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This manuscript attempts to view “atmospheric waves” as (scaling) turbulent phenomena by 

proposing the so-called turbulence-wave propagator with proper scaling. This study should be 

interesting to a broad audience and will have broad impact on research activities in both 

turbulence and atmospheric wave dynamics, which have been studied with different approaches 

separately, e.g., nonlinear vs. linear approaches. However, although a general term ``atmospheric 

waves” is used in this study, the mathematical foundations are based on the dispersion of the 

classical wave equation, which can only represent special kinds of atmospheric waves such as 

the Kelvin wave and 2D (x,y) gravity waves. Therefore, please be advised to construct the 

turbulence-wave propagator using a more general dispersion relation and then to examine if 

different atmospheric waves can be viewed as (scaling) turbulent phenomena. Alternatively, the 

authors may consider to revise the manuscript as well as its title to focus on the specific type of 

atmospheric wave (i.e., the Kelvin wave). In recognition and appreciation for the interesting and 

challenging study, the reviewer recommends that the manuscript be accepted for publication 

after the following issues are addressed. General and specific comments and a note on two linear 

wave equations with more general dispersion relations are provided below.   

 

General Comments: 

 

i. The authors are advised to use a more general dispersion relation (as discussed near the 

end of this comment file) to construct the turbulence-wave propagator. 

ii. Two types of linear wave solutions are (1) propagating wave solutions in the form of  ݁ఙ௧ି௭ and (2) evanescent wave solutions in the form of ݁ఙ௧ିெ௭. Here σ, m, and M are 

real umbers, and represent the frequency, wavenumber, and the reciprocal of the scale 

height, respectively.  While the Kelvin wave propagates in the x direction, its meridional 
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component (in the y direction) is evanescent. Thus, the “scaling” for the Kelvin wave is 

different from other types of waves which may propagate in both x and y directions (e.g., 

gravity waves or other types of waves). In addition, under certain atmospheric conditions 

(e.g., the occurrence of a critical level or critical latitude), the wavenumber in a specific 

direction may not be integers.  Therefore, the existence of an isotropic scale really 

depends on type of wave. Several atmospheric waves with different dispersion relations 

are discussed in the note below.    

iii. A (linear) dispersion relation is derived from a set of linearized governing equations that 

describe the spatial distribution and temporal evolution of a flow with multiple fields 

(e.g., wind speeds, temperature etc) and the correlation among the different fields. The 

latter is often used to distinguish different weather systems. For example, the phase 

relationship between the low pressure center and convergence/divergence of wind fields 

is used to illustrate the differences between a mixed Rossby-gravity (MRG) wave and a 

tropical-depression- (TD-) type disturbance. Therefore, the reviewer is wondering if and 

how the concept of the fractional turbulence-wave propagator can provide something 

equivalent or similar (e.g., via a set of nonlinear governing equations) that can help 

identify different physical processes for different weather systems? 

iv. Linear wave theories have been developed to improve our understanding of the dynamics 

for terrain-induced or heating-induced mesoscale waves (e.g., Smith, 1979; Lin 1987; Lin 

2007 and references therein), and for large-scale equatorial tropical waves (e.g., Matsuno 

1996; Wheeler and Kiladis 1999). These studies have suggested an effective means of 

detecting atmospheric waves in real data. By analyzing global analysis data, Frank and 

Roundy (2006) and Schreck et al. (2012) have shown the strong relationship between 

tropical wave activities and tropical cyclone (TC) genesis.  These tropical waves may be 

viewed as precursors to TC genesis. The association of TC genesis with different (linear) 

tropical waves has been illustrated with modeling studies (Shen et al., 2012; 2013 and 

references therein), leading to the hypothesis that the lead time of TC genesis prediction 

can be extended by improving the representation and evolution of (linear) tropical waves 

and their modulations on TC activities. In addition, the linear wave solutions have been 

used to verify the solutions of the numerical models. The aforementioned studies, just to 

name a few, have illustrated the usefulness of linear wave theories (for short-term 
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weather simulations, at least). As the authors conclude that no linear theories are needed, 

it is important for the authors to provide strong justifications for the superiority of the 

proposed approach (with the turbulence wave propagator) with respect to the linear wave 

approaches.  

 

Specific Comments 

 

page 14798, line 18-19:  please consider to expand the discussions on the linear atmospheric 

waves. Some references are provided below.  

 

page 14800, line 17-18: The authors state `` A key characteristic of linear theories is 

that they involve integer powers of the (space and time) differential operators’’. When 

atmospheric conditions are not “uniform,” the governing equation such as Eq. (2.71) in the 

section 2.3 of Nappo (2002) can be solved only by the so-called W.K.B. method. Therefore, is 

the above statement still valid? 

 

page 14801-14802, Eqs. (2) and (4): When other dispersion relations are used, can you always 

find the corresponding fractional propagators? if so, will the “anomalous” exponent H be the 

same or different? Is the value of H dependent of data type and length?  

 

page 14805, line 25:  please provide justifications for the scaling:  (݇௫, ݇௬, ߱) → ,௫݇)ߣ ݇௬, ߱) for 

the Kelvin wave (whose meridional component is evanescent) and the other types of waves as 

well. 

 

page 14806-14807, line 25: The authors state: ``Although the dispersion relation is independent 

of the propagator exponent ܪ௪௩; the exponent does determine the (power law) rate of decay of 

the forcing so that the value of ܪ௪௩will affect the transport of momentum and energy.”  The 

reviewer have two questions: (1) when different dispersion relations are used, is the above 

statement still valid? (2) Given a specific ܪ௪௩, how can the transport of momentum and energy 

be determined? Namely, what are the mathematical expressions for the transport of momentum 

and energy? 



4 
 

 

page 14807, line 10-12: as ‖݇‖ = ൫݇௫ଶ − ܽଶ݇௬ଶ൯ଵ/ଶ
 is used, which is consistent with the 

characteristic of the Kelvin wave, the authors may want to make changes in Eq. (14) on page 

14805.  

 

page 14808, line 9: ``Data were divided into five 277h (~12 day) blocks, and each block is 

calculated …’’  please provide justifications for the choice of 277h?  In addition, is the spectral 

density analysis sensitive to the choice of this time scale?  

 

page 14809, line 1: ܪ = ௧௨ܪ +  ௪௩ indicates that the total propagator exponent (H) is a linearܪ

superposition of ܪ௧௨ and ܪ௪௩. Therefore, given the dispersion relation in this manuscript, the 

``dynamics’’ (e.g., energy transfer) of the turbulence and waves depend on ܪ௧௨  and ܪ௪௩ , 

respectively. However, how can this concept be generalized when other waves with dispersion 

relations are considered? 

 

page 14809, Figure 3: was only the Kelvin wave analyzed?  

 

page 14810, Eq. (19): if only the Kelvin wave was analyzed, Eq. (19) should be revised with ‖݇‖ = ൫݇௫ଶ − ܽଶ݇௬ଶ൯ଵ/ଶ
. 

 

page 14811, line 11-14 and Figure 4: the authors state: ``A drawback of the method is that it does 

not distinguish maxima due to the turbulent contribution and from the (presumed) wave 

contribution and in the empirical case, the separation is not always evident.’’  The agreement 

between the theoretical dispersion curve (black) and empirically estimated one (blue) appears 

only at small wave numbers (i.e., for long waves). Does the black (or blue) line represent the 

Kelvin wave? If so, how can real ky be possible for the Kelvin waves? As discussed in Eqs. (5) 

and (6) below, the black line in Figure 4 should be revised with the usage of ‖݇‖ =൫݇௫ଶ − ܽଶ݇௬ଶ൯ଵ/ଶ
.  
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page 14811, Figure 4: The Kevin wave (grey in Figure 3) appears between ω=(4)-1 and ω 

=(100)-1. However, selected values of ω are 2, 3, 5, and 10 h-1 in Figure 4. Please explain why these values are selected and then add discussions on the differences among different panels with different values of ω. In addition, what are the corresponding periods? 1/ω or 2π/ ω.  
 

page 14813, line 7-10: the authors made the following strong statement: ``The main conclusion is 

thus that strongly turbulent atmospheric dynamics are a priori compatible with the observed 

waves, that to understand them, that one needn’t invoke the existence of large laminar regimes 

nor linear theories.”  It is difficult for the reviewer to agree on the above statement because (1) 

only the Kelvin wave, which has a very special dispersion relation, was analyzed; (2) only 

limited data sets (for two months) were analyzed. Additional comments are given in the general 

comments (iii) and (iv).  

 

 

A Note on Linear Wave Equations: 

 

Here, two linear wave equations with more general dispersion relations are presented. The 

two equations have been used to study mesoscale gravity waves and large-scale (equatorial) 

tropical waves.  

 

(A) 3D linear wave equations on an f-plane 

 

We begin with the following equation for a 3D (x,y,z) flow on an f-plane with the 

Boussinesq approximation (e.g., Eq. 3.2.1 of Lin 2007): 

ݐܦܦ  ቊ ଶݐܦଶܦ ∇ଶݓ + ݂ଶݓ௭௭ − ௭ܷ௭ ݐܦܦ ௫ݓ + ݂ ௭ܷ௭ݓ௬ + ܰଶ൫ݓ௫௫ + ௬௬൯ݓ + 2݂ ௭ܷݓ௬௭ቋ −2݂ ௭ܷଶݓ௫௬ − 2݂ଶ ௭ܷݓ௫௫ = 0,                                                         (1)   
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where ௧ = డడ௧ + (ݖ)ܷ డడ௫ and ∇ଶݓ = ௬௬ݓ+௫௫ݓ +  ,௭௭. U(z) represents the basic state zonal windݓ

and w is the vertical velocity perturbation. N2 is the Brunt Vaisala frequency and f is the Coriolis 

force. Eq. (1) has been used to examine the solutions for potential flows, hydrostatic flows with 

(pure) gravity waves (with f=0), ageostrophic flows with inertia gravity waves (f≠0), and quasi-

geostrpophic flow with Eady-type modes. In addition, it has been used to study the impact of the 

so-called critical level on wave dynamics (e.g. Shen and Lin, 199). The critical levels are defined 

as the levels where the phase speed (c) is equal to the basic wind (i.e., c=U) or c=U±f/k. σ is the 

frequency, k is the wavenumber and c =σ/k. With further simplifications, Eq (1) can be reduced 

to the so-called Taylor-Goldstein equation or the shallow water question. Therefore, Eq. (1) can 

provide a more general dispersion relation.  Simplifications are given as follows.  

 

(1) Taylor-Goldstein equation: 

Assume a 2D (x,z), non-rotating  (f=0) flow, Eq. (1) becomes: ܦଶݐܦଶ (௭௭ݓ+௫௫ݓ) − ௭ܷ௭ ݐܦܦ ௫ݓ + ܰଶݓ௫௫ = 0.                           (2) 

(2) The shallow water equation on an f-plane:   

Assume a 3D, uniform (no shear) hydrostatic flow, Eq. (1) is simplified to the following 

form: ܦଶݐܦଶ ௭௭ݓ + ݂ଶݓ௭௭ + ܰଶ൫ݓ௫௫ + ௬௬൯ݓ = 0.                                (3) 

We further assume ߩ = ݓ ݁ି௭/ுೞ andߩ = ௧ ,ݐ)ߟ ,ݔ  ఈ௭/ுೞ, here ρ is the density, Hs is݁(ݕ

the scale height of the density and Hs/α is the vertical wavelength.  Eq. (3) becomes: 

ݐܦܦ  ቊ ଶݐܦଶܦ ߟ + ݂ଶߟ − ଶߙ௦ܪ݃ ൫ߟ௫௫ + ௬௬൯ቋߟ = 0.                             (4) 

 

Equation (4) has the same form as Eq. (3.9.2) of Pedlosky (1979), which is derived from 

a set of linearized shallow-water equations (e.g., Eqs. 3.6.3a-c of Pedlosky 1979).  The 

above derivations suggest that given a wave mode with the vertical wavelength of Hs/α, 

its solutions are equivalent to those in the shallow water equations with an equivalent 

depth of Hs/α2, denoted He (=Hs/α2). 
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(3) The dispersion relation for the Kelvin wave: 

Based on the characteristics of the Kevin wave (e.g., section 3.9 of Pedlosky 1979), Eq. 

(4) gives the following two equations:   ߟ௬௬ − ݂ଶ݃ܪ ߟ = 0,                                                                           (5ܽ)  
and ܦଶݐܦଶ ߟ − ௫௫ߟܪ݃ = 0.                                                                   (5ܾ) 

 

Equation (5a) suggests an evanescent (not wavelike) mode in the y direction, which leads 

to ߟ ∝ ݁ି/బ|௬| , here ܿ = ඥ݃ܪ. Eq. (5b) does not explicitly include the “f” term and 

resembles the classic wave equation. The corresponding dispersion relation is written as:  ߪ = ܷ݇ + ඥ݃ܪ =  ܷ݇ +  ݇,                                                 (6)ܥ

which has a much simpler form than the others in Eqs. 8-10. 

 

(B) The shallow water equation on a beta plan 

 

To study the large-scale tropical waves, the shallow-water equations proposed by Matsuno 

(1966) have been used (e.g., Wheeler and Kiladis 1999; Kiladis et al. 2009). Assuming the 

meridional velocity perturbation to be ݒ = ݐߪ݅)ݔ݁(ݕ)ොݒ −  the linearized shallow water ,(ݔ݇݅

equation on a β-plane (f=βy) can be written as follows: ݀ଶݒො݀ݕଶ + ቆ ܪଶ݃ߪ − ݇ଶ − ߪ݇ ߚ − ܪଶ݃ݕଶߚ ቇ ොݒ = 0.                                    (7)  
It was shown by Matsuno (1966) that the Eq. (7) gives the following dispersion relation  

ܪଶ݃ߪ  − ݇ଶ − ߪ݇ ߚ = 2݊)ߚ + 1)ඥ݃ܪ , ݊ = 0,1,2,3 …                   (8) 

Equation (8) is a cubic equation and therefore has three roots in general. Among different types 

of waves, the dispersion relations for the following two different tropical waves are presented 

and compared with that for the Kelvin wave. 
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(1) Equatorial Rossby (ER) waves: 

For very low frequency waves (with a small σ2), Eq. (8) has only one root which is ߪ = ଶ݇݇ߚ− + 2݊)ߚ + 1)/ඥ݃ܪ .                                          (9)    
(2) Mixed Rossby-gravity (MRG) wave: 

The dispersion relation of the MRG is obtained when n=0:  ߪ = ݇ඥ݃ܪ2 1 − ቆ1 +  ቇଵ/ଶ൩.                                         (10)ܪଶඥ݃݇ߚ4

 

(3) Kelvin wave: 

The dispersion relation of the Kelvin wave can be obtained from Eq. (8) under a special 

condition with n=-1: ߪ =  ݇ඥ݃ܪ.                                                                                     (11) 

Equation (11) is the same as that in Eq. (6), which is much simpler than the others (e.g., 

Eqs. 9 and 10). Note that the meridional velocity perturbation for the Kelvin wave is 

identical to zero, i.e., ݒ ≡ 0, which is a trivial solution to Eq. (7). Therefore, non-trivial 

solutions for other components are obtained by solving the original linearized governing 

equations (e.g., Equations 1-3 of Kiladis et al., 2009). 
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