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SI-1 Comparison of PM Fams and PM Fapsprrusresults

Here the comparison of the time series retrievedvio separate source apportionment
approaches is presented: positive matrix factoaeatPMF) applied to AMS data only
(PMFans) and PMF applied to the combined AMS-PTRMS dat&BbtFaysprrvsg). FOr

the winter campaign, details about the AMS onlyrselapportionment can be found in
Crippa et al. (2013a), while for the summer campdige reference papers are Freutel et
al. (2013) and Crippa et al. (2013b).
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Figure SI-1.1: Time series comparison of AM S sources obtained with the PMFaus
and the combined PMFayvsprrus fOr the winter campaign. Note that the semi-
volatile OOA (SV-OOA) separated by the PMFausprrus iS compared with the
OOA2-BBOA factors obtained with the PM Faus.
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with the PM Fams and the combined PM Famsprrus for the summer campaign.
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SI-2 Diurnals of OA components obtained with the PMFamsprrvs

Figures SI-2.1 and SI-2.2 show the diurnal pattefrgas and particle phase components
retrieved by the PMkys.ptrus for the summer and winter campaigns. Although the
temporal variation of the PTR-MS and AMS sourceshis same within each season,
some patterns are highlighted by the different ouation of a specific source to the gas
or particle phase. For example, the semi-volatighdvior of the nighttime OOA
component separated during the summer campaignsshaxh higher contribution for

the PTR-MS data than for the AMS one and a cleditenal pattern as well.
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Figure SI-2.1: Diurnal variations of the PMF factors for the AMS and PTR-MS
measurements retrieved from the PMFawsprrvs approach. Median values are

represented (winter campaign).
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Figure SI-2.2: Diurnal variations of the PMF factors for the AMS and PTR-MS
measurements retrieved from the PMFausprrvs approach. Median values are
represented (summer campaign).



1 SI-3 Seasonal comparison of PTR-MS sources mass spectra obtained from the
2 PM I:AMS-PTRMS
3
4
5 Here the PTR-MS mass spectra obtained from the icwulgas-particle phase source
6 apportionment are compared for the two campaigge that only common sources for
7 the two seasons are reported (e.g. biomass buimgt shown since it only contributed
8 during wintertime). The PTR-MS mass spectra foffitaand LV-OOA are quite stable
9 for the two seasons, while some differences arergbd for the cooking and SV-OOA
10 nighttime factors.
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SI-4 PMF diagnostics

SI-4.1 Residuals

In this section the residuals (Q4Q) for the chosen solutions (7 factorsr&-0.8 and 6
factors, Grr=0.7 for winter) of the combined PMF approach asported for both
seasons (Fig.SI-4.1 and SI-4.2). Note that the stephe residual time series plot

observed for the summer campaign (Fig.Sl-4.2) ésrassequence of a power failure and
instrumental issues (e.g. tuning, etc.) happendldemiddle of the campaign.
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Figure SI-4.1.1: Scaled residuals in terms of mass spectra and time series of the
PM Famsprrvscasefor thewinter campaign.
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Figure SI-4.1.2: Scaled residuals in terms of mass spectra and time series of the
PMFamsprruscase for the summer campaign.
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Sl-4.2 Stability of the solution

In this paper the 7 factors solution wily1r=0.8 for the summer campaign and the 6
factors solution withCprr=0.7 for the winter case were presented. The choidbese
solutions was based on several concurrent cri{eda also section 3 of the manuscript).

First of all, AE was used to define a region (0+0.25) where bottiingents were well
represented in the PMF solution. Then, all solilying within the selected region were
investigated and evaluated based on the physitapretability of the factors (e.g. given
by time series correlations with independent measents, MS correlation with
literature studies, diurnal pattern investigatianalysis of the residuals, PTR-MS tracers
coherence, etc.). From these investigations, amapsolution was adopted.

In contrast to PMF applied to the dataset of alsimgstrument, here multiple solutions
can be obtained not only changing the number dbfadut also varying the weighting
parameteCprr. This makes the analysis quite complex and ifftsnodifficult to be able

to compare within a fixed number of factors how sisdution changes varying th& g
value, because it often implies significant change®/Q.y, calculated using the original
unweighted errors (in some cases more than 20% agelying an increasing step of 0.1
in theCprr value).

For this reason the stability of the chosen sotutisas assessed using the fpeak
parameter, in order to evaluate the effect of nratitecal rotations on the solution, and
initializing the algorithm with 30 different stamy points (seeds). Results of these
analyses are reported below. Note that when reptiagethe relative factors contribution
versus fpeak or seed values the sum of AMS and MBRlata was considered.

Figures SI-4.2.1 and Sl-4.2.2 represent the redatontribution of each identified factor
during the winter campaign versus the fpeak paranwtthe seed value. The Q/gplot

is also reported as diagnostic. In order to evallrmw much stable is the solution, the
fpeak parameter was varied between -2 and +2 qgmnelng to a relative change in the
Q/Qexp graph maximum of 40%. However the solution app&alse rather constant over
the investigated fpeak range. Moreover, the presefclocal minima was analyzed
initializing the algorithm with 30 different pointcorresponding again to a relative
change in the Q/Q, plot of maximum 40%. Also in this case the solatappears to be
stable in terms of source attribution.
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corresponding Q/Qeyp Values with the fpeak parameter during the winter campaign.
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1 Figures SI-4.2.3 and SI-4.2.4 show similar plotshe two previously described. The
2 summer solution seem to be partially affected ke additional rotations explored with
3 the fpeak parameter (e.g. at fpeak=0.8). Finalg, ¢thosen solution did not represent a
4  local minimum as confirmed by Figure SI-4.2.4.
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9 Figure SI-4.2.3: Variability of the relative factor contributions and the
10 corresponding Q/Qep values with the fpeak parameter during the summer
11  campaign.
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SI-5Winter campaign PTR-M S background factor

The PMRwus-prrusapplied to the winter dataset allowed the separaifoa factor which
represents instrumental issues related with the-MBRmeasurements. Figure SI-5.1
represents the time series of this factor continiguto the PTR-MS measurements and its
mass spectrum both for the AMS and PTR-MS. Thitofaepresents on average 32% of
the total gas phase measurements, while its caotiib is negligible for the AMS
fraction (on average only 2% of the total AMS origamass). Its time series shows a
continuous decrease, which likely represents agassing in the Teflon sampling line.
10  While several masses contribute to the PTR-MS mmsstrum, Table 1 indicatesz 47,

11 89, 97, 101 and 105 as the ones that are mostaiiqthis factor. We preferred not to
12  exclude these masses from the PTR-MS dataset leetdassnstrumental problem does
13 not only affect these prominent peaks but to aelesgtent all the PTR-MS masses and
14  therefore is impossible to correct for consistemtihout introducing additional bias.
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