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Abstract

A box model for estimating bidirectional air-surface exchange of gaseous elemental mercury (Hg’) has
been updated based on the latest understanding of the resistance scheme of atmosphere-biosphere
interface transfer. Simulations were performed for two seasonal months to evaluate diurnal and seasonal
variation. The base-case results show that water and soil surfaces are net sources while vegetation is a net
sink of Hg". The estimated net exchange in a domain covering the contiguous US and part of Canada and
Mexico is 38 and 56 Mg as evasion in the summer and winter month. The smaller evasion in summer is
due to the stronger Hg” uptake by vegetation. Modeling experiments using a 2-level factorial design were
conducted to examine the sensitivity of flux response to changes of physical and environmental
parameters in the model. It is shown that atmospheric shear flows (surface wind over water and friction
velocity over terrestrial surfaces), dissolved gaseous mercury (DGM) concentration, soil organic and Hg

content, and air temperature are the most influential factors. The positive effect of friction velocity and
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soil Hg content on the evasion flux from soil and canopy can be effectively offset by the negative effect
of soil organic content. Significant synergistic effects are identified between surface wind and DGM level
for water surface, and between soil Hg content and friction velocity for soil surface, leading to ~50%
enhanced flux compared to the sum of their individual effects. The air-foliar exchange is mainly
controlled by surface resistance terms influenced by solar irradiation and air temperature. Research in
providing geospatial distribution of Hg in water and soil will greatly improve the flux estimate.
Elucidation on the kinetics and mechanism of Hg(II) reduction in soil/water and quantification of the

surface resistances specific to Hg species will also help reduce the model uncertainty.

1 Introduction

Mercury (Hg) is a persistent, bioaccumulative pollutant released into the atmosphere from a variety of
anthropogenic and natural sources. The anthropogenic release (2000~2400 Mg yr™') primarily comes from
fossil fuel combustion, waste incineration, metal smelting and cement production (Pacyna et al.,
2006;Pacyna et al., 2003;Streets et al., 2005;Streets et al., 2009;Pirrone et al., 2010). The natural sources
include geological weathering from Hg enriched substrates, biomass burning, volcanic activities and other
Hg’ exchange, including so-called re-emission, at the atmosphere-biosphere interface (Gustin et al.,
2008;Mason and Sheu, 2002). While the men-made emissions have been estimated and continuously
updated with reasonable consistency since the 1990s, the estimates for natural emissions have been highly
uncertain (1500-5207 Mg yr'"), primarily due to a lack of understanding in the air-surface exchange of
Hg’. Since the natural release can account for up to two-thirds of global mercury input to the atmosphere
(Friedli et al., 2009;Pirrone et al., 2010), better quantification of the mass input is critical in assessing the
global biogeochemical cycling of mercury (Lindberg et al., 2007).

Air-surface exchange is an important component in atmospheric mercury modeling for estimating Hg"

evasion and deposition over soil, water and vegetation. For terrestrial surfaces, the soil Hg evasion has
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been calculated using the statistical relationships obtained from the measured Hg’ flux and observed
environmental factors such as temperature, solar irradiance, leaf area index, and Hg content (Bash et al.,
2004;Gbor et al., 2006;Lin et al., 2005;Shetty et al., 2008;Xu et al., 1999;Selin and Jacob, 2008;Smith-
Downey et al., 2010). Such an approach oversimplifies the role of environmental factors in the exchange
process because Hg’ flux was measured only in a limited number of locations where the environmental
parameters (such as soil properties and meteorology) are specific to those sites. Using the limited
measurement data for extrapolating the flux estimate in a large geographical area may not representative.
In addition, most of these models treat vegetation as a net evasion source of Hg’, which is inconsistent
with later assessments that suggest vegetation a net sink (Gustin et al., 2008;Hartman et al., 2009). Recent
isotopic tracer studies showed that that plant roots serve as a barrier that prevents translocation of
inorganic Hg in soil to other parts of plants (Cui et al., 2014). It has also been suggested that Hg absorbed
on foliage can be transported to stem and root (Yin et al., 2013). In addition, algorithms representing the
transport resistances at soil and foliage interfaces were developed to calculate the multilayered,
bidirectional flux through a Hg concentration gradient between ambient level and a "compensation" point
inferred from the surface characteristics (Bash, 2010;Bash et al., 2007;Scholtz et al., 2003;Zhang et al.,
2009a;Sutton et al., 2007). This approach is more scientifically sound and mathematically robust. The
model results also seem to be more consistent with those from stable isotope studies (Bash, 2010).
However, the complicated model parameterization makes it difficult to understand the relative importance
of model variables on the simulated flux. It also requires assumptions for numerous model variables that
lack field data to estimate their values. Although the model results can be constrained by air concentration
and wet deposition, the assumptions could increase the uncertainty of model estimates and limits the
improvement of model algorithms.

The objectives of this study are to present an updated Hg’ air-surface exchange model and to

quantitatively examine the relative importance of the physical and environmental variables implemented
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in the model. Coupled with the latest understanding in the partitioning and mass transfer at different
atmosphere-biosphere interfaces, we integrated the bidirectional air-surface exchange model (Bash,
2010;Bash et al., 2007) and the surface resistance schemes of Hg dry deposition and photochemical
reaction (Zhang et al., 2003;Zhang et al., 2009a;Lin et al., 2006) for quantifying the air-surface exchange
of Hg". Two monthly simulations were performed to investigate the seasonal and diurnal variability of the
model-estimated flux. A systematic set of sensitivity simulations using multi-step factorial designs of
experiments were performed to investigate the effect of significant model parameters and their
interconnections. Based on the sensitivity results, processes that control Hg" air-surface exchange over

different natural surfaces are discussed and research needs for future model improvement are proposed.

2 Methods

2.1 Model Description

The total air-surface exchange is the sum of Hg’ fluxes from water, soil (including bare lands and soil
under the canopy) and foliage surfaces. The direction (evasion or deposition) of the flux is driven by the
gradient between atmospheric Hg” concentration and a surface compensation point that represents the Hg"
concentration at the interface between the atmosphere and a natural surface. The magnitude of the flux is
determined by the ratio of concentration gradient to surface resistance (for terrestrial surfaces) or by the
product of overall mass transfer coefficient and concentration gradient (for water surfaces). The
nomenclature and dimension of the entire set of model variables are detailed in Table 1. The

parameterization of each model component is briefly described below.

2.2 Air-water Exchange
The flux over fresh water and oceanic surfaces, F,, is calculated using a two-film mass transfer model

with the transfer rate limited by the diffusion in the water boundary layer (Poissant et al., 2000):
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C,
Fw :KW(CW_I(_ZI_ZYL) (1)

where Ky, is the overall mass transfer coefficient estimated by the wind speed at 10 m above water surface
and the mass transfer ratio of CO,/Hg across the air-water interface (Shetty et al., 2008), C,, is the DGM
concentration in surface water, Hy, is the dimensionless Henry’s law constant. K, and H,, are calculated

using formulation described earlier (Poissant et al., 2000;Lin and Tao, 2003).

2.3 Air-terrestrial Exchange

The terrestrial system is divided into two categories: the canopy biomes (leaf area index, LAI > 0) and the
bare lands (LAI = 0, referring to barren or sparsely vegetated land, bare ground tundra and snow or ice
surface). The total flux from the canopy is made up of the air-soil exchange flux and the air-foliar
exchange flux (air-stomata and air-cuticle). Over the canopy system, a multi-layer canopy resistance
scheme modified after Bash (2010) and Zhang et al. (2003) was applied (Figure 1). Compared to the
earlier mechanistic schemes, this model also (1) includes foliage storage effect is included, (2) considers
photochemical reduction on foliage, and (3) updates the resistance terms. The flux over canopy biomes,

Fnp, 1s estimated as:

At
Fcnp = m (chp = Catm) (2

where At is time duration, R, is the aerodynamic resistance, R, is the quasi-laminar sub-layer resistance,
Cqtm 18 the atmospheric Hg concentration. R, and Ry, are calculated according to (Marsik et al., 2007).
Xenp 18 the overall compensation point parameterized as a weighted average of exchange coefficients at

the air-cuticle, air-stomata, and air-soil interfaces as illustrated in Figure 1 (Bash, 2010;Zhang et al.,

2009a):
Xc, Xs, Xg , Catm
__ Rc'Rs Rg+Rgc Ra+Rp
Xenp =T 1, 1 . 1 (3)

Rc Rs Rg+Rac Ra+Rp
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wherey is the cuticular compensation point, x is the stomatal compensation point, y, is the soil
compensation point, R, is the cuticular resistance, Ry is the stomatal resistance, Ry is the soil diffusion
resistance, R, is the in-canopy aerodynamic resistance. The individual compensation points are

described by Equations 6, 9 and 15.

2.3.1 Air-soil Exchange

In absence of vegetation (when LAI=0), the flux from bare lands (F,;s) can be estimated as:
= a—g (Xg - Catm) 4)

In the presence of vegetation (when LAI > 0), the flux from soil under canopy (F;) is calculated as:

At
F, =
Rg+Rqc

(Xg —X cnp) (5 )

where R, accounts for the resistance of gas diffusion from ground to the lower canopy and is assumed to
be common for all gaseous species (Zhang et al., 2002b). The compensation point at air-soil interface (x4)

can be expressed as (Bash, 2010):

— [Hgo]slH
Xg focKoc

(6)

where [Hg®],, is the concentration of Hg” bound to soil, calculated as a reduction product of Hg(II) using
soil Hg content and a pseudo-first-order rate constant related to solar irradiance (Gustin et al., 2002). H is
Henry's constant parameterized following Andersson et al. (2008). f,. is the fraction of organic carbon in

surface soil (0-5 cm). K, is the partition coefficient of Hg’ between soil organic carbon and water.

Ry is the Hg" diffusion resistance over a ground surface (soil, ice/snow) (Zhang et al., 2002b):

1 Ay ,0 B0
—=_Ho + Hg” (7)
Rg  Rg(sop) Rg(o3)

where Ry (s0,) and Ry o, are the diffusion resistances of SO, and O3, ay 4o is the Hg" scaling factor
based on SO, By 4o is Hg" scaling factor based on Os. The formulation of Ry(s0,) and Ry (o,) has been

described previously (Zhang et al., 2003).
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2.3.2 Air-cuticle Exchange

Air -cuticle exchange flux is calculated as (Bash, 2010):

At
E; :R_C(Xc _chp) (8)
_ [Hg?]
€7 LAP ©)

where LAP denotes the leaf-air partitioning coefficient for Hg” (Rutter et al., 2011), [Hg?] is the
concentration of Hg” bound to foliar cuticular surface, calculated as the photoreduction product of a

fraction of newly deposited Hg(II) on foliar interfaces (Graydon et al., 2009):

[Hgg] = f;"xn[HggI-)’_D] (10)
[Hgé”] =1~ fron — ffixed)[Hgé{ED] (11)
[Hgl'+] = 1ot (12)

where [H géf,}"D] is the concentration loading of total dry deposited Hg(II) on cuticle, [Hg*] is the

concentration of the deposited Hg(II) residing on cuticular surfaces, [Hgl*] is the concentration of Hg(II)
that can be washed off from leaves, f,.x, is the fraction of Hg(II) that can be photo-reduced, ffixeq is the
fraction of Hg(Il) fixed into tissue and not available for re-emission or wash-off, T;j is the leaf thickness.

frxns frixea are parameterized following Smith-Downey et al. (2010). R. is the cuticular resistance

calculated as (Zhang et al., 2002b):

1 = M + 'BHQO (13)
Rc  Reisop)  Reoz)
2.2.3 Air-stomata Exchange
The air-stomata exchange flux is estimated as (Bash, 2010):
At
E = R_s s — chp) (14)
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Hg?
s =l (15)

It is assumed that the uptake of Hg species through stomata is predominantly Hg’ due to its abundance in
the atmosphere (Capiomont et al., 2000;Millhollen et al., 2006;Stamenkovic and Gustin, 2009). As such,
the dissolved Hg" in the stomatal compartment, [Hg?], can be formulated as:

[Hg?] =(1- ffixed)[Hgg,DD] (16)
where [H gg op] is the concentration of newly deposited Hg” stored in the stomatal compartment. The

overall stomatal resistance is calculated as (Zhang et al., 2002b):

— R5t+Rme

R
S 1-Wyt

(17

where Ry is the resistance associated with stomata, Ry, is resistance associated with mesophyll reservoir,
Wy, is the fraction of stomatal blocking under wet condition. The detailed formulation of Ry and Ry, and

W, can be found elsewhere (Zhang et al., 2012;Zhang et al., 2003;Zhang et al., 2002b).

2.4 Modeling Experiments for Sensitivity Analysis

A series of 2-level factorial designs of experiments were performed to assess the sensitivity to changes of
model variables as well as their synergistic and antagonistic interactions. A brief discussion of the use of
factorial design of experiments is provided in the Supplementary Material document. The studied
variables include both physical and environmental parameters. Their respective experimental levels are
show in Tables 2-4. The principle of factor sparsity (Myers et al., 2009) states that the main effects and
lower-order interactions dominate most system responses and the higher-order interactions are not

significant. Therefore, the effect of interaction terms higher than second order was not considered.

For water surface, there are four factors driving the model simulation (Table 2). Therefore, a 2* full

factorial design was applied. For bare lands, the 11 model parameters (Table 3) form a 2'"® fractional
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design (Resolution IV) enabling main effects free from aliasing. The number of runs (32), although
intensive, is still manageable. After this initial screening, a two-level full factorial design was applied for
the significant factors based on a 95% confidence level (results of the 2''® design are shown in
Supplementary Material). For the canopy ecosystem, 15 main factors (Table 4) were selected to form a
2" fractional design (Resolution IV, 64 experiments). In this case, the alias system is more complex
because of the large number of study factors. Therefore, a successive 2" design (Supplementary
Material) was applied to the pre-screened significant factors to obtain 5 most significant factors for a 2’
full factorial design (Supplementary Material). The sensitivity results were illustrated based on the final
full factorial design for watersheds, bare lands, canopy ecosystems. The data analysis of the factorial

experiments was conducted using Minitab®16.

2.5 Model Configuration and Data

The modeling domain is in Lambert Conformal projection covering mainly the Contiguous United States
(CONUS), with 156x118 grid cells at 36-km spatial resolution. Hourly meteorological data were prepared
using the Weather Research and Forecasting (WRF) model Version 3.4 with the Noah Land Surface
Model. The model algorithms were coded in FORTRAN 90 and Network Common Data Form (NetCDF)
version 4.1. The gridded model results were visualized by the Visualization Environmental for Rich Data

Interpretation (VERDI) version 1.4.

A base-case simulation was performed in a summer and a winter month (August & December 2009) to
evaluate the seasonal and diurnal variability of the air-surface exchange. The base case refers to the
modeling utilizing the values listed in Table 1 with the meteorological parameters extracted from WRF
output. In the simulation, the atmospheric Hg’ concentration retrieved from the output of the Hg

extension of Community Multi-scale Air Quality modeling system (CMAQ-Hg) version 4.6 for the same
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modeling period was applied to represent the air concentration of Hg". The simulation does not directly
incorporate the feedback of the air-surface exchange to the air concentration. However, for a regional
model domain (CONUS), natural evasion and deposition of Hg’ does not significantly modify the
ambient concentration (Lin et al., 2005; Gbor et al., 2006), since the time required for air turnover is
relatively short (typically 3-4 days) and the air concentration of Hg is mainly controlled by the boundary
conditions (Pongprueksa et al., 2008). In the model experiments, the concentration of Hg” was tested as a

sensitivity parameter.

3 Results and Discussion

3.1 Results of Base-case Simulations

The model estimates a net emission of 38.4 Mg in the summer month (16.6 Mg from water, 45.0 Mg from
soil and -23.2 Mg from foliage) and 56.0 Mg in the winter month (33.9 Mg from water, 29.5 Mg from soil
and -7.4 Mg from foliage) for the entire domain. The evasion from water body accounts for ~50% of the
total natural emission (the cumulative net release of Hg” caused by the air-surface exchange process)
because of the large water areal coverage in the domain (59%). Vegetation represents a net sink, this is
different from earlier estimates using the evapotranspiration approach (Bash et al., 2004;Shetty et al.,
2008) but consistent with recent observational studies (Gustin et al., 2008;Stamenkovic and Gustin, 2009).
For the terrestrial system, the total emission is 43.9 Mg in two months. Assuming the annual emission is
5-6 times of the two monthly sum and excluding the emission from Canada, Mexico and Caribbean lands,
the model-estimated annual emission in the contiguous US is 118-141 Mg yr'', comparable to the recent
estimates (95-150 Mg yr™) using flux scaling methods (Ericksen et al., 2006;Hartman et al., 2009;Zchner

and Gustin, 2002).

3.1.1 Air-water Exchange

10
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Over water surface, the mean simulated flux is 1.6 and 3.1 ng m™ hr™' in the summer and winter month
(Figures 2a&3a) respectively. Water bodies in the domain are net sources, producing fluxes typically in
the range of 1-4 ng m™ hr”', similar to earlier measurements (Mason et al., 2001a;Andersson et al., 2011).
The spatial distribution is primarily driven by the surface wind speed. Temperature, air Hg” and DGM
concentration play a much less significant role because a constant DGM was assumed (40 ng m™) and the
Hg' level over water was in a narrow range (1.4 ~1.8 ng m™). The Pearsons's correlation coefficient (r)
between flux and wind speed is much stronger than the value between flux and temperature (0.56 vs.
0.18). The flux in the winter month is greater because of stronger winds in the northeastern corner of the
domain. The emission flux does not show clear diurnal variation in both months because wind speed is

the most dominant factor (Figure 4a).

3.1.2 Air-soil Exchange

Soil surfaces have been suggested to be a net source of Hg (Gustin et al., 2008;Hartman et al., 2009),
which is also shown in the base-case model results (Figure 2&3). The mean flux from bare lands (0.7 and
0.6 ng m™ hr' in the summer and winter month) is lower than the value from soil under the canopy (4.3
and 2.7 ng m™ hr'') because of the landuse classification. The bare lands in the domain include sparsely
vegetated land, bare ground tundra and snow/ice land. The flux contribution from such landuse types is
largely from the southern portion of the domain. The simulated flux from soil under canopy is comparable
to those reported at background sites, -0.1~7 ng m™ hr'' (Ericksen et al., 2006;Kuiken et al.,

2008b;Kuiken et al., 2008a;Carpi and Lindberg, 1998).

The simulated Hg’ flux from soil under canopy is controlled by the degree of vegetation coverage (LAI),
air temperature, friction velocity, air Hg concentration and solar irradiation. In the summer month, the

flux in Eastern US is lower due to heavy vegetation coverage that increases the in-canopy aerodynamic
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resistance (Ry) (Zhang et al., 2002a). Higher flux occurs in the Central and Western US because of the
smaller LAI and higher air temperature (Figure 2¢, Figure s8). In the winter month, the higher air
temperature and longer sunlit hours cause the higher flux in the south (Figure 3¢, Figure s8). Among the
environmental parameters, LAI has the greatest influence on the estimated flux (r = 0.45). The spatially
average soil flux for the entire domain shows a typical diurnal variation caused by air temperature and
solar irradiance (Gabriel et al., 2006). The detailed impact of the model variables is discussed in the

sensitivity analysis.

3.1.3 Air-foliage Exchange

Vegetation represents a net sink of Hg’ in the base-case simulations. The mean simulated air-foliar
exchange is -2.2 and -0.7 ng m™ hr”' in the summer and winter month (Figures 2d, 3d). The magnitude is
similar to those measured in August by Ericksen et al. (2003) (a mean flux of -3.3 ng m™ hr" ) and
Millhollen et al. (2006) (-4.1~-0.3 ng m™ hr™"). In summer, the greatest vegetative uptake of Hg” occurs in
the Northeast US because of the dense vegetation coverage. In winter, the uptake becomes much weaker
due to the reduced LAI, particularly in the north (Smith-Downey et al., 2010). The simulated deposition
flux is highly correlated with LAI (r = 0.71 and 0.88 in winter and summer); while the correlations with
friction velocity, GEM, air temperature and solar radiation are comparatively weaker. The diurnal
variation for foliar flux is shown in Figure 4c. Higher deposition occurs during daytime due to the higher
air temperature and solar irradiance (Rutter et al., 2011). The overall diurnal variation in the model

domain exhibits the feature of air-foliage exchange (Figure 4d).

The simulated flux from soil under canopy and foliar surfaces is highly dependent on the resistance terms.
Presently the values of cuticular (Rc), stomatal (Ry) and soil (R;) resistances of Hg are not well understood

(Holmes et al., 2011) and have been estimated by relating to the measured resistance of O3, SO, and H,O

12
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(Bash, 2010;Scholtz et al., 2003;Zhang et al., 2003). There has been experimental efforts to determine R
and R, based on Fick's Law by introducing isotopic Hg tracer to plants grown in an environmentally
controlled chamber (Rutter et al., 2011). The resistances were found to depend on temperature, solar
irradiance and Hg species with reported R and R ranging from 150 to 50000 m s at 0-35°C and 0-170
W m™ (Millhollen et al., 2006;Rutter et al., 2011). The simulated flux in the base case applied similar
resistance values in the model. However, the lack of deterministic relationships between the resistance
terms and environmental parameters still represents an uncertainty and there is a need to better quantify

the resistance for Hg".

3.2 Sensitivities Analysis

3.2.1 Sensitivity of Exchanges over Water Bodies

Figure 5 shows the change of air-water flux due to the change of model variables from the low to the high
experimental level (Table 2). Individually, wind speed is the most significant parameter (p = 0.003)
followed by DGM (p = 0.004) and surface temperature (p = 0.059). On average, increasing wind speed
from 0.001 to 20 m s enhanced the flux by 7.6 ng m~hr™' (p = 0.003); increasing the DGM from 15 to
240 ng m™ increases the flux by 7.0 ng m”hr”' (p = 0.004). A higher air Hg" concentration slightly
decreases the evasion flux. There is a significant synergistic effect caused by wind speed and DGM
concentration (p = 0.004). Increasing both variables simultaneously from the low to high level (Table 2)
causes an additional 48% increase of the evasion flux. The wind speed and surface temperature also have
a synergistic effect, although not as significant (p = 0.059), followed by the effect enhanced by DGM
concentration and surface temperature (p = 0.076). The effects of higher DGM concentration and air Hg"

concentration offset each other, leading to a nearly zero effect on flux (p = 1.000).

In the base case, a uniform DGM concentration was assumed. The spatially constant DGM level
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represents a significant uncertainty since other environmental parameters such temperature, wind speed
can be estimated reliably through meteorological simulations at a high spatial resolution. The mechanism
leading to the net DGM formation in surface water is complex and not fully understood (Qureshi et al.,
2010). It has been suggested that dissolved organic matter (Amyot et al., 1994;Amyot et al., 1997),
hydroxyl radicals (Zhang and Lindberg, 2001) and oxyhalide radicals (e.g. OCI, OBr’) (Lalonde et al.,
2001) can participate in the sunlight-induced processes that produce DGM, in addition, DGM is also
consumed by some oxidation reactions in water bodies. Data on measured net DGM concentration over
vast water bodies are not readily available because of a limited number of cruise campaigns (Mason et al.,
1998;Mason et al., 2001b;Andersson et al., 2011). Strode et al. (2007) and Soerensen et al. (2010)
estimated the global distribution of DGM in sea water and showed that accurate representation of GDM
concentration is key for calculating air-water exchange. More knowledge on the temporal and spatial
distribution of net DGM concentration in surface water can greatly reduce the model uncertainty.
Experimental investigation to better understand the chemical pathways leading to net DGM formation

will also help constrain the model estimate.

3.2.2 Sensitivity of Exchange over Bare Lands

Figure 6 illustrates the model response to the model variables at the two experimental levels in Table 3.
Soil Hg content, friction velocity, air temperature and the scaling factor ;40 (Eq. 7) have a positive
effect on the simulated Hg flux while the soil organic content has a negative effect. On average,
increasing soil Hg content from 50 to 1000 ng g soil enhances the flux by 55.3 ng m™>hr” (p = 0.013);
increasing friction velocity from 0.0001 to 1 m s increases the flux by 54.8 ng m™hr (p = 0.014). On
the other hand, increasing the soil organic content from 0.6 to 10 % reduce the flux by 54.2 ng m™ hr™' (p
=0.015). There are several notable interactions among the model variables. First, the positive effects of

soil Hg content and friction velocity can be completely offset by soil organic content (Figure 6). An
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increase in soil organic content substantially decreases the soil Hg compensation point (Eq. 6), suggesting
the significant role of soil organic matter in retaining Hg from evading (p = 0.025). There is a strong
synergistic effect between friction velocity and soil Hg content (p = 0.022), leading to an additional 46%
increase compared to the sum of the two individual effects (Figure 6). Quasi-laminar sub-layer resistance
(Rp) and aerodynamic resistance (R,) both decrease with increasing friction velocity. Coupled with the
increased soil Hg compensation point at higher soil Hg content (Eq. 6), the flux is greatly enhanced
(Figure 6). Overall, that friction velocity, soil Hg and organic content are the most influential parameters
for Hg exchanges over bare lands. Other pre-screened parameters including temperature, Hg scaling

factor (fug in Eq. 7) and other interaction terms have less significant impact.

3.2.3. Sensitivity of Exchange over Canopy

Figure 7 illustrates the sensitivity of simulated Hg flux over canopy to the model variables at the two
experimental levels in Table 4. For comparison, the sensitivity results for air-soil exchange under canopy
are also shown. It is clear that the forcing of air-canopy exchange is dominated by the air-soil exchange
under canopy at the two experimental levels. This resembles the Hg” emission characteristics observed in
a gas exchange system, which suggested that the evasion from soils is much greater than the emission
from the plants grown in the chamber (Frescholtz and Gustin, 2004;Frescholtz et al., 2003). After the
factor pre-screening step (Figures s2-s7 in Supplementary Material), the simulated flux is particularly
sensitive to the change of five parameters. Friction velocity (positive effect, p = 0.020), soil Hg content
(positive effect, p = 0.028) and soil organic content (negative effect, p = 0.030) are the most significant
model parameters (Figure 7). These effects are similar to the sensitivity results of air-soil exchange over
bare lands (Figures 6 & 7), but slightly weaker based on the p values because of the "shielding" of
vegetation coverage that modifies the values of the resistance terms (Rp and Ryc) (Zhang et al., 2002a).

Highly moist soil (soil moisture content > 20%, Table 4) has a negative effect because it effectively
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increases soil diffusion resistance (Ry) (Zhang et al., 2003), although the effect is less significant (p =

0.289). Air temperature also has a positive effect as anticipated (p = 0.180).

The synergistic effect caused by friction velocity and soil Hg content is significant for the air-canopy
exchange (p = 0.028, Figure 7), enhancing the evasion flux by 47 % (77.8 ng m™ hr™"). Both soil organic
content and highly moist soil condition can offset the positive effects caused by higher friction velocity,
soil Hg content and air temperature at different degrees (Figure 7), with the soil organic content being
more influential. Higher soil organic content at high soil moisture (>20 %) yields a weak positive effect
(p = 0.340), this is interpreted as the combined negative effect of the two parameters is smaller than the
sum of the two individual effects. Overall, these characteristics resemble the air-soil exchange because the

air-canopy exchange is dominated by the air-soil exchange under canopy.

Atmospheric mercury can deposit on the surface of cuticle or be accumulated in leaves through stomatal
uptake (Figure 1). For cuticular exchange, air temperature has a significant positive effect (Figure 8).
Since air-cuticle exchange is mainly deposition (negative flux), this means that a higher air temperature
leads to smaller deposition or greater evasion (p < 0.001). Friction velocity has a strong negative effect
(i.e., higher deposition at higher friction velocity, p < 0.001) on the simulated flux. Higher soil organic
content (p = 0.009) and highly moist (>20%) soil (p = 0.194) increase the simulated flux (i.e., weaken the
deposition) by decreasing the canopy compensation point (y, in Eq. 8). Under the circumstance, Hg
deposits preferentially to soil and therefore a reduced deposition on cuticle. Higher soil Hg content
decreases the flux (p = 0.008) by increasing the overall compensation point () ¢y, in Eq. 8), suggesting
greater deposition on cuticle at higher soil Hg content. For stomatal exchange, the trend of single factor

effect is the same as that of cuticular exchange.
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Several notable interaction effects are observed for foliar exchanges. For cuticle exchange, the deposition
is reversed from deposition to evasion at the high air temperature level, leading to the overall positive
interaction effect for air temperature and friction velocity (Figure 8, p < 0.001). The positive effect of soil
organic content significantly offsets the negative effect of friction velocity (p = 0.010) and soil Hg content
(p=0.016). For stomatal exchange, the only significant interaction effect is between soil organic and Hg
content, which is more dominated by soil organic content. Overall, the foliar exchange is primarily
controlled by air temperature and friction velocity because the resistance terms can be affected by the two
variables. This is in contrast to the evapotranspiration approach where soil Hg content plays a

predominant role in simulated Hg’ evasion flux (Bash et al., 2004;Gbor et al., 2006).

In this analysis, the effect of solar irradiance is not as significant as the selected parameters under the
resistance model scheme and has been ruled out during the pre-screening for the model variables (Section
2.4 and Figures s2~s6). In the model, solar irradiation can influence the flux in three ways: (1) through
modifying the rate constant of Hg(II) reduction in soils and foliage (Egs. 6 &10 &16), (2) through forcing
the change of aerodynamic resistance (R, and Ryc), and (3) through forcing the change of cuticular and
stomatal resistance terms (R; and Ry). For air-soil exchange, the effect of solar irradiance on the reduction
rate constant is the most sensitive process (Egs. 6 & 10). The photoreduction of Hg(II) in soils has been
suggested to be responsible for the increased soil flux observed under sunlit condition (Gustin et al.,
2002). There have been kinetic studies showing that increasing UV-A intensity by 75% approximately
doubles the photoreduction rate in the aqueous phase (Qureshi et al., 2010). However, the effect of lights
on the kinetics of Hg(II) reduction in soils is poorly understood. In this modeling, the photoreduction rate
constant was set to a mean value (Eq. 6). This limits a full examination of the true impact of solar
irradiation on the simulated Hg flux. Results from experimental studies on Hg(II) photoreduction rates

will help reduce this model uncertainty. For foliar exchange, solar irradiation has a weak positive effect
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403  on the flux (i.e., slightly weakens deposition, Figure s4), but has a significant positive effect on the

404  stomatal exchange (p= 0.004, Figure s5).

405

406 4 Conclusions

407  Anupdated model for estimating the bidirectional air-surface exchange of Hg is presented based on the
408 current understanding of surface resistance schemes. From the base-case results, water and soil surfaces
409  are net sources and vegetation is a net sink of Hg’. Each natural surface exhibits a different diurnal and
410  seasonal variation. Sensitivity analysis of model variables using a 2-level factorial design of experiments
411  shows that atmospheric shear flows (surface wind over water and friction velocity of terrestrial surfaces),
412  dissolved gaseous mercury (DGM) concentration, soil organic and Hg content, and air temperature are the
413  most influential factors controlling the magnitude of the atmosphere-biosphere exchange of Hg’.

414  However, the positive effect of friction velocity and soil Hg content on the evasion flux from soil and
415  canopy can be greatly offset by the negative effect of soil organic content. Significant synergistic effects
416  are identified between surface wind and DGM level for water surface, and between soil Hg content and
417  friction velocity for soil surface, leading to ~50% enhanced flux in the combined effect compared to the
418  sum of their individual effects. The air-foliar exchange is mainly controlled by surface resistance terms
419  controlled by environmental parameters such as solar irradiation and air temperature.

420

421  The uncertainty in this modeling assessment is primarily from the lack of knowledge in (1) the spatial
422  distribution of organic and Hg content in soil and DGM concentration in water, (2) the reduction

423  mechanism and kinetics of Hg(II) in soil and water, and (3) the values of resistance terms over different
424  natural surfaces. More research in providing geospatial distribution of Hg in water and soil will greatly
425  improve the model estimate. Further elucidation on the interaction of Hg and organic carbon in top soil

426  and surface water as well as quantification of the surface resistance terms specific to Hg species will also
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help improve the model scheme. Recent field and experimental investigations have suggested that organic
carbon in soil potentially shapes the distribution of Hg in forest at continental scales (Obrist et al., 2011)
and that the long-term Hg evasion from soil is highly related to the Hg and organic carbon interactions
(Smith-Downey et al., 2010). Given the predominance of soil organic content in reducing soil Hg evasion
flux using the mechanistic approach in this study, soil organic content is likely the controlling factor

determining the intensity of air-soil Hg” exchange.
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Table 1. Model variables and units in the base-case simulation

Term Description Value or units

Fu Flux from water bodies ng m™ hr'

Kw Mass transfer coefficient of mercury through water layer ~ m hr’'

Cw DGM concentration 40 ng m™ water *

Hy Henry’s law constant under water conditions dimensionless

Fonp The flux over canopy biomes ng m~hr'!

At Time duration ]

R, Aerodynamic resistance sm’

R, Quasi-laminar sub-layer resistance sm’”

Catm Atmospheric Hg concentration ng m”>

Xenp The total compensation point ngm”

Xe Cuticular interfaces compensation point ngm”

Xs Stomatal interfaces compensation point ng m”>

Xg Soil interfaces compensation point ng m>

R, cuticular resistance sm’

Ry stomatal resistance sm’

Ry soil diffusion resistance sm’

R, in-canopy aerodynamic resistance sm’

Fyis the flux from bare land soil ng m>

[Hgly elemental mercury content bound to organic matter ng g soil

H Henry's Law constant in soil condition dimensionless

foc fraction of organic carbon in topsoil (0-5cm) 2% (dimensionless) "

Ko soil organic carbon to water partitioning coefficient m’ water g organic carbon

[Hg(1I)]s; Hg(II) content in the soil 90 ng g soil ©

Ry(s0,) SO; soil diffusion resistance sm’

Rg(04) O; soil diffusion resistance sm’”

Ay go Hg" scaling factor basing on SO, 0 (dimensionless) ¢

Brgo Hg" scaling factor basing on Os 0.1 (dimensionless) °

LAP leaf-air partitioning coefficient for Hg’ between leaves 30000 (dimensionless) ©
and air

[Hg?] Hg" “™*" bound to foliar cuticular surface ng m” leaf
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674

[Hgd™]
[Hgggu]

[Hgw ]
fran
frixed

Ty

[Hgs]
[HQQ,DD]

Rt
Rme
W

newly dry deposited Hg(II) residing on cuticular surfaces

the total dry deposited Hg(II) loading on cuticular
compartment

Hg(II) leaf wash concentration

fraction of Hg(II) potentially photo-reduced to Hg"
fraction of Hg(Il) being fixed into tissue

leaf thickness

Dissolved elemental mercury in stomatal compartment
deposited Hg concentration stored inside stomatal
compartment

resistance associating stomata apertures

resistance associating mesophyll reservoir

fraction of stomatal blocking under wet condition

ng m~ leaf

ng m” leaf

0.04 ng m™ leaf ®
dimensionless
dimensionless
0.000152m"

ng m” leaf

0.39 ng m? leaf hr'’

sm’
sm’

dimensionless

* Value for base-case simulation, Xu et al. (1999);

®For 0-20 cm topsoil, the bulk density is 1.1-1.3 g cm™ and organic carbon content is 3.3 kg m™ in the US

(Calhoun et al., 2001;Guo et al., 2006), so assuming in the 0-5 cm topsoil foc is 2%;

¢ Value for base-case simulation, Bash (2010) ;

4 Basing on the negligible solubility (Henry's constant=0.139 M atm™) and chemical inertness (Zhang et

al., 2009b;Zhang et al., 2012) ;
¢ Zhang et al. (2012);
TRutter et al. (2011a);

£ Value for base-case simulation, Frescholtz et al. (2003);

" Value for base-case simulation, Abrams and Kubiske (1990);

"Value for base-case simulation, Poissant et al. (2008).
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675  Table 2. Examined model variables and the experimental levels of factorial design for air-water exchange

Term  Description Low level High level
T Sea surface temperature (°C) 20 35¢°

GEM  Air Hg" concentration (ng m®) 1.0° 20°
DGM  Dissolved Hg” concentration in surface water(ng m™) 15°¢ 240 ¢

W Wind speed at 10 m above water surface (ms™) 0.001¢ 209

676  * Kwun and You (2009);

677 " According to global background of air Hg® at 1.1~1.7 ng m® (Lindberg et al., 2007);
678  “ Morel et al. (1998);
679 ¢ Andersson et al. (2011).
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Table 3. Examined model variables and the experimental levels of factorial design for air-soil exchange

over sparsely vegetated land, bare ground tundra and snow/ice land

Term Description Low level High level
T Air temperature at 2 meters (°C) -2 40

Q2 Water vapor mixing ratio (Kg Kg™) 0.0005 * 0.05°
foe Fraction of organic carbon in surface soil 0.006° 0.1°
UST Friction velocity(m s™) 0.0001¢ 1.0¢
SM Soil Hg content (ng g soil) 50 ¢ 1000 ©
GEM Air Hg" concentration (ng m™) 1.0 2.0
SNOWH  Snow depth (m) of 0.4999
Brigo Scaling factor of reactivity Hg 0.1% 02"
DC Dew condition No' Yes'
RC Rain condition No! Yes!
MC Moist soil condition No * Yes *

* Kwun and You (2009);

" Suggested default value for modeling of volatilized contaminant to air by USEPA (2004);
¢ Upper limit of the forest soils (Jones et al., 2004);

4 Akkarappuram and Raman (1988)

¢ Carpi and Lindberg (1998);

" Has effect on ground and cuticular resistance, Zhang et al. (2003);

¢ Zhang et al. (2012) ;

" Zhang et al. (2009a) ;

" Air temperature below dew point represents low level and vice versa, has effect on ground and cuticular

resistance (Zhang et al., 2003);
I Has effect on ground and cuticular resistance terms (Zhang et al., 2003) ;
¥Soil moisture > 20% represents low level and vice versa, the high level suggests highly moist soil

(Zotarelli et al., 2010).
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Table 4. Examined model variables and the experimental levels of factorial design for air-canopy exchange

Term Description Low level High level
T Air temperature at 2 meters (°C) 2 40

foe Fraction of organic carbon in surface soil 0.006 0.1

UST Friction velocity(m s™) 0.0001 1.0

SM Soil total Hg content (ng m™) 50 1000

Brigo Scaling factor of reactivity Hg 0.1 0.2
SNOWH Snow depth (m) 0 0.4999
LAI Leaf area index (m”> m™) 1.0° 50°

SR Solar irradiation (W m™) 0 1000
Leaf Hg Hg concentration in leaf rinse (ng m™ leaf) 0.02° 2.10°¢
Stomata Hg  Hg previously deposited to leaf stomata (ng m™ leaf) 0.13 ¢ 0.59 ¢
GEM Air Hg" concentration (ng m™) 1.0 2.0

LAP Leaf-air partitioning coefficient (m® air m™ leaf) 30000 © 6000000 ©
DC Dew condition No Yes

RC Rain condition No Yes

MC Moist soil condition No Yes

*Gower et al. (1999)

® Frescholtz et al. (2003)
“Fay and Gustin (2007)
4 Poissant et al. (2008)

¢ Rutter et al. (2011)
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703  Figure 1. Resistance scheme implemented in the air-surface exchange model following Sutton et al. (2007)
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Figure 2. Monthly mean of the simulated Hg" flux (ng m™ hr™") in the summer month: (a) flux from water

body, (b) flux from bare lands, (c¢) flux from soil under the canopy, and (d) flux from foliage.

32



711

712
713

714

4.5

4.0

35

3.0

2.3

2.0

15

10

05

0.0

109
100
a1
82
73
64
55
46
37
28
19
10

T T T T T T T T T T T T T
1 26 51 76 101 126 151 1 26 51 76 101 126 151

Figure 3. Monthly mean of the simulated Hg" flux (ng m™ hr™") in the winter month: (a) flux from water

body, (b) flux from bare lands, (c¢) flux from soil under the canopy, and (d) flux from foliage.
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content; b denotes scaling factor for Hg reactivity (Bugo). “*” denotes interaction effects.
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surface air temperature; foc denotes fraction of organic carbon in soil; UST denotes friction velocity; SM

denotes soil Hg content; MC denotes soil moisture. “*” denotes interaction effects.
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MC denotes soil moisture. denotes interaction effects.
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1. Use of 2P factorial design for

Design of experiments is a series of tests in which purposeful changes are made to the
input variables of a process systematically and the effects on response variables are
measured. It is widely applied in the experiments involving many influencing factors,
when it is necessary to study the combined effect of these factors. For a two-level design
involving a high-level and a low-level value for each factor, the number of all possible
combinations is 2% (for example, for two factors the combinations is low-low, low-high,
high-low and high-high), which also represent the number of experiments. This
exponential relationship rapidly increases the number of experiments when the number of
studied factors is increased. To reduce the experimental effort without losing the analytical
power of the experiments, the number of experiment can be decreased strategically by
choosing the experiments that investigate the main effects (i.e., the effect of single factor)
and interaction effects of lower order. This is called fractional design and the number of
experiment can be reduced by 2° times (i.e., the number of experiment becomes 2P). The
term “Resolution” is used by statisticians to indicate how the experiments are chosen. For

IV resolution design, all the main effects are completely isolated from confounding with



all other experimental runs and the second-order (two-factor) interactions are maintained
without confounding with higher order interactions. Based on the factorial experiment
results, statistical test can be performed to understand the significance of each factor using

P value.

An excellent online presentation on factorial design of experiments is also available at

http://www.jhuapl.edu/techdigest/td/td2703/telford.pdf.

. Initial parameter screening for bare lands

11-6
2

Normal plot of the standardized effects of (Figure s1) suggests significant effect from

fraction of organic carbon, friction velocity, soil Hg content at 95% confidence level. The

P-value of main effects from air temperature at 2 meters and scaling factor for reactivity of

mercury on ozone (B 40) were close to 0.05 (0.069 and 0.073, respectively). For the
second order interactions, air temperature and B0 are important. Therefore fraction of

organic carbon, friction velocity, soil Hg concentration, air temperature, B0, were

chosen for the final 2° full factorial design.

. Initial parameter screening for canopy system

The alias structure of the 2> fractional design is complex (Figure s2). To ensure that the
most significant factors are selected for the final full factorial design, all parameters
confounded in alias system were chosen to run 2 experiment except for air Hg®
concentration because its weak significance (P = 0.437). From the results of the 2'*°

fractional design (Figure s3) result, the fraction of organic carbon, friction velocity, soil
Hg concentration, By 40, soil moisture condition are significant. The P-value of main

effects from Hg previously deposited to leaf stomata and air temperature were close to

0.05 (0.069 and 0.136, respectively). Therefore, fraction of organic carbon, friction
velocity, soil Hg concentration, By 40, soil under moisture condition, Hg previously

deposited to leaf stomata and air temperature were chosen to for another 2" fractional



experiments. Based on the results (Figure s7), the main effects from fraction of organic

carbon, friction velocity, soil Hg concentration are significant. To get the full design, Hg

previously deposited to leaf stomata and S, ,0 were eliminated because of the relatively

weaker significance.
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Figure s1: Results of 2'*° fractional design for bare lands. Significance at P<0.05. T denotes
air temperature at 2 meters, Q2 denotes water vapor mixing ratio, foc denotes fraction of
organic carbon in surface soil, UST denotes friction velocity, SM denotes soil total Hg
concentration, GEM denotes air Hg(0) concentration, SNOWH denotes snow depth, b
denotes scaling factor of reactivity Hg, DC denotes dew condition, RC denotes rain condition,
MC denotes moist soil condition. Alias information for significant terms: T*DC +
Q2*SNOWH + foc*UST + SM*b, T*RC + Q2*MC+ foc*b + UST*SM, foc*SM + UST*b +
SNOWH*MC + DC*RC.
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Figure s2: Results of 2 fractional design for canopy system. Significance at P<0.05. T
denotes air temperature at 2 meters, foc denotes fraction of organic carbon in surface soil,
UST denotes friction velocity, SM denotes soil total Hg concentration, b denotes scaling
factor of reactivity Hg, SNOWH denotes snow depth, LAI denotes Leaf area index , SR
denotes solar irradiation, Leaf Hg denotes Hg concentration in leaf rinse, Stomata Hg
denotes Hg previously deposited to leaf stomata, GEM denotes air Hg(0) concentration, LAP
denotes leaf-air partitioning coefficient, DC denotes dew condition, RC denotes rain
condition, MC denotes moist soil condition. Alias information for significant terms: T*LAI +
foc*UST, T*SR + foc*SM, UST*SM + LAI*SR + GEM*LAP, b*Stomata_Hg + RC*MC.



8

)

Percent
8 88883 8

w
i

Effect Type

® Not Significant
B Significant

Factor Name

FRARYIOTMTMONO®>

foc

UST

SM

LAI

SR

b
Stomata_Hg
SNOWH

RC

MC

1 T T
-5 0 5
Standardized Effect

10

Figure s3: Results of 2'*° fractional design for canopy system. Significance at P<0.05. T
denotes air temperature at 2 meters, foc denotes fraction of organic carbon in surface soil,
UST denotes friction velocity, SM denotes soil total Hg concentration, LAI denotes leaf area
index, SR denotes solar irradiation, b denotes scaling factor of reactivity Hg, Stomata_Hg
denotes Hg previously deposited to leaf stomata, SNOWH denotes snow depth, RC denotes
rain condition, MC denotes moist soil condition. Alias information for significant terms:
T*SR + foc*UST + SM*b + Stomata_ Hg*MC, T*SNOWH + foc*b + UST*SM +
LAI*Stomata_Hg, foc*LAI + SM*MC + b*Stomata_Hg, foc*Stomata_Hg + UST*MC +

LAI*b + SR*RC.
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Figure s4: Results of 2'*° fractional design for foliage. Significance at P<0.05. T denotes air
temperature at 2 meters, foc denotes fraction of organic carbon in surface soil, UST denotes
friction velocity, SM denotes soil total Hg concentration, LAl denotes leaf area index, SR
denotes solar irradiation, b denotes scaling factor of reactivity Hg, Stomata_Hg denotes Hg
previously deposited to leaf stomata, SNOWH denotes snow depth, RC denotes rain
condition, MC denotes moist soil condition. Alias information for significant terms: T*SR +
foc*UST + SM*b + Stomata_ Hg*MC, T*SNOWH + foc*b + UST*SM + LAI*Stomata_Hg,

foc*LAI + SM*MC + b*Stomata_Hg, foc*Stomata_Hg + UST*MC + LAI*b + SR*RC.
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Figure s5: Results of 2**® fractional design for cuticle. Significance at P<0.05. T denotes air
temperature at 2 meters, foc denotes fraction of organic carbon in surface soil, UST denotes
friction velocity, SM denotes soil total Hg concentration, LAl denotes leaf area index, SR
denotes solar irradiation, b denotes scaling factor of reactivity Hg, Stomata_Hg denotes Hg
previously deposited to leaf stomata, SNOWH denotes snow depth, RC denotes rain
condition, MC denotes moist soil condition. Alias information for significant terms: T*SR +
foc*UST + SM*b + Stomata_ Hg*MC, T*SNOWH + foc*b + UST*SM + LAI*Stomata_Hg,
foc*LAI + SM*MC + b*Stomata_Hg, foc*Stomata_ Hg + UST*MC + LAI*b + SR*RC.
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Figure s6: Results of 2 fractional design for stamata. Significance at P<0.05. T denotes air
temperature at 2 meters, foc denotes fraction of organic carbon in surface soil, UST denotes
friction velocity, SM denotes soil total Hg concentration, LAl denotes leaf area index, SR
denotes solar irradiation, b denotes scaling factor of reactivity Hg, Stomata_Hg denotes Hg
previously deposited to leaf stomata, SNOWH denotes snow depth, RC denotes rain
condition, MC denotes moist soil condition. Alias information for significant terms: T*SR +
foc*UST + SM*b + Stomata_ Hg*MC, T*SNOWH + foc*b + UST*SM + LAI*Stomata_Hg,
foc*LAI + SM*MC + b*Stomata_Hg, foc*Stomata_ Hg + UST*MC + LAI*b + SR*RC.
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Figure s7: Results of 2" fractional design for canopy system. Significance at P<0.05. T
denotes air temperature at 2 meters, foc denotes fraction of organic carbon in surface soil,
UST denotes friction velocity, SM denotes soil total Hg concentration, MC denotes moist soil
condition. Alias information for significant terms: T*SR + foc*UST + SM*b +
Stomata_Hg*MC, T*SNOWH + foc*b + UST*SM + LAI*Stomata_Hg, foc*LAIl + SM*MC
+ b*Stomata_Hg, foc*Stomata_Hg + UST*MC + LAI*b + SR*RC.
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Figure s8: (a) the average spatial distribution of LAl (m* m) in the summer month; (b) the
average spatial distribution of LAl (m* m?) in the winter month; (c) the average spatial
distribution of air temperature at 2 meters (K) in the summer month; (d) the average spatial

distribution of air temperature at 2 meters (K) in the winter month
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