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Minor comments:

Section 5.2: I agree that the differences in the comparison with ACE-FTS are not
overly large as to hint a problem with one of the instruments. However, they are
large enough to make me want to see a graphical representation, ideally one that
also shows how these differences compare to the variability in the data.

In response to this comment we have revised section 5.2: instead of referencing the
SO2 distribution shown in Fig. 8 of the paper by Doeringer et al. (2012) we now
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compare directly with the original ACE-FTS dataset (version 3.0) of SO2. This com-
parison of the ACE-FTS observations with those of MIPAS is shown in Fig. 1 below.
For the presentation of the ACE-FTS dataset we have (1) calculated the mean (instead
of the median as in Doeringer et al. (2012)), (2) selected the same latitude bands
and (3) performed a linear interpolation to the MIPAS altitude grid. The latitude rage
30◦N–40◦N cannot be used for comparison since there are only two ACE-FTS profiles
available, which stem from July, 1st and which apparently have not been recorded in
volcanically perturbed air-masses. Between 40◦N and 70◦N both datasets show the
enhanced volcanic SO2 plume with similarly decreasing extension in altitude towards
north. Regarding the absolute values, the results from the MIPAS retrievals of SO2 ap-
pear to be generally lower than those of ACE-FTS. In the altitude range 15–19 km the
mean difference between the two instruments is 156 pptv±68 pptv (54%±19%). These
differences might be due to the locally and temporally sparse coverage of ACE-FTS
compared to MIPAS (see the lower panel of Fig. 9 in Doeringer et al. (2012) and num-
ber of limb-scans used to calculate mean profiles as indicated by orange numbers in
Fig. 1 below). It can also not be excluded that the differences are caused by measure-
ment errors of either instrument. E.g. our error estimation for MIPAS retrievals in Fig. 3
of the paper indicates relative errors of larger than 100% in the lowest stratosphere
caused by the error term due to analysis from mean spectra. Dedicated simulations
of this source of error for volcanically enhanced conditions showed MIPAS results that
were 100–150 pptv lower than the real profile at 15–17 km altitude. A more detailed
analysis of the differences between the two instruments will be possible when MIPAS
retrievals of SO2 from single limb-scans under volcanically enhanced conditions are
available.

We will include this analysis in the new version of the manuscript.

We acknowledge Chris Boone and the ACE-FTS-team for provision of the data and for
helpful discussions.

Section 5.3: could a higher loading of SO2 in the NH midlatitude troposphere
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around 1980 compared to today have an impact on the lower stratospheric in-
situ SO2 measurements made at the time?

We agree that this might have led to higher SO2 measurements in the lowest strato-
sphere at that time. Unfortunately, the time series of in-situ datasets covering this
altitude region is rather sparse which makes a valid trend analysis difficult. For such
a task it would be necessary to homogenize the available data, assign a proper error
estimation and try to sort the measurements according to the origin of the air-masses.
We are not aware of any published work of that kind.

Section 6.1: I think that the mid-strat-maximum could be illustrated even better
than in Figure 7 by color maps showing a zonal mean (probably four altitude-
latitude panels, one for each season).

Agreed: such a Figure (Fig. 2 below) will be added in the new version.

For recent volcanically perturbed periods, could you also compare to Aura-MLS?
They have, for example, presented some SO2 vertical profiles in the context of
the Nabro eruption (cf. comments to the Bourassa et al. reference in SCIENCE).

Although MLS detects large amounts (often a few hundred ppbv) of SO2 following a
volcanic eruption, the MLS SO2 data have persistent systematic errors of about 2-
4 ppbv. Therefore it is not possible to form useful monthly zonal means of the MLS
data in order to compare with the MIPAS monthly zonal mean data (H.C. Pumphrey,
personal communication).

Technical corrections:

We agree with all suggested technical corrections. These will be implemented accord-
ingly in the new version of the manuscript.

Interactive comment on Atmos. Chem. Phys. Discuss., 13, 12389, 2013.
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Fig. 1. Latitude-height cross-section of MIPAS (top) and ACE-FTS (bottom) zonal mean SO2
volume mixing ratios in July 2009. Numbers in white show the exact vmr values of each bin in
units of ppt.
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Fig. 2. Mean background seasonal distributions of SO2 from MIPAS.
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