Thanks for your comments. Details on the "ranking" at the end of Section 2 are supplemented blow:

"In the processing of optimization of function ψ , in order to avoid problems on weighting four kinds of input information (*n*, *k*_{blue}, *k*_{red} and dSSA), we utilize a "rank position priority (RPP)" strategy, instead of using the traditional method of absolute residual minimization. Firstly, we number an integer series RP_j(ε_n) related to each member of solution space (f₁, f₂, f₃, f₄, f₅)_j, j = 1, TN. The value of RP_j(ε_n), or the rank position, is calculated based on ε_n while RP_j(ε_n) = 1 for the minimum ε_n and RP_j(ε_n) = TN for the maximum ε_n ; Secondly, we create similarly the integer series RP_j($\varepsilon_{k(blue)}$), RP_j($\varepsilon_{k(red)}$) and RP_j(ε_{dSSA}) respectively; Thirdly, the j corresponds to min(RP_j(ε_n) + RP_j($\varepsilon_{k(blue)}$) + RP_j($\varepsilon_{k(red)}$) + RP_j(ε_{dSSA})) provides the optimization of function ψ and the corresponding (f₁, f₂, f₃, f₄, f₅)_j is the best solution to optimize all kinds of information on n, k_{blue}, k_{red} and dSSA."