, Texas, *Atmos. Environ.*, 44, 4068-4080,
 doi:10.1016/j.atmosenv.2009.08.014, 2010.
- Mack, J., and Bolton, J.R.: Photochemistry of nitrite and nitrate in aqueous solution: A review, *J. Photochem. Photobiol. A: Chem.*, 128, 1-13, 1999.
- Mao, J., Ren, X., Chen, S., Brune, W.H., Chen, Z., Martinez, M., Harder, H., Lefer, B.,
 Rappenglück, B., Flynn, J., and Leuchner, M.: Atmospheric Oxidation Capacity in the
 Summer of Houston 2006: Comparison with Summer Measurements in Other Metropolitan
 Studies, *Atmos. Environ.*, 44, 4107-4115, doi:10.1016/j.atmosenv.2009.01.013, 2010.
- 1240 McLaren, R., Salmon, R. A., Liggio, J., Hayden, K. L., Anlauf, K. G., and Leaitch, W. R.,
- Nighttime chemistry at a rural site in the Lower Fraser Valley, *Atmos. Environ.*, 38, 5837–
 5848, 2004.
- MSI (Meteorological Solutions Inc.): Final Report 2011 Upper Green River Ozone Study,
 Report to Wyoming Department of Environmental Quality (WDEQ), Cheyenne, WY, October
 2011. available at

http://deq.state.wy.us/aqd/downloads/AirMonitor/Final_UGWOS_2011_Ozone_Study_Repor
 t Text and Appendices.pdf, accessed 2013, 2011.

- 1248 Olaguer, E.P., Kolb, C.E., Lefer, B., Rappenglück, B., Zhang, R., Pinto, J.P.: Overview of the
- 1249 SHARP campaign: motivation, design, and major outcomes, J. Geophys. Res., accepted, 2013.

Deleted: MSI (Meteorological Solutions Inc.): Final Report - 2009 Upper Green River Ozone Study, Report to Wyoming Department of Environmental Quality (WDEQ), Cheyenne, WY, October 2009, 2009.¶

- 1250 Parrish, D.D., Allen, D.T., Bates, T.S., Estes, M., Fehsenfeld, F.C., Feingold, G., Ferrare, R.,
- 1251 Hardesty, R.M., Meagher, J.F., Nielsen-Gammon, J.W., Pierce, R.B., Ryerson, T.B., Seinfeld,
- 1252 J.H., Williams, E.J.: Overview of the second Texas air quality study (TexAQS-II) and the
- 1253 Gulf of Mexico atmospheric composition and climate study (GoMACCS). J. Geophys. Res.
- 1254 114, D00F13. doi:10.1029/2009JD011842, 2009.
- Pinto J., Dibb J., Lee B., Rappenglück B., Wood E., Zhang R., Lefer B., Ren X., Stutz J.,
 Ackermann L., Golovko J., Herndon S., Levi M., Meng Q., Munger J., Zhaniser M., Zheng J.:
 Intercomparison of Field Measurements of Nitrous Acid (HONO) during the SHARP
 Campaign, J. Geophys. Res., submitted, 2013.
- Ramazan, K. A., Wingen, L.M., Miller, Y., Chaban, G.M., Gerber, R.B., Xantheas, S.S., and
 Finlayson-Pitts, B.J.: New Experimental and Theoretical Approach to the Heterogeneous
 Hydrolysis of NO₂: Key Role of Molecular Nitric Acid and Its Complexes, *J. Phys. Chem.* A
 2006 110 (21), 6886-6897, 2006.
- Rappenglück, B.: WDEQ UGWOS 2010 HONO Measurements, Report to MeteorologicalSolutions Inc. Salt Lake City, UT, May 2010, 2010.
- 1265 Rappenglück, B.: WDEQ UGWOS 2011 HONO Measurements, Report to Meteorological1266 Solutions Inc. Salt Lake City, UT, August 2011, 2011.
- Rappenglück, B., Dasgupta, P.K., Leuchner, M., Li, Q., and Luke, W.: Formaldehyde and its
 relation to CO, PAN, and SO₂ in the Houston-Galveston airshed, *Atmos. Chem. Phys.*, 10,
 2413-2424, 2010.
- 1270 Rappenglück, B., Lubertino, G., Alvarez, S., Golovko, J., Czader, B., and Ackermann, L.,:
- 1271 Radical Precursors and Related Species from Traffic as Observed and Modeled at an Urban
- 1272
 Highway Junction, J. Air Waste Man. Assoc., doi: 10.1080/10962247.2013.822438, posted

 1273
 online: 18 Jul 2013, 2013.
- 1274 Rappenglück, B., Melas, D., and Fabian, P.: Evidence of the impact of urban plumes on
- 1275 remote sites in the Eastern Mediterranean, *Atmos. Environ.*, 37, 1853-1864, 2003.

Deleted: accepted

- Reidmiller, D.R., Jaffe, D.A., Fischer, E.V., and Finley, B.: Nitrogen oxides in the boundary
 layer and free troposphere at the Mt. Bachelor Observatory, *Atmos. Chem. Phys.*, 10, 60436062, 2010.
- 1279 Ren, X., van Duin, D., Cazorla, M., Chen, S., Mao, J., Brune, W.H., Flynn, J.H., Grossberg, 1280 N., Lefer, B.L., Rappenglück, B., Wong, K.W., Tsai, C., Stutz, J., Dibb, J.E., Jobson, B.T., 1281 Luke, W.T., and Kelley, P.: Atmospheric Oxidation Chemistry and Ozone Production: Results 1282 from SHARP 2009 in Houston, Texas, J. Geophys. Res., 118, 5770-5780, doi: 1283 10.1002/jgrd.50342, 2013. Ren, X., Harder, H., Martinez, M., Lesher, R. L., Oliger, A., Shirley, T., Adams, J., Simpas, J. 1284 1285 B., and Brune, W. H.: HO_x concentrations and OH reactivity observations in New York City 1286 during PMTACS-NY2001, Atmos. Environ., 37, 3627-3637, 2003.
- 1287 <u>Rickard, A. R., Johnson, D., McGill, C. D., and Marston, G.: OH yields in the gas-phase</u>
 1288 reactions of ozone with alkenes, *J. Phys. Chem.*, A103, 7656–7664, 1999.
- Ridley, B.A., Shetter, J.D., Gandrug, B.W., Salas, L.J., Singh, H.B., Caroll, M.A., Hübler, G.,
 Albritton, D.L., Hastie, D.R., Schiff, H.I., Mackay, G.I., Karechi, D.R., Davies, D.D.,
 Bradshaw, J.D., Rodgers, M.O., Sandholm, S.T., Torres, A.L., Condon, E.P., Gregory, G.L.,
 and Beck, S.M.: Ratios of peroxyacetylnitrate to active nitrogen observed during aircraft
 flights over the eastern Pacific oceans and continental_United States. *J. Geophys. Res.*, 95,
 10179–10192, 1990.
- Ródenas, M., Munoz, A., Alacreu, F., Brauers, T., Dorn, H.-P., Kleffmann, J., and Bloss, W.:
 Assessment of HONO Measurements: the FIONA Campaign at EUPHORE in Disposal of
 Dangerous Chemicals in Urban Areas and Mega Cities, I. Barnes and K.J. Rudzinski (eds.),
 NATO Science for Peace and Security Series C: Environmental Security, DOI 10.1007/978 94-007-5034-0 4, 2013.
- 1300 Ródenas, M., Muñoz, A., Alacreu, F., Dorn, H-P., Brauers, T., Kleffmann, J., Mikuška, P.,
- 1301 Večeřa, Z., Häseler, R., Ye, C., Ruth, A., Dixneuf, S., Venables, D., Darby, S., Chen, J.,
- 1302 Ashu-ayem, E., Elshorbany, Y., Voigt, C., Jessberger, P., Kaufmann, S., Schäuble, D.,
- 1303 Mellouki, A., Cazaunau, M., Grosselin, B., Colomb, A., Michoud, V., Miet, K., Ball, S.,
- 1304 Daniels, M., Goodall, I., Tan, D., Stickel, R., Case, A., Rappenglück, B., Croxatto, G.,

Deleted: in press,

Deleted: . u

1305	Percival, C., Bacak, A., Mcguillen, M., Dibb, J., Scheuer, E., Zhou, X., Ferm, M., Varma, K.,
1306	Pilling, M., Clemente, E., Porras, R., Vera, T., Vázquez, M., Borrás, E., Valero, J., and Bloss,
1307	W.: The FIONA campaign (EUPHORE): Formal Intercomparison of Observations of Nitrous
1308	Acid, EGU Joint Assembly, Vienna/Austria, 0309.04.2011, 2011.
1200	Dalah C.D. Dathing Engineering and Lingting and Display Website
1309	Kolph, G.D.: Real-time Environmental Applications and Display system (READY) website
1310	(http://ready.arl.noaa.gov). NOAA Air Resources Laboratory, Silver Spring, MD, 2013.
1311	Sarwar, G., Roselle S.J., Mathur R., Appel W., Dennis R.L., and Vogel, B.: A comparison of
1312	CMAQ HONO predictions with observations from the Northeast Oxidant and Particle Study,
1313	<u>Atmos. Environ., 42, 5760-5770, 2008</u>
1314	Schnell, R.C., Oltmans, S.J., Neely, R.R., Endres, M.S., and Molenar, J.V.,: Rapid
1315	photochemical production of ozone at high concentrations in a rural site during winter, Nat.
1316	<i>Geosci.</i> , 2, 120-123, 2009.
1317	Sheehy, P.M., Volkamer, R., Molina, L.T., and Molina, M.J.: Oxidative capacity of the
1318	Mexico City atmosphere - Part 2: A RO _x radical cycling perspective, Atmos. Chem. Phys., 10,

1319 <u>6993-7008, 2010.</u>

Sillman, S.: Observation-based methods (OBMs) for analyzing urban/regional ozone
production and Ozone-NO_x-VOC sensitivity, Report to EPA, 1D-57-95-NTEX, available at
http://www-personal.umich.edu/~sillman/obm.htm, accessed 2013, 2002.

- Sillman, S., and He, D.: Some theoretical results concerning O₃-NO_x-VOC chemistry and
 NO_x-VOC indicators, *J. Geophys. Res.*, 107, D22, 4659, 2002.
- Sörgel, M., Regelin, E., Bozem, H., Diesch, J.-M., Drewnick, F., Fischer, H., Harder, H.,
 Held, A., Hosaynali-Beygi, Z., Martinez, M., and Zetsch, C.: Quantification of the unknown
 HONO daytime source and its relation to NO₂, *Atmos. Chem. Phys.*, 11, 10433-10447,
 doi:10.5194/acp-11-10433-2011, 2011.
- Sommariva, R., Trainer, M., de Gouw, J.A., Roberts, J.M., Warneke, C., Atlas, E., Flocke, F.,
 Goldan, P.D., Kuster, W.C., Swanson, A.L., Fehsenfeld, F.C., A study of organic nitrates
 formation in an urban plume using a Master Chemical Mechanism, *Atmos. Environ.*, 42,
 5771-5786, 2008.

- 1333 Stemmler, K., Ndour, M., Elshorbany, Y., Kleffmann, J., D'Anna, B., George, C., Bohn, B.,
- 1334 Ammann, M.: Light induced conversion of nitrogen dioxide into nitrous acid on submicron
- 1335 humic acid aerosol, Atmos. Chem. Phys., 7(16), 4237-4248, 2007.

1336 Stull, R.B.: An Introduction to Boundary Layer Meteorology, Springer, 684 pages, 1988.

- 1337 Stutz, J., Alicke B., Ackermann R., Geyer A., Wang S., White A.B., Williams E.J., Spicer
- 1338 E.J., and Fast, J.D.: Relative humidity dependence of HONO chemistry in urban areas, J.
- 1339 Geophys. Res., 109, D03307, doi: 10.1029/2003JD004135, 2004.
- 1340 Stutz, J., Oh, H.-J., Whitlow, S.I., Anderson, C.H., Dibb, J.E., Flynn, J., Rappenglück, B., and
- 1341 Lefer, B.: Simultaneous DOAS and Mist-Chamber IC measurements of HONO in Houston,

1342 TX, Atmos. Environ., 44, 4090-4098, doi:10.1016/j.atmosenv.2009.02.003, 2010a.

- Stutz, J., Wong, K.W., Lawrence, L., Ziemba, L., Flynn, J.H., Rappenglück, B., and Lefer, B.:
 Nocturnal NO₃ radical chemistry in Houston, TX, *Atmos. Environ.*, 44, 4099-4106,
 doi:10.1016/j.atmosenv.2009.03.004, 2010b.
- 1346 <u>TUV (2010): TUV 5.0 model version 5, November 2010. available at</u>
 1347 <u>http://cprm.acd.ucar.edu/ Models/TUV/. Madronich, S. and S. Flocke, Theoretical estimation</u>
 1348 of biologically effective UV radiation at the Earth's surface, in Solar Ultraviolet Radiation 1349 <u>Modeling, Measurements and Effects (Zerefos, C., ed.). NATO ASI Series Vol. 152, Springer-</u>
 1350 <u>Verlag, Berlin, 1997.</u>
- U.S. EPA (U.S. Environmental Protection Agency: Area Designations for 2008 Ground-level
 Ozone Standards, http://www.epa.gov/ozonedesignations/2008standards/final/region8f.htm,
 accessed February 2013, 2012.
- Villena, G., Wiesen, P., Cantrell, C.A., Flocke, F., Fried, A., Hall, S.R., Hornbrook, R.S.,
 Knapp, D., Kosciuch, E., Mauldin, III R.L., McGrath, J.A., Montzka, D., Richter, D.,
 Ullmann, K., Walega, J., Weibring, P., Weinheimer, A., Staebler, R.M., Liao, J., Huey, L.G.,
 and Kleffman, J.: Nitrous acid (HONO) during polar spring in Barrow, Alaska: a net source of
 OH radicals?, *J. Geophys. Res.*, 116, D00R07, doi:10.1029/2011JD016643, 2011.

Deleted: Bounday

- Wang, X., Yin, H., Ge, Y., Yu, L., Xu, Z., Yu, C., Shi, X., Liu, H.: On-vehicle emission
 measurement of a light-duty diesel van at various speeds at high altitude, *Atmos. Environ.*,
 doi: 10.1016/j.atmosenv.2013.09.015, 2013
- WDEQ: 2011 Winter Upper Green River Basin Emission Inventory, Wyoming Department ofEnvironmental Quality (WDEQ), Cheyenne, Wyoming, 2011.
- Wojtal, P., Halla, J. D., and McLaren, R.: Pseudo steady states of HONO measured in the
 nocturnal marine boundary layer: a conceptual model for HONO formation on aqueous
 surfaces, *Atmos. Chem. Phys.*, 11, 3243-3261, doi:10.5194/acp-11-3243-2011, 2011.
- 1367 Yin, H., Ge, Y., Wang, X., Yu, L., Ji, Z., Chen, W.: Idle emission characteristics of a light1368 duty diesel van at various altitudes, *Atmos. Environ.*, 70, 117-122,
 1369 doi:10.1016/j.atmosenv.2013.01.012, 2013
- Yu C.-H., and Pielke, R.A.: Mesoscale Air Quality Under Stagnant Synoptic Cold Season
 Conditions in the Lake Powell Area. *Atmos. Environ.*, 20, 1751-1762, 1986.
- Zhou, X., Beine, H.J., Honrath, R.E., Fuentes, J.D., Simpson, W., Shepson, P.B., and
 Bottenheim, J.W.: Snowpack photochemical production of HONO: a major source of OH in
 the arctic boundary layer in springtime, *Geophys. Res. Lett.*, 28 (21), 4087-4090, 2001.
- 1375 Zhou, X., Gao, H., He, Y., and Huang, G.: Nitric acid photolysis on surfaces in low-NO_x
 1376 environments: significant atmospheric implications, *Geophys. Res. Lett.*, 30(23),
 1377 doi:10.1029/2003GL018620, 2003.
- 1378 Zhou, X. L., He Y., Huang G., Thornberry T. D., Carroll M. A., and Bertman, S. B.,:
 1379 Photochemical production of nitrous acid on glass sample manifold surface, *Geophys. Res.*1380 *Lett.*, 29(14), doi:10.1029/2002GL015080, 2002.
- Ziemba, L.D., Dibb, J.E., Griffin, R.J., Anderson, C.H., Whitlow, S.L., Lefer, B.L.,
 Rappenglück, B., and Flynn, J.: Heterogeneous conversion of nitric acid to nitrous acid on the
 surface of primary organic aerosol in an urban atmosphere, *Atmos. Environ.*, 44, 4081-4089,
 doi:10.1016/j.atmosenv.2008.12.024, 2010.

- 1385 Zweidinger, R.B., Sigsby J.E., Tejada S.B., Stump F.D., Dropkin D.L., Ray W.D., and Duncan
- 1386 J.W.:. Detailed hydrocarbon and aldehyde mobile source emissions from roadway studies,
- 1387 *Environ. Sci. Technol.*, 22, 956-962, 1988

1389

Jan 2010- May 2011 Oil and Gas Well Locations
 WDEQ Monitors
 Big Piney/LaBarge CAP
 Expanded Moxa Arch
 Jonah Field

Pinedale Anticline

1390Fig. 1. The monitoring sites "Boulder", "Boulder South Road", "Tethered Balloon", "Tall1391Tower" and other WDEQ (Wyoming Department of Environmental Quality) monitoring sites

1392 relative to the locations of oil and gas well locations operating during January – March 2011.

Fig. 2. Time series for ozone and temperature based on hourly data at the Boulder site for January-March 2011.

1425 Fig. 3a. Mean diurnal variation of selected trace gases for IOP and non-IOP days.

1438 Fig. 3b. Mean diurnal variation of selected trace gases for IOP and non-IOP days.

1439 1440 1441 Fig. 4. HYSPLIT backward trajectories calculated for 50 m a.g.l. and for following arrival times at Boulder: 07:00 MST (red), 12:00 MST (blue), 14:00 MST (light green), and 17:00 1442

1443 MST (dark green).

1445 Fig. 5. Locations of compressors (green rectangles) operating during January – March 2011

- 1446 relative to the Boulder monitoring site.

1463 Fig. 6. Profiles of ozone (above) and wind direction (below) on IOP days March 02, 2011
1464 (left) and March 12, 2011 (right).
1465

-

- 1.77

Fig. 7. Results from tethersonde measurements of ozone, NMHC, NO₂, and ΔT (Delta-T) on March 02, 2011. ΔT is defined as the temperature at a given level minus the temperature at the surface. Mixing layer heights as determined by SODAR data are indicated as "x" in the ΔT plot.

Fig. 8. Diurnal and wind directional variation of photochemical indicators O_3/NO_y , O_3/NO_z , O_3/HNO_3 and EOR on IOP days. Units shown in brackets for the wind directional variation plots refer to the radial direction of the corresponding trace gas plot.

- 1516 direction of the corresponding trace gas plot.

Fig. 10. Diurnal variation of fractions of propene-equivalent on IOP days. Above: NMHC
classes and CH₄ only. Below: same as above, but in addition NO_x, CO, HCHO, and HONO.
Speciated NMHC, NO_x, and CO data from the Boulder South Road site.

1533 NO_x, and CO data from the Boulder South Road site.

Fig. 12. Wind directional dependence of NMHC classes and the propene equivalent for all

days. Speciated NMHC data from the Boulder South Road site. Units shown in brackets refer

to the radial direction of the corresponding trace gas plot.

observed incoming UV radiation at the Boulder site for each hour of the field campaign.

laminar or turbulent depending on its history.

Deleted: 4

S1: Overview of air quality instrumentation used in this study (1-min data available, unless noted otherwise). At all sites standard meteorological systems.

-	
6	

Boulder site	Method	Model	Accuracy	Precision	Detection Limit
2,160 m asl					
O ₃	UV Photometric	T-API 400E		0.5%	0.6 ppbv
NO ^{*)}	Chemiluminescence	Super Snooper by AQD	± 5.4% +3 pptv		2 pptv
NO ₂ *)	Chemiluminescence	Super Snooper by AQD w/Blue Light Detector	$\pm 13.6\% + 6 \text{ pptv}$		2 pptv
NO _y *)	Chemiluminescence	Super Snooper by AQD w/molybdenum converter	$\pm 14.8\% + 4$ pptv		2 pptv
HNO ₃	Redox Denuder Difference	home-built instrument by AQD	$\pm 26.9\% + 50$ pptv		0.1 ppbv
HONO ^{**)}	Long Path Absorption Photometry	QUMA-LOPAP	± 10%	5%	1-2 pptv
HCHO ^{***)}	Fluorometric Hantzsch Reaction	AL 4021	± 2%	10%	60 pptv
NMHC/CH ₄ ¹⁾	Flame Ionization Detection	Baseline-Mocon Series 9000 NMHC/CH ₄ analyzer	± 5%	± 5%	0.1 ppmv
Speciated particulates ²⁾	IMPROVE_A/TORTOT	URG-3000N Carbon Sampler	Total OC: 2-6 %	< 10 %	$0.45 \ \mu g/cm^2$
			Total EC: 2-6%	< 10%	$0.06 \ \mu g/cm^2$
	Elements: X-ray Fluorescence	Met One SASS Speciation Air Sampler System			
	Major ions: Ion Chromatography		< 10%		
Mixing Layer height ³⁾	Doppler Sodar	ASC Model 4000 miniSodar			15 m
Radiosondes ³⁾	GPS-based Upper Air Sounding	InterMet iMet-3050 403 MHz GPS	± 0.5 m/s (horiz.)		
	System		$\pm 5^{\circ}$ (horiz.)		
			± 0.2 °C		
			± 2%		
Ozone sondes ³⁾	Titration of ozone in KI	EN-SCI Corp. KZ-ECC O3 sondes	± 10%		2-3 ppbv
Boulder South Road					
42.6840°N, -109.7083°W;					
2139 m asl					
NO _x ¹⁾	UV Photometric	Thermo Scientific 42i	< ± 5 %	< 5 %	0.4 ppbv
CO ¹⁾	NDIR	Thermo Scientific 48i TLE	< ± 5 %	< 10 %	0.04 ppmv
Speciated NMHCs 1)	GC/FID	Perkin Elmer Ozone Precursor Analyzer	< ± 3 %	< 5 %	0.01 ppbv

Tethered Balloon site 42.6822°N, -109.8089°W; 2,143 m asl					
Temperature ³⁾		HOBO U23 Pro V.2	$\pm 0.21^{\circ}C (0^{\circ} \text{ to } 50^{\circ}C)$		
			$\pm 0.28^{\circ}C$ (at - 20°C)		
			$\pm 0.5^{\circ}C (at - 30^{\circ}C)$		
Relative Humidity ³⁾		HOBO U23 Pro V.2	± 2.5 % (10%-90% RH)		
			± 4.5 % (at 100% RH)		
$O_3^{3,4)}$	UV Photometric	T-API 400E		0.5%	0.6 ppbv
NO/NO ₂ /NO _x ^{3,4)}	Chemiluminescence	T-API 200E		0.5 % > 50	0.4 ppbv
				ppb	
NMHC/CH ₄ ^{3,4)}	Flame Ionization Detection	Baseline-Mocon Series 9000 NMHC/CH ₄ analyzer	± 5%	± 5%	0.1 ppmv

 1) hourly data, 2) available as integrated 24 h measurements, 3) available on IOP days

 4) surface-based instrumentation collecting data through a system of solenoid valves in the balloon inlet package which allowed the measurements to cycle between tethersonde height levels (4 m, 33 m, 67 m, and 100 m) and provided a measurement at each level every 12 minutes.

 *) Reidmiller et al. (2010), **) Heland et al., 2001; Kleffmann et al., 2002, Ródenas et al., 2011, ***) Rappenglück et al., 2010

- **IOP** days

	0500-0900 MST				1100-1700 MST				2100-0500 MST			
	Q_1^*	$\mathbf{Q_2}^{\#}$	Q_3^+	Max.	$\mathbf{Q_1}^*$	${Q_2}^{\#}$	Q_3^+	Max.	Q_1^{*}	$\mathbf{Q_2}^{\#}$	Q_3^+	Max.
O ₃	42.7	46.6	48.7	50.9	63.2	73.0	119.6	165.8	46.3	51.0	58.7	87.7
NO	0.019	0.310	1.408	23.535	0.315	0.575	2.093	18.681	BDL	0.002	0.012	0.550
NO ₂	1.416	5.362	10.862	25.815	0.791	1.863	3.229	29.012	1.899	3.353	9.748	29.648
NO _x	1.523	7.107	13.457	49.350	1.213	2.710	5.757	42.367	1.904	3.355	9.757	29.666
NOy	3.045	9.587	15.977	55.398	5.902	11.287	19.498	66.443	4.914	7.848	13.170	30.493
HNO ₃	0.283	0.893	2.549	10.906	1.225	2.484	5.951	15.795	0.481	1.295	2.477	6.525
HONO	0.130	0.317	0.442	1.360	0.201	0.510	0.972	1.397	0.093	0.164	0.363	0.908
нсно	0.100	0.401	0.603	2.180	0.295	0.855	1.252	1.995	0.137	0.313	0.577	1.182
CH ₄	2.00	2.65	3.40	9.30	2.00	2.80	3.90	6.1.	2.00	2.30	2.80	6.10
NMHC	0.10	0.45	0.73	1.20	0.20	0.60	1.20	2.20	0.20	0.30	0.50	2.00

S2. Results for selected time periods for the Boulder site. Data in [ppbv], except for CH₄ and NMHC [ppmv]. Hourly data presented.

 $^{*)}$ Q₁: first quartile (25th percentile) $^{\#)}$ Q₂: second quartile (median) $^{+)}$ Q₃: third quartile (75th percentile) BDL: below detection limit

non-IOP days

S2. continued.

	0500-0900 MST				1100-1700 MST				2100-0500 MST			
	Q_1^*	${Q_2}^{\#}$	Q_3^+	Max.	Q_1^*	${Q_2}^{\#}$	Q_3^+	Max.	Q_1^*	${Q_2}^{\#}$	Q_3^+	Max.
O ₃	40.1	45.4	49.1	59.5	53.3	65.0	81.9	116.4	47.6	50.0	53.6	77.4
NO	0.038	0.399	1.778	6.591	0.181	0.672	1.376	20.737	BDL	0.002	0.007	0.053
NO ₂	2.199	3.399	5.804	22.054	0.573	0.970	2.366	17.994	0.953	1.516	2.420	9.674
NO _x	2.255	4.455	6.243	25.725	0.817	1.617	3.685	38.730	0.962	1.516	2.446	9.677
NOy	4.300	7.961	10.569	26.068	4.460	7.226	13.191	43.660	3.401	4.381	6.621	12.383
HNO ₃	0.509	1.044	1.300	4.383	0.682	1.295	3.050	8.556	0.180	0.544	0.869	2.398
HONO	0.062	0.150	0.255	0.590	0.065	0.135	0.250	1.030	0.045	0.083	0.128	0.628
нсно	0.126	0.209	0.360	0.926	0.219	0.316	0.593	1.346	0.110	0.191	0.286	1.105
CH ₄	2.00	2.25	2.65	4.30	2.00	2.25	2.80	6.10	2.00	2.10	2.30	4.30
NMHC	0.10	0.20	5.25	1.40	0.10	0.25	0.60	1.60	0.10	0.20	0.30	1.00

 $^{*)}$ Q₁: first quartile (25th percentile) $^{\#)}$ Q₂: second quartile (median) $^{+)}$ Q₃: third quartile (75th percentile) BDL: below detection limit

HNO3, HONO, and particulate NO3. N denotes number of data points.

56 S4a. Wind directional dependence of selected trace gases for day- and night-time conditions
57 (night-time defined as time periods with solar radiation less than 1 W/m²). Units shown in
58 brackets refer to the radial direction of the corresponding trace gas plot.

54b. Wind directional dependence of selected trace gases for day- and night-time conditions (night-time defined as time periods with solar radiation less than 1 W/m^2). Units shown in brackets refer to the radial direction of the corresponding trace gas plot.

81 S5. Potential temperature profiles on IOP days based on tethersonde measurements segregated

82 into selected time frames.

S6. Profiles of potential ozone O_x ($O_x=O_3+NO_2$) on IOP days based on tethersonde 92 measurements segregated into selected time frames.

108S7. Selected trace gas mixing ratios versus mixing layer heights (MLH) for day- and night-109time conditions on IOP days (night-time defined as time periods with solar radiation less than110 1 W/m^2). Speciated NMHC, CO, and NOx data from the Boulder South Road site.

131 S8. Box-Whisker plots for the mean diurnal variations of HONO mixing ratios at 1.80 m
132 above ground and close to the surface (10 cm above the ground) during the period 28/2 133 3/16/2011.

and non-IOP days (night-time defined as time periods with solar radiation less than 1 W/m^2).

- **S10.** Results of correlation analysis of HCHO and HONO versus selected other trace gases at
- 157 the Boulder site for nighttime conditions and wind direction 180°-270°. All data 10-min
- values, apart from correlations which include NMHC or CH₄, which are hourly values.

	a*)	b**)	r ²
HCHO vs CH ₄	0.223 (±0.040)	-148.4 (±158.7)	0.71
HCHO vs NMHC	0.493 (±0.098)	258.3 (±102.6)	0.66
HCHO vs NO _x	15.44 (±1.45)	324.7 (±31.2)	0.60
HONO vs CH ₄	0.188 (±0.036)	-225.9 (±138.5	0.70
HONO vs NMHC	0.441 (±0.070)	91.2 (±69.2)	0.77
HONO vs NO ₂	16.82 (±0.95)	148.5 (±19.1)	0.80
HONO vs NO _x	15.20 (±0.88)	161.5 (±19.1)	0.79
HONO vs HNO ₃	100.92 (±5.95)	88.1 (±22.6)	0.80

*) a: slope in [pptv/ppbv] **) b: intercept in [pptv]

S11. Values of indicator ratios for NO_x-sensitive, transitional, and VOC-sensitive conditions

- according to Sillman (2002) and Sillman and He (2002). Photochemical indicators for the
- moderately polluted case (80 ppbv $\leq O_3 \leq 200$ ppbv), unless otherwise stated.

Indicator	Median VOC sensitive	<u>Transition</u> (O ₃ < 80 ppbv)	Transition	Median NO _x	
O ₃ /NO _y	5	<u>11-15</u>	6-8	11	
O ₃ /NO _z	6	<u>15-20</u>	8-10	14	
O ₃ /HNO ₃	9	<u>n.a. **)</u>	12-15	20	
EOR ^{*)}	EOR < 0.6	n.a. **)	0.6 < EOR < 0.9	EOR > 0.9	

Formatted Table

Formatted: Subscript

Formatted: Subscript

*) Extent of Reaction

175	I	**) no information	given by	Sillman and	<u>He (20</u>	<u>)02), bi</u>	it presumably	<u>y higher</u>	<u>than for th</u>	ne moderately	polluted case.	
176												

S12. Average minimum values of photochemical indicators at the Boulder site and time

- periods and wind directions associated with these minimum values.

Indicator	Average minimum median values and time of occurrence	Average minimum median values and wind direction of occurrence			
O ₃ /NO _y	3.1 (09:00 MST)	3.2 (SSW)			
O ₃ /NO _z	10.1 (14:00 MST)	9.2 (SSW)			
O ₃ /HNO ₃	14.1 (09:00 MST)	11.0 (W)			
EOR ^{*)}	0.53 (08:00 MST)	0.55 (WSW)			

*) Extent of Reaction

191 <u>OH on IOP and non-IOP days.</u>

