

Interactive
Comment

Interactive comment on “Global and regional emissions estimates for N₂O” by E. Saikawa et al.

T.L. Roche

tom_roche@pobox.com

Received and published: 30 August 2013

(apologies for the kludgey formatting, but I can't prevent the PDF processor from wrapping lines with single linebreaks)

<http://www.atmos-chem-phys-discuss.net/13/C5512/2013/acpd-13-C5512-2013.pdf>

»> At 19483:23-4 you say "N₂O regional emissions are approximately

»> mixed globally in two years[.]" This seems reasonable, but it *is*

»> a particular empirical claim which I have not previously

»> encountered (possibly due to my lack of experience and erudition)

»> [and] for which I'd like to know the source.

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Paper

- > regarding time scales for horizontal and vertical transport, you can
- > for example take a look at Chapter 4 Atmospheric Transport in
- > "Introduction to Atmospheric Chemistry by Daniel Jacob.

Dr Saikawa: IAC is indeed a wonderful introduction to atmospheric science in general, and it is good to see his "Figure 4-12 Typical time scales for global horizontal transport in the troposphere," and the quote that "It thus takes about 1 year for air to exchange between the northern and southern hemispheres." It does seem rather an off-hand approximation, and he offers no references, but when one is as eminent as Daniel Jacob, I guess one can do that :-)

<http://www.atmos-chem-phys.net/11/12813/2011/acp-11-12813-2011.html>

- > An average [inter-hemispheric] exchange time of 1.39 ± 0.18 yr is derived from SF6 time series.

Dr Patra: Thanks for your much more precise approximation! SF6 mixing seems a good approximation for N₂O mixing; although SF6 does not have a stratospheric sink (like N₂O), it is also (indeed more) tropospherically inert. That being said, it seems to me that global mixing time and IH exchange time are equivalent—am I missing something? When I think of IHE, I think of a two-box problem like Jacob gives in

<http://acmg.seas.harvard.edu/people/faculty/djj/book/bookhwk3.html#76878>

Under that analysis, global mixing time for a regional signal would be a function of both intra-hemispheric exchange time (time to mix the regional emission into its hemispheric box) and inter-hemispheric exchange time (time to mix the region's hemisphere's box with the other hemisphere), no? But given your estimate of inter-hemispheric exchange, and that intra-hemispheric exchange is known to be substantially faster than inter-hemispheric exchange, to estimate that the time to mix a regional emission to

Interactive
Comment

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Paper

global background $\sim=$ 2 yr seems sound.

Interactive comment on *Atmos. Chem. Phys. Discuss.*, 13, 19471, 2013.

ACPD

13, C6285–C6287, 2013

Interactive
Comment

C6287

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

[Discussion Paper](#)

