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Abstract. In this study, we investigate the ability of the chemistrgnsport model (CTM) B-
LAIR 3D of the air quality modelling platform®&.yPHEMUSto simulate lidar backscattered profiles
from model aerosol concentration outputs. This invedtigais an important preprocessing stage
of data assimilation (validation of the observation opamat To do so, simulated lidar signals are
compared to hourly lidar observations performed duringMiiEeEGAPOLI (Megacities: Emissions,
urban, regional and Global Atmospheric POLIution and ctereffects, and Integrated tools for as-
sessment and mitigation) summer experiment in July 200@reva ground-based mobile lidar was
deployed around Paris on-board a van. The comparison isrpetl for six different measurement
days, 01, 04, 16, 21, 26 and 29 July 2009, corresponding ferelift levels of pollution and dif-
ferent atmospheric conditions. OverallpEyPHEMUS reproduces well the vertical distribution of
lidar signals and their temporal variability, especiatly ©1, 16, 26 and 29 July 2009. Discrepancies
on 04 and 21 July 2009 are due to high-altitude aerosol laygnich are not well modelled. In
the second part of this study, two new algorithms for assitini§) lidar observations based on the
optimal interpolation method are presented. One algordhalyses Ply, (particulate matter with
diameter less thatD pm) concentrations. Another analysesPMparticulate matter with diameter
less thar2.5 um) and PM 5_1¢ (particulate matter with a diameter higher than 2.5 um amnetto
than 10 pum) concentrations separately. The aerosol siimogatvithout and with lidar data assimi-
lation are evaluated using the Airparif (a regional operadi network in charge of air quality survey
around the Paris area) data base to demonstrate the fitpsibd the usefulness of assimilating lidar
profiles for aerosol forecasts. The evaluation shows thiat assimilation (DA) is more efficient at
correcting PMy than PM 5, probably because P} is better modelled than P)M. Furthermore,
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the algorithm which analyses both BMand PM 5_1, provides the best scores for RM The
averaged RMSE of PM is 11.63 pgm? with DA (PM, 5 and PM 5_10), against 13.69 ug m
with DA (PMyg) and 17.74 pgm? without DA on 01 July 2009. The averaged RMSE of BRM
is 4.73 ugnt? with DA (PMy.5 and PM 5_10), against 6.08 pgm with DA (PM;,) and 6.67
ug n2 without DA on 26 July 2009.

1 Introduction

Aerosols are key air quality species to monitor and modehag tmpact vegetation and as they
impact human health by penetrating the respiratory systehieading to respiratory and cardiovas-
cular diseases (Kelly et al., 2011; Lauwerys et al., 200&kaoy and Pope, 1996). They also impact
visibility (Wang et al., 2009), and they represent an uraertomponent of climate changes due to
their effects on the Earth’s radiative budget (Intergowsent Panel on Climate Control (IPCC),
2007). For air quality, in order to simulate and predict jgtetconcentrations, modellers have devel-
oped various chemistry transport models (CTM), e.g. EMER@Rean Monitoring and Evaluation
Programme) (Simpson et al., 2003), LOTOS (Long Term Ozonaukition) - EUROS (European
Operational Smog) (Schaap et al., 2004), CHIMERE (Hodz#t.e2006), DEHM (Danish Eulerean
Hemispheric Model) (Brandt et al., 2007) and POLYPHEMUS{8at et al., 2007). However, the
aerosol vertical distribution is poorly quantified, beco$numerous uncertainties on their sources
(direct emissions) and on processes affecting their faomae.g. nucleation, condensation, evap-
oration, and coagulation, as well as on meteorological itimms$. Since aerosol lifetime ranges
from 1 to 10 days (Seinfeld and Pandis, 1998), improvements in the septation of their vertical
distribution may lead to improved surface concentratiémwér error and higher correlation against
observations) (Wang et al., 2013).

Various measurement types have been used to evaluate tioeletsmThe most frequently used
data arein situ surface measurements, e.g. AirBase (http://www.eegaiwra/) and EMEP over
Europe, BDQA (Base de Doaes de la Qualkt de I'Air) (Sartelet et al., 2007; Konovalov et al.,
2009). However, they do not provide direct information ortieal profiles.

Satellite passive remote sensors (e.g. the Moderate Riesolionaging Spectroradiometers (MODIS))
and sun-photometer surface stations (e.g. the AErosol ROWB Twork (AERONET)) have greatly
enhanced our ability to evaluate such models. Comparisemsien observed and simulated Aerosol
Optical Depth (AOD) have been performed for global modeld gegional models (Kinne et al.,
2006; Tombette et al., 2008¢R et al., 2010). However, instruments, such as sun photosnede
only retrieve column-integrated aerosol properties amdacdy work during daytime.

Since accurate vertical profiles of aerosols can be meabyradrosol lidars, lidar measurements
were used in several campaigns, for example to evaluateghsport of particles (Chazette et al.,

2012). Moreover, aerosol lidar networks, such as the Eanogeerosol Research Lidar Network
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(EARLINET), are being developed &t situ sites. In space, measurements are performed with
the Cloud-Aerosol Lidar with Orthogonal Polarisation (QRIP) lidar (Winker et al., 2007). Li-
dar measurements have been used for the validation of denasiels. For example, Hodzic et al.
(2004) compared vertical profiles simulated by CHIMERE wiithse observed by lidars, from EAR-
LINET, and Stromatas et al. (2012) used observations frarQALIOP space-based lidar. Royer
et al. (2011) used an optical-to-mass relationships (ynmamurban and rural) to retrieve the PM
(particulate matter with diameter less thaih um) concentrations from lidar signals (Raut et al.,
2009a,b). In Royer et al. (2011), lidar-derived RMtoncentrations were compared with simula-
tions from RPoLYPHEMUS and CHIMERE during the MEGAPOLI (Megacities: Emissionsham,
regional and Global Atmospheric POLIution and climate &feand Integrated tools for assessment
and mitigation) summer experiment in July 2009.

Data assimilation (DA hereafter) can reduce the unceréaim input data such as initial or bound-
ary conditions by coupling models to observations (Bouttied Courtier, 2002). In air quality,
applications of DA to PM, forecast usindn situ surface measurements have been performed by
Denby et al. (2008) and Tombette et al. (2009) over Europe Pagowski et al. (2010); Pagowski
and Grell (2012); Li et al. (2013) over the United States ofekita. Over Europe, the efficiency
of assimilating lidar measurements to improve fgNbrecast has been compared to the efficiency
of assimilatingin situ surface measurements by Wang et al. (2013). Using an OhgeByistem
Simulation Experiment (OSSE), they suggested that thendasion of lidar observations may be
more efficient to improve PN forecast, although it depends on the number of lidar statised.
However, Wang et al. (2013) did not directly assimilate tidar signal, but they used a relation
between mass concentration and optical properties of famil@erosol. Although this kind of rela-
tion has been determined for pollution aerosols over Grdzads (Raut et al., 2009a), it needs to
be generalised to other measurement sites before opetfiassimilating the mass concentration
converted from the lidar signal. Moreover, the uncertalimied to the estimation of mass concen-
trations may be abo5% (Raut et al., 2009a) which is mostly due to uncertaintiesstingating
the specific cross sections. Because uncertainties indaedignal may be less thaf, it is more
accurate to directly assimilate lidar signals.

This paper aims at evaluating the lidar signals simulateBdiyr PHEMUS and at testing new DA
algorithms for assimilating lidar signals. We used meas@rgs performed during the MEGAPOLI
summer experiment, when a ground-based mobile lidar (GBWsl§ deployed around Paris on-
board a van. Measurements from a ground-basesitu lidar at Saclay were also performed on
01 July 2009. The evaluation of lidar signals can also berdsghas a preprocessing stage of DA
(validation of the observation operator).

This paper is organised as follows. Section 2 describestpergnent setup, i.e. the chem-
istry transport model used ¢RYPHEMUS) and the observations. In section 3, the lidar observation

operator is presented. Section 4 describes the evaludtibe simulation within situ surface mea-



surements and AERONET data. Results of the comparisonebatabserved and simulated lidar
95 signals are shown in section 5. Two new algorithms for thévaksgion of lidar observations and
results are shown in section 6. The findings are summarisdiaoussed in section 7.

2 Experiment setup
2.1 PoLAIR3D model

In this study, the BLAIR3D air quality model (Sartelet et al., 2007) of the air qyaptatform

100 PoLYPHEMUS, available at http://cerea.enpc.fr/polyphemus/ andritesd in Mallet et al. (2007),
is used to simulate air quality over the Greater Paris arezrogols are modelled using the Slze-
REsolved Aerosol Model (SIREAM-SuperSorgam), which iscdiégd in Debry et al. (2007) and
Kim et al. (2011). SIREAM-SuperSorgam includgsaerosol species3 primary species (mineral
dust, black carbon and primary organic speciésporganic species (ammonium, sulfate, nitrate,

105 chloride and sodium) antl2 organic species. Five bins logarithmically distributectiothe size
range0.01 pm - 10 pm are used. The chemical mechanism CBO05 (Carbon Bond web3its
used for the gas chemistry (Yarwood et al., 2005p.L RR3D/SIREAM has been used for several
applications. For example, it was comparedriaitu surface measurements for gas and aerosols
over Europe by Sartelet et al. (2007, 2012); Couvidat et28)12), over Greater Paris by Couvidat

110 et al. (2013), it was compared to AERONET data over Europe dipbette et al. (2008) and to
satellite data by Zhang et al. (2013), and it was compare&n-terived PM, over Greater Paris
during MEGAPOLI by Royer et al. (2011).

2.2 Modelling setup and observational data

The modelling domain is the same as the one used in Royer(204!1) and Couvidat et al. (2013).
115 It covers the Greater Paris ared.f° £,3.5°E] x [47.9°N, 50.1° N]) with a horizontal resolution
of 0.02° x 0.02°. Because Royer et al. (2011) show that limited vertical rhogsolution leads to
much smoother vertical profiles than those deduced from $idmals, a finer vertical resolution is
used with 23 vertical levels from the groundit2000 m, instead of nine vertical levels in Royer et al.
(2011). The simulations are carried out for one month fag@dune ta30 July 2009. Meteorological
120 inputs are the same as in Couvidat et al. (2013). They arelaieauwith the Weather Research &
Forecasting (WRF) model (Skamarock et al., 2008) using aarudanopy model and an undated
Corine land-use data base (Kim, 2011) with the YSU pararnset&wn (Hong et al., 2006) for the
Planetary Boundary Layer (PBL) dynamics (Kim et al., 2018hthropogenic emissions of gases
and aerosols are generated with the Airparif (the Parisgility agency) inventory for the yeaf05.
125 Boundary conditions for gaseous and particulate species@#ained from nested simulations over
Europe and France, presented by Couvidat et al. (2013).
The ground based mobile lidar (GBML) used during the MEGAP@ampaign is based on an
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ALS450 lidar commercialised by the LEOSPHERE company aitahily developed by the Com-
missariat 'Energie Atomique (CEA) and the Centre National de la Reche Scientifique (CNRS)
(Chazette et al., 2007). It provides lidar measurement&amndn. The main characteristics of this
lidar are detailed in Royer et al. (2011). This system isipaldrly well-adapted to air pollution
and tropospheric aerosol studies thanks to its full oveaghed at about 150-200 m height and its
increased vertical resolution @f5 m. Measurement days of 01, 04, 16, 21, 26 and 29 July 2009,
which correspond to different levels of pollution from Adnif (low, moderate or high), are used for
comparisons to the lidar signal. Moreover, ground-baseitu lidar measurements were performed
at Saclay 48.7° N,2.14° E, 30 m a.s.l.) on 01 July 2009 from 06:49 to 16:44 UTC (the Isipeare

in Fig. 1). These measurements are used for both the coropaaisd the assimilation of lidar
observations.

Airparif is the regional operational network in charge afguality survey around the Paris area
(http://lwww.airparif.asso.fr/). It provides hourly gasand/or aerosol concentrations (Rvand
PM 5) measurements. Figure 1 shows the location of the Airptatfans with red squares and/or
the black triangles. There are 17 stations at which f&hd/or PM ; concentration measurements
are performed.

The AERONET (AErosol RObotic NETwork) program is a fedesatof ground-based remote
sensing aerosol networks established by NASA and PHOTOM&.(0f Lille 1, CNES, and CNRS-
INSU), which provides a long-term, continuous and readdgessible public domain database of
aerosol optical measurements performed by sun-photosiétetben et al., 1998). Sun-photometers
measure AOD at different wavelengths ranging from 340 tod1f¥d. AOD data are computed for
three data quality levels: Level 1.0 (unscreened), Leve(dloud-screened), and Level 2.0 (cloud-
screened and quality-assured). The uncertainty of AOD areatents is less than 0.02 (Holben
et al., 2001). For this study, there are 2 available statomes Greater Paris: Paris (urban station,
48.87° N, 2.33° E, 50 m a.s.l.) and Palaiseau (suburban stati8r0° N, 2.21° E, 156 m a.s.l.)
(the green discs in Fig. 1). In this paper, Level 2.0 AOD da&t34® and 380 nm are used to derive
AOD data at 355 nm following the Angétm law:

355\
Al =A 40)( —
0OD(355) 0OD(340) (34()) , (1)
whereq is the Angstém exponent defined by
[ AOD(340) 380
a—m(/m@sm)/ In (sm) @

3 Methodology

Figure 2 describes the methodology used for lidar signaletting from the outputs of the air-quality
model and for comparisons to measurements (aerosol ceatentmeasurements, AOD data and
lidar vertical profiles). This section presents the methoglp used in BLYPHEMUS to derive the
lidar observation operator.
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3.1 Modelling of lidar signals

The range-corrected lidar signBR, measured at an altitudeis defined by Collis and Russell
(1976)

PR2(2) =C(Bm(2)+ Ba(2))exp (—Q/OZ (am(2) —&—oza(z’))dz’) , (3)

whereg,, (resp. 8,) is the molecular (resp. aerosol) backscatter coefficiept(resp. a,) is the
molecular (resp. aerosol) extinction coefficient, @& the instrumental constant for each channel
depending on the technical characteristics of the emittimijreceiving optics. In order to eliminate
the instrumental constant (because it is unknown), BRs normalised as follows

Zre
H(z) = Pl;ljéz) - ﬂj(’zgig:gef)exp (2 / f(ozm(z')—l—aa(z’))dz’), (4)
wherez,¢ is taken at an altitude in the molecular zone. In equationt¢4@stimate the normalised

lidar signalH, four optical parameters,,, 5., a,, anda, are needed.
The molecular backscatter coefficient,() at the wavelength of the incident light is calculated
by Nicolet (1984)

P
*SRay
kgT R

ﬂm = (5)

where P is the pressure] is the temperaturesg is the Boltzmann constant, and the Rayleigh
scattering cross sectiof,y is given by

SRay — 4.678.10729. )\~ (3:916+0.074:A+0.05/X) (6)
The molecular extinction coefficientf,) is given by Nicolet (1984)

8
Om = gﬁm- (7)

Aerosol extinction and backscatter coefficients &ndc,) are functions of the particle sizes, of
the aerosol complex refractive index (ACRI) of partictesand of the wavelength of the incident
light. With a population of different-sized particles o€iatical refractive index: and with a number
size distribution functiom (Dt ) With Dy the particle wet diameter, the aerosol extinction and

backscatter coefficients are given by the following fornsula

DR Lp2
Qg :/ 4We Qext (m7a’wet)n(DW9t)dDwet’ (8)
0
and
Dax 2
wet g7 ) o
ﬂa :/ 4W : Qbsca(maawet)n(DWGt)dDwet’ (9)
0

where D2x is a wet diameter upper limit for the particle populatiaR,; = % a dimension-

wet

less size parametef) o (m,awet) aNd Qrsca(m,awet) are extinction and backscatter efficiencies.
These efficiencies are computed through the Mie code fromffffpgiss.nasa.gov/pub/crmim/spher.f
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(de Rooij and van der Stap, 1984; Mishchenko et al., 2002.dr complex refractive index (CRI)
is interpolated from the OPAC package (Hess et al., 1998 doh species at the desired wavelength
A (355 nm). The CRI and densities used for calculation of @piizoperties are shown in Table
1. The wet diameteD,,; is computed from the mean dry diameter of each section ofd¢hesal
sectional model SIREAM and from the aerosol water contehte derosol water content is calcu-
lated from the thermodynamic model ISORROPIA (Nenes efl8b8a,b) which models the phase
state (i.e. gas, liquid, solid) of inorganic aerosol spe¢ie. ammonium, sodium, chloride, nitrate,
sulfate) in equilibrium with gaseous precursors. The inmit SORROPIA are temperature, relative
humidity (RH), gaseous precursor concentrations and aracgaerosol concentrations. Because of
the large amount of water vapour in the atmosphere, the anRid is assumed to be unaffected by
the deliquescence of aerosol particles in ISORROPIA (Nehak, 1998a) and equals the water ac-
tivity (referred to as.,,). The aerosol water content is estimated by the ZSR rekttipr(Robinson
and Stokes, 2002),

M;
W= () 10

wherea,, =RH, W is the aerosol water content concentratidd, is the molar concentration of
species (mol m~3), m,;(a,,) is the molality of an aqueous solution of specigsiol kg—1).

Computing the ACRI requires to make an assumption on thengisiate of the aerosol chemical
species. The current version obByPHEMUSIs based on an assumption of aerosol internal mixing:
all the particles of a given size section at a given grid pointhe domain are supposed to have
the same chemical composition. Within this framework, Tett#et al. (2008) compared aerosol
optical properties using 2 different assumptions for thacBICarbon (BC) mixing state: internally
homogeneous mixing and core-shell mixing. In the integnebmogeneous mixing case, BC is
treated as the other components and a volume-weighted AC&I¢ulated from the CRI of pure
species. In the core-shell mixing case, each particle isnasd to have a structure : the core (BC)
and the shell (all the other components). The hypothesismmahternally homogeneous mixing
state seems to be unphysical as BC can not be well-mixed ipdhele because of its complex
geometry and solid state (Katrinak et al., 1993; SachdeudaAdini, 2007). Tombette et al. (2008)
have shown that the use of these two mixing states leads tigitég differences on AOD, but non-
negligible differences on single scattering albedo andgib®n process. According to illustrations
of Jacobson (2000), the BC mixing state influences the abeargross section at small wavelengths
(lower than 1 pm) for aerosols with diameter higher than 1 Tihus, a core-shell mixing hypothesis
is used in this study. The Maxwell-Garnett approximationssd to calculate ACRI from the core
CRI (i.e., BC in this study) and the shell CRI (where all thbestcomponents are well mixed)
(Tombette et al., 2008).
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3.2 Estimation of z,..¢

The altitude used to normalise the lidar signal does not t@edrrespond exactly to the beginning
altitude of the molecular zone, but it could be any arbitrengsen altitude in the molecular zone,
where there is almost no aerosol. However, it is better toamsestimation of the normalisation
altitude as close as possible to the beginning of the malezohe, because lidar signals are attached
to higher uncertainties at high altitudes because of a higlymal-to-noise ratio. Although the
molecular zone is often determined visually from lidar igattprofiles, this method is not efficient to
treat large amounts of lidar profiles. We therefore createevaalgorithm which can automatically
estimate the normalisation altitudg from the lidar vertical profile.

The normalisation altitude,.; is estimated from the lidar signal and the simulated mobecul
signalPRy ray

PR3 Ray (2) = Bim(2)exp (—2/ ozm(z’)dz'> , (12)
0
as follows :

— Define a weight for each vertical point of the lidar signak(ttertical resolution is 1.5 m). The
weights should be larger for the points that are more likellge in the molecular zone, i.e. at
high altitudes. We used(h) = exp((h — hmax)/L)/L, whereh is the altitude of the points,
hmax IS the maximal altitude considered (e.g. 4 km) and the patemnieis taken equal to
200 m.

— Fitall lidar signal vertical points (noted as a vecigwith a weighted least absolute deviations
(LAD) regression (DasGupta and Mishra, 2007). It is becausare here interested in the
linear regression of lidar signal points at higher altitsideg. the points between 2 and 3 km
above the ground. However, it is difficult to know the altiédoelow which lidar signal points
could be cut off for the estimation af.;. When considering all available lidar signal points,
the disturbances are prominently non-normally distribuded contain sizeable outliers (i.e.
points at lower altitudes). In such cases, the Least Squae#isod fails and the LAD method
performs well (DasGupta and Mishra, 2007). In detail, weimise

v — (a4 6)) " wlh = 3 Jwi(y: —ah — ) (12)

K2

to find e andb (cyan lines in Fig. 3).

— Calibrate the simulated molecular sigi2Rs r., With the LAD regression line at altitude
hmax, @and calculate the difference between the calibr&Bd r., and the LAD regression
line at each vertical point of the lidar signal in a loop staytfrom high altitudes to low
altitudes. The altitude at which the difference becomegelathan a pre-assigned value (1%
of the value corresponding to the LAD regression line) cgpoads toz,.¢.
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Figure 3 shows comparisons between the lidar signal andrthdated molecular sign&Rs ray
for different lidar measurement days during MEGAPOLI. Thawdated molecular signal (red lines
in Fig. 3) agrees well with the lidar observations (blacleinn Fig. 3) at high altitudes in the
molecular zone, leading to the determination of the mokaczibne and,.;.

4 Model evaluation

To evaluate air quality models, Boylan and Russell (2006pmeamended PM model performance
goal and criterion that are based upon an analysis of nuraétibland visibility modelling studies.
The PM model performance goal corresponds to the level afracy that is considered to be close
to the best a model can be expected to achieve. The PM modetipance criterion corresponds
to the level of accuracy that is considered to be acceptablmbdelling applications. The Mean
Fractional Bias (MFB) and the Mean Fractional Error (MFE) proposed by Boylan and Russell
(2006) to evaluate model performances against obsergatibboth the MFB is in the range [-30
%, 30%] and the MFE is in the range [0, 50 %], the PM model pentorce goal is met; if both the
MFB is in the range [-60 %, 60%)] and the MFE is in the range [0%]5the PM model performance
criterion is met. RMSE and correlation are also often usetéraerosol modelling community. The

statistical indicators are defined in appendix A.
4.1 Model evaluation with Airparif data

Table 2 shows statistics for the month of simulation and lier@ lidar measurement days. For the
month of simulation, for PM5, the MFB and MFE are respectively in the range [-30 %, 30%] and
[0, 50 %], i.e. the PM model performance goal is met. For;pthe MFB and MFE are respectively
in the range [-60 %, 60%] and [0, 75 %], i.e. the PM model penfamce criterion is met. For each
lidar measurement day, the PM model performance goal isyaslweet for PM 5, and the PM model
performance criterion is met for Pyl except for 29 July.

As shown in Table 2, the model simulates well PMconcentrations, but PN concentrations
are underestimated. In other words, coarse particlesi¢pkate matter with a diameter higher than
2.5 um and lower than 10 pum) are underestimated. This may dmibe emissions and boundary
conditions of coarse particles are underestimated, eafl mesuspensions of PM is not considered
in the model and boundary conditions are obtained from desteulations over Europe and France
where coarse particles were underestimated.

4.2 Model evaluation with AERONET data

Table 3 presents statistics for hourly data. As the MFB andEMf 01, 04, 16 and 26 July 2009 are
respectively in the range [-60 %, 60%] and [0, 75 %], the mgmaformance criterion of Boylan
and Russell (2006) is met, despite a slight underestimatidx©D in agreement with the underes-
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timation of PM( in comparison to Airparif observations (see section 4.1).

5 Comparisons with lidar vertical profiles

The simulated lidar signal is compared with GBML observagiperformed during the MEGAPOLI

summer experiment on the different measurement days (01,8021, 26 and 29 July 2009). The
purpose of this section is to validate the ability abl®PHEMUS to simulate lidar backscattered
profiles and then choose suitable measurement days to doilasisin tests.

On 01 July 2009, GBML measurements are performed leewaidkiise pollution plume in the
Southwest of Paris between Saclay and Chateaudun duringr8 fimack track in Fig. 1). Itis the
most polluted day of the MEGAPOLI experiment. High level$,,, on average about 45 pgmh
(see Tab. 2), are measured by the Airparif network. Figureée$ents the comparison between
lidar observations and the simulation at 11:00 , 12:00 an@QBTC. It shows that BLYPHEMUS
underestimates the lidar signal at 13:00 UTC, but it overeges it at 14:00 UTC and it agrees well
with observations at 15:00 UTC. While the PBL height increafsem about 1.2 to 1.8 km from
11:00 to 13:00 UTC and the GBML runs out of the pollution plu(®®yer et al., 2011), both the
observed and simulated lidar signals decrease. Figurdgeafdmparison between the simulation
and observations from a ground-basadsitu lidar at Saclay are shown later in this paper. The
pollution plume covers Saclay because of the Northeast.vlihds high lidar signal values in both
the simulation and observations are seen after 10:00 UTkhudh the simulated lidar signals are
underestimated. Data assimilation will be performed f@s thay, as it is the most polluted day with
observations from both the GMBL and a ground-based in sitar.li

On 04 July 2009, GBML measurements are performed around Ré&h a circular pattern from
14:49 to 17:24 UTC. Particle AOD and concentrations are reglgnated in the simulation. The
daily averaged AOD from the AERONET network is about 0.25peztively 0.14 in the simulation
(see Tab. 3). The daily averaged R)Mconcentration from the Airparif network is about 18.37
ug n3, respectively 11.11 pgn? in the simulation (see Tab. 2). Figure 5 shows the comparison
between the GBML measurements and the simulation at 15:@3&h0 16:00 UTC. The simulated
lidar signals are underestimated. Moreover, lidar measentés show an aerosol layer between 2.0
km and 3.0 km (probably from long-range transport), whicimas present in the simulation, but
impacts the lidar signal until low altitudes. It is mostlydagise boundary conditions do not provide
information about this aerosol layer due to the large-seaidel uncertainties.

On 16 July 2009, GBML measurements are performed in the NufrtRaris from Saclay to
Amiens between 11:00 UTC and 14:30 UTC. The lidar signal eral underestimated, as shown
in Fig. 6, in agreement with the underestimation of gMhown by the statistics in Tables 2 and
3. Surface PNy concentration from the Airparif network and from the sintida are respectively
26.25 and 16.47 ugn? (low-moderate level of pollution, see Tab. 2). The obsemed simulated

10
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AOD are respectively 0.26 and 0.18 (see Tab. 3). The sindild@D has a good correlation with
AERONET data (up to 89%). As deduced from the comparisons of the modelled and obderv
lidar signals in Fig. 6, the PBL height is well modelled urit#:00 UTC, but it is underestimated
afterwards, e.g. the PBL height is about 2.1 km from the olesklidar signal but it is about 1.6
km in the simulation. These differences in PBL height exptaat the simulated lidar signal agrees
better with the observation until 12:00 UTC.

On 21 July 2009, the GBML travels from Saclay to the North ofiacross the city centre of
Paris. As shown in Fig. 7, the lidar signal is overestimataditiiis measurement day. However,
the surface P, concentration is underestimated. It is 27.84 and 16.84 iy flow-moderate
level of pollution, see Tab. 2) from the Airparif network afidm the simulation respectively. The
large simulated lidar signals originate in high aerosolosmration at high altitudes, i.e. between
2.0 km and 2.5 km, which leads to higher backscattering atidaton coefficients. This high-
altitude aerosol layer originates in boundary conditidasgé-scale model uncertainties), but it is
not present in the observations. It impacts the lidar sign&l low altitudes. This is why surface
PM; is underestimated while lidar signal is overestimated.

On 26 July 2009, the GBML followed two circular patterns ($telow and cyan tracks in Fig. 1).
One is performed from 12:40 to 15:30 UTC at a distance betWw8eamd 30 km from the city centre.
Another one is performed from 16:44 to 18:18 UTC in the Sdsluthwest of Paris. Low levels
of pollution are observed and simulated. Surface Ptbncentration and AOD are underestimated.
The daily averaged P)M concentration from Airparif is 18.04 ugm, against 10.12 ug e in the
simulation. The mean observed AOD value is 0.15, again& iD.@he simulation. Although the
lidar signal is slightly underestimated in the simulatismulated and observed lidar signals agree
fairly well, as shown in Figure 8. The pollution from Parigiiansported by the South wind to the
North. This is why the lidar signal is higher at 14:00 UTC igFB. Because as much as 5 hours
of lidar measurements are performed, which is longer tha®4eri6, 21 and 29 July 2009, we will
perform data assimilation for this day.

On 29 July 2009, GBML measurements are performed from 12125110 UTC in the North of
Paris and in peri-urban and rural areas. While low levels ditifon (12.33 pgnt? of the mean
PM;, concentration in Tab. 2) are simulated, moderate levelsobfifion (29.25 pg m? of the
mean PM, concentration in Tab. 2) is observed by the Airparif netwokk deduced from Figure
9, at the beginning of measurement period, the PBL heighidsital.5 km and the simulated lidar
signal agrees well with the lidar observations. At 15:00 U@ observed lidar signal has increased,
because of an aerosol layer between 2.0 and 3.5 km. Thisikyet simulated and the simulated
lidar signal is underestimated.

For all measurement days, we also computed the statistees RMSE, correlation, MFB and
MFE) between observed and simulated lidar vertical profildge scores are shown respectively in
Figures 4, 5, 6, 7, 8 and 9. Overall, RMSEs are below 1.63, thB k&nges from -38 % to 8 % and
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the MFE ranges from 3 % to 38 %. Currently, there is no critetmevaluate the comparisons for
lidar signals. The criterion of Boylan and Russell (2006sw&signed for PM concentration and
light extinction. Because the scores of the lidar signal parisons are extremely good compared
to the criterion of Boylan and Russell (2006) with low errargl bias, the criterion of Boylan and

Russell (2006) may not be restrictive enough for lidar sigina

6 Assimilation test of lidar observations

DA of lidar observations is performed for two out of the siffelient measurement days. Only two
days are retained because the other days were cloudy anlgjorittans do not allow us to assimilate
lidar data when there are clouds. There are 13 h of cloudiettaneasurements on 01 July, 5 h of
cloud-cleaned measurements on 26 July and less than 3 huaf-cleaned measurements on the
other measurement days. Therefore, DA run is performed am@26 July 2009 because too few
data are available during the other measurement days.

In air quality, the large number of state variables leadsigh komputational costs when imple-
menting DA algorithms. Among the widely used DA algorithrttee optimal interpolation (Ol) is
used here, as it is the most computationally efficient (Deetogl., 2008; Tombette et al., 2008;
Wu et al., 2008; Li et al., 2013). In applications of DA to amwbforecast, Tombette et al. (2009)
have used the Ol over western Europe for assimilating obtens from the BDQA network, which
covers France. Denby et al. (2008) have used two differentd@Aniques, the Ol and EnKF, to as-
similate PM concentrations over Europe. Pagowski et al. (2010) hawve thgeOl over the United
States of America for data assimilation of PMobservations. Li et al. (2013) have used the Ol
for multiple aerosol species and for prediction of £Mn the Los Angeles basin. And Wang et al.
(2013) have used the Ol over Europe to investigate the patémpact of future ground-based lidar
networks on analysis and short-term forecasts of 2M

6.1 Basic formulation

A simple formulation for DA of lidar signals with Ol is now desbed. Particles are represented
in the model by mass concentrations of different chemicatcis for the different particle size
sections.

The state vectox is defined by

X:{l'Zj,k}1§¢§Nb,1§j§Ng,1<k<n 1<h<l (13)

syt SXSREN, 1IN

wheremﬁ ;.1 1s the mass concentration of the aerosol spegiessection: for the horizontal spatial
grid k at the model vertical levél, N, is the number of size section¥, is the number of chemical
speciesp is the number of horizontal grid points at each vertical lévand! is the total number of

vertical levels.
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The analysed state vector is a solution to the variationéfgation problem:
x% = Argmin J(x), (14)

whereJ is the cost function defined by

J() = L (HG) —y) "R (H —y) + 5 (x-x) B (- x)
~ %(H(Xb> +LS(x—x") —y) R (H(x") +LS(x—x") —y)
%(X—Xb)TB_l(X—Xb), (15)

wherex? is the model concentrationg,is the vector of observationg/ (x) = L- S(x) is the lidar
observation operatof is a nonlinear operator from the model stat® the lidar signal statd, is a
linear spatial interpolation operat,is the tangent linear of operatét B andR are the matrices
of error covariances for backgrounds and observationgo#isply. In this way, we have

VJ(x*) = (LS)"R ' (H(x")—y)+ (B '+(LS)"R™(LS)) (x* —x") =0, (16)
which leads to

x*—x" = (B~ +(LS)"R(LS)) ' (y— H(X")) (17)
= B(LS)" (LS)B(LS)" +R) ' (y — H(x")). (18)

6.2 Construction of error covariances

Since the measurements at different levels originate fteensame lidar, the matriR. should not

be diagonal because of measurement error correlationsevémwin order to simplifyR. in the first

tests of DA of lidar observations, one takBs= rI as a diagonal matrix wherkis the identity

matrix andr is an error variance. The value of the observation erroawagr is determined by a
x? diagnosis (Mnard et al., 1999), in which the scalar

2= (y—HE)) (LS)BILS)T+R) ' (y— H(x")) (19)

should be equal, on average, to the number of observatiéhat(each DA step.

Specifically,B plays a role in determining how the corrections of the cotretions should be
distributed over the domain during DA. In practice, howeitds impossible to accurately know all
coefficients ofB. In our simulation, the number of model grid points is of thdey of 10°. Thus
the number of coefficients in the matiX is about10'® multiplied by the square of the number of
analysis variables (about 100 variables for particles aezlinere). Thereford is too large to be
handled numerically.

In order to reduce the size of the error covariance matrieebdckground, we model the matrix

B as follows

B=PDPT, (20)
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whereD is the error covariance matrix for P\ defined by the Balgovind approach (Balgovind
et al., 1983) obtained by considering the RMSE and cormglatf simulated PM, concentrations.
Thus, the size oD is much less than the one Bf. The matrixP is defined by

V1 0..0
0 Vo ... 0

P= ,
00 ... Vs

(M-Ny-Ng)x M
whereM is equal to the dimension of the domain), v, is a vector of sizeV, - N, (the number
of state variables). Each componentgfcorresponds to the proportion of the mass of particles for
a given species in a given size section inBvhass concentrations at grid point
Let S’ = SP be the directional derivative &f along a given direction, and let andc® be PM,
concentration states before and after analysis respBctimeorder to converk into the PM; state

c, we multiply each side of equation (18) by the maix

1...10...00...00...0
0..01...10...00...0

Z:
0..00...00...01...1
M x(M-Ny-Ny)
We obtain
¢ —c’=D(LS)T (LS)D(LS')'+R) ' (y— H(x")). (21)

After the analysis, the concentratioa are redistributed over particle species and size sections
following the initial chemical and size distributions.

6.3 DA setup

DA experiments are carried out for 01 and 26 July 2009. All Déeriments are performed with
a time step 0600 s and from 200 to 1800 m above the ground (10 model levels}edime lidar
measurements are not available below the altitude of fudrlap (200 m above the ground) and
since aerosol concentrations above the PBL have limite@aingn surface P in the short term
(Wang et al., 2013). In the Balgovind approach (Balgovindlgt1983), the horizontal correlation
length is set td).2°, which is estimated from numerical DA tests. The error vares are separately
set for each DA level, depending on the RMSE of PM conceminatiand the variability of PM
concentrations at each model level.

Two new algorithms are tested for the assimilation of lidaservations. In the first algorithm,
we use the assimilation of lidar observations to analysejRidncentrations and the analysed M
concentrations are redistributed over particle specidsa® sections following the initial chemical
and size distributions (see section 6.2). The backgrourma eariances of PNy}, concentrations are
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estimated by the simulation without DA and Airparif obséiwas. The value of the observation error
variancer is determined by a? diagnosis, which yields =1 pug? m=% andr =0.006 pg? m—6
respectively for 01 and 26 July, depending on the level okeuainties (see section 5). L&t be
the number of lidar observations at one DA step. Figure 1@shbe time evolution of?/N (blue
lines) for DA runs on 01 and 26 July. The mean over DA window®fN is 1.02 (resp. 1.02) for
01 (resp. 26) July.

In the second algorithm, we separately analyse, PNMnd PM 5_1o (particulate matter with
a diameter higher than 2.5 um and lower than 10 um) in the #dation of lidar observations.
We modify the matrices used in section 6.2 to obw@jrg andcz. 510, the mass concentrations of
PM, 5 and PM, 51, respectively (see Appendix B for details). We separatdiyhgeerror variances
for PMy 5 and PM 5_1¢ in matrix D. Because of the lack of PM_, observations, we can not
directly estimate the background error variances. Theylarermined by thg? diagnosis using the
observation error varianeefound in the first algorithm.

In the following, we note the assimilation with the first (pessecond) DA algorithm as “DA
(PMyp)” (resp. “DA (PM 5 and PM 5_1¢)").

6.4 Results and discussions

In these DA tests, the purpose is to verify if these new aligors are functional. Because we work
at small scale, the corrections of DA are transported out@&tmulation domain very quickly. Thus
we only compute the statistics for the DA window to validdte DA tests.

Table 4 presents statistics of the simulation results witfi®A and with DA. Statistics are com-
puted for both PM, and PM 5 concentrations. Overall, both DA algorithms lead to bettres
(lower RMSE, MFB and MFE, and higher correlation) than thawdation without DA for PM,
concentrations. Comparing the two DA algorithms, the satiah with DA (PM, 5 and PM, 5_1¢)
leads to better scores than the simulation with DA (gMor PM;, concentrations (see Tab. 4).
The RMSE of PMy is 11.63 ugm? in the simulation with DA (PM.5 and PM 5_1,), against
13.69 ugnt? in the simulation with DA (PMy) on 01 July. The RMSE of PM is 4.73 pugnt3
in the simulation with DA (PM.5 and PM 5_10), against 6.08 pg m? in the simulation with DA
(PM;p) on 26 July. It is because higher background error varianceset for the coarse sections
in the simulation with DA (PM s and PM 5_19). However, the simulation with DA (Pl and
PM, 5_1¢) leads to similar scores to the simulation with DA (RMfor PM, 5 concentrations (see
Tab. 4). Itis because similar background error varianceBfd;, 5 in the simulation with DA (PM 5
and PM, 5_10) to the simulation with DA (PM5) are used in the? diagnosis, since fine particles
contribute to more than 80% of the lidar signal (Randriais@a et al., 2006). In the following, we
compare the simulation without DA and the simulation with M5 5 and PM 5_1).

On 01 July, the averaged RMSE of RjMs 11.63 pg > with DA (PMs 5 and PM 5_1), against
17.74 g nv? without DA. The decrease of the RMSE are explained by thestation length in the
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matrix D, since no Airparif station performs measurements in thet&eest of Paris (the Northeast
wind). At stationlssy-Les-Moulineaux (48.82° N, 2.27° E, 36 m a.s.l.), the closest station to Saclay,
the RMSE of PM is 14.72 pgm? with DA (PM, 5 and coarse), against 22.81 ug#mwithout
DA. However, the averaged RMSE of BMis about 10.4 pg m? with DA (PMs 5 and PM 5_1),
against 8.54 ug m’ without DA. This is due to the larger horizontal correlatiength (see section
6.3). While DA runs increase PM concentrations in the lidaasuweement grids, PM concentrations
are increased at Airparif stations, where PMconcentrations is well simulated and coarse particles
are underestimated. This problem can be solved by decgettsinhorizontal correlation length.
Figure 11 shows that the model underestimates the lidaaka@rSaclay. The simulation with DA
simulates better the lidar signal than the one without DAndians that DA corrects well the model
aerosol concentrations (the closer to the truth the modelsakconcentrations are, the better the
lidar signals are simulated).

On 26 July, the averaged RMSE of RMs 4.73 g nt3 with DA (PM, 5 and PN 5_1), against
6.67 pg nT? without DA. Because two circular GBML travelling patternens performed around
Paris (see Fig. 1), most of Airparif stations are leeware @outh wind) or they are close to the
patterns of GBML. They could validate improvements of PM aamtrations. At statiofaris ler
Les Halles (48.86° N, 2.35° E, 35 m a.s.l.), the RMSE of P)M is 1.96 pgnt? in the simulation
with DA (PM, 5 and PM 5_10), against 4.71 pgm? in the simulation without DA. Moreover,
DA runs lead to better scores than the simulation without PAFM, 5. At leeward statiorCrell
Faiencerie (49.26° N, 2.47° E, 28 m a.s.l.), the RMSE of P is 4.1 pgnt? in the simulation
with DA (PMy 5 and PM 5s_1¢), against 4.9 ug m? in the simulation without DA.

7 Conclusions

In order to investigate the ability of the CTMdRAIR3D of the air quality modelling platform
POLYPHEMUS to simulate lidar vertical profiles, we perfong simulation over the Greater
Paris area for the summer month of July 2009. The results,{Rivid PM 5 concentrations) are
evaluated using Airparif data. We simulated aerosol opficaperties and lidar signals from the
model aerosol concentration outputs using the aerosol lexmegfractive index (ACRI) and the wet
particle diameter. The AOD was evaluated using AERONET :d#ia RMSE ranges from 0.07 to
0.20, the MFB ranges from -58 % to -21 % and the MFE ranges frBrti2o 58 %. According
to the criterion of Boylan and Russell (2006), the model @enfance criterion is met for AOD.
Hourly comparisons between simulated lidar signals araf ladbservations were described for six
measurement days during the MEGAPOLI summer campaign. eTt@smparisons showed a good
agreement between GBML measurements and the simulati@pefar 04 July 2009, where an
aerosol layer was not modelled at high altitudes but obskirvédar measurements, and for 21 July

2009, where an aerosol layer was modelled at high altitudeisdi observed in lidar measurements.
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The statistics obtained for the lidar comparison are extigrgood compared to the criterion of
Boylan and Russell (2006) with low errors and bias: the MFBges from -38 % to 8 % and the
MFE ranges from 3 % to 38 %. Because the criterion of BoylanRussell (2006) was designed
for PM concentration and light extinction, they may not bstrietive enough for lidar signals. A
specific criterion would therefore need to be designed. &lehe results show that the optical
property module of POLYPHEMUS models well lidar signals.

Two new algorithms for the assimilation of lidar observatidased on the optimal interpolation
method were presented. One algorithm analyseg,Ridncentrations. Another analyses PMand
PMs 519 concentrations separately. DA tests were performed fgr@hland 26 July 2009, because
the other measurement days were cloudy and our algorithmstdallow us to assimilate lidar data
when there are clouds. Both of these algorithms lead to mstieres (lower RMSE, MFB and
MFE, and higher correlation) for P} and PM,_ 5 on 26 July 2009. However, they did not improve
PM,_ 5 on 01 July 2009, because of the large horizontal correldiogth. The simulation with DA
(PM. 5 and PM 5_ 1) leads to better scores than the simulation with DA (PMbecause the error
variances for backgrounds are set separately for fine,(BMnd coarse (PMs_1o) particles. The
results shown in this paper suggest that the assimilatididaf observations that analyses PM
and PM 5_1¢ would perform better than the assimilation of lidar obsgores that analyses P},
but it is computationally more costly.

Comparing the simulation without DA and the simulation widA (PMs_ 5 and PM5_1¢), the
averaged RMSE of PM is 11.63 ug 3 with DA (PMs.5 and PM 5_10), against 17.74 ug m
without DA on 01 July 2009. The averaged RMSE of RNk 4.73 pgnr? with DA (PM, 5 and
PM;.5_10), against 6.67 pg m® without DA on 26 July 2009.

A forthcoming paper will present results about the assititeof continuous measurements from
the ACTRIS/EARLINET network during a 72-hour period of insive observations.
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Appendix A  Statistical indicators

{0i}i=1,» and{s;};=1,, are the observed and the modelled concentrations atitimespectively.

n is the number of available observations. The statisticdicators used to evaluate the results
with respect to observations are: the Root Mean Square ERMISE), the (Pearson) correlation,
the Mean Fractional Error (MFE), the Mean Fractional Bia=By. MFE and MFB bound the
maximum error and bias and do not allow a few data points toiat® the statistics. They are
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often used to evaluate model performances against obsrsdbr aerosol mass concentrations and

optical properties (Boylan and Russell, 2006). The statisindicators are defined as follow:

n

> (0i—5:)2, (A1)

i=1

> (0i—0)(s; —35)

correlation = = —— —; (A2)
Vs (0i=0)2 200 (5 —3)
MFE — 1 M7 (A3)
n < (s;+0;)/2
1 n $i—0;
MFB=— (A4)

n<(si+o;)/2’

~_ 1 n s 1 n
whereo=->"" j0; ands=->"" . s;.

Appendix B Update formula for DA (PM 5 5 and PMs 5_1¢)

In order to separately analyse BMand PM 5_1o in the assimilation of lidar observations, the
matrix B is modelled as follows

B=PDP", (B1)
whereD is the error covariance matrix for P\ and PM 5_1o. The matrixD is defined by

Ds 5 0
0 D2s5_10

D=

)

and the matriXP is defined by

P
p_ 2.5

3

P2.5710

where each columh of P, 5 (respP2.5_10) corresponds to the proportion of the mass of particles
for a given species in a given size section in PMresp. PM 5_19) mass concentrations at grid
point & as section 6.2 shown.

The matrixZ is defined by

Z
z_ | 425

?

Z2.5710

where the matriX, 5 (resp.Z2. 5_10) is aM x (M - Ny, - N,) matrix, which converts the state vector
x into the PM 5 (resp. PM 5_1q) Statecs 5 (resp.c2.5-_10)-
Let S’ = SP. After multiplying each side of equation (18) by the matZixwe obtain

575 ) _pg)T(Ls)DILS) +R) " (v Hx)).

a b
C25-10 " C25-10
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Table 1. Dry CRI and density for different aerosol species\at 355 nm. Re (resp. Im) stands for the real
(resp. imaginary) part of CRI.

Species Re Im density (g cm)
Nitrate 1.53 -0.005 1.5
Ammonium 1.53 -0.005 0.91

Black carbon 1.75 -0.4645 2.25

Mineral dust  1.53 -0.0166 2.33
Organics 1.53 -0.008 1.3

Sulfate 1.45 -1e-08 1.84

Sodium 1.509 -2.946e-07 0.97
Chlorate 1.509 -2.946e-07 1.15

Water 1.35738 2.72875e-08 1.0

Table 2. Statistics (see Appendix A) of the simulation results for the Airparif netwarrknd the MEGAPOLI

summer experiment. Obs. stands for observation. Sim. stands fdasionu Corr. stands for correlation.

Day PMo PM2 5
Obs. mean Sim. mean RMSE Corr. MFB MHEObs. mean Sim. mean RMSE Corr. MFB MFE
pgm-? pgm-? Hgm? % % % pgm-? pgm-? Hgm> % % %

All 21.53 14.14 10.79 64 -42 49 | 12.59 12.78 6.02 68 4 39

01 July 44.99 29.39 18.08 78 -45 47 | 28.82 27.14 7.94 74 -10 23

04 July 18.37 11.11 8.34 8 -48 48 | 10.80 9.99 3.90 -25 -4 31

16 July 26.25 16.47 12.28 16 -41 46 | 12.60 15.76 541 31 25 34

21July 27.84 16.84 13.13 28 -46 50| 15.46 16.19 5.84 14 6 31

26 July 18.04 10.12 9.52 -4.6 -52 53| 12.32 10.27 5.05 7.1 -16 34

29 July 29.25 12.33 18.49 28 -76 78 | 14.82 11.78 7.32 38 -20 37

ical concentrations, sensitivity simulations, and aerosol-meteorologwatiens, Atmos. Chem. Phys., 13,
6845-6875, doi:10.5194/acp-13-6845-2013, 2013.
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Fig. 1. The blue square shows the location of the ground-baseidu lidar station, the red squares (resp. the
black triangles) show the locations of Airparif stations for BMresp. PM . s) measurements and the green
discs show the locations of AERONET stations. The black pattern showsBMLGrack on 01 July 2009.

The yellow and cyan patterns show two GBML tracks on 26 July 2009. &btimgle area is detailed in the

bottom figure.
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Fig. 2. Diagram describing the methodology for lidar signals modelling from outpiutise air-quality model

PoLAIR3D. Comparisons to measurements are performed at black nodd?l sédhds for aerosol complex
refractive index.8n (resp. B.) is the molecular (resp. aerosol) backscatter coefficiant.(resp. «.) is the

molecular (resp. aerosol) extinction coefficient.

Table 3. Statistics (see Appendix A) of the simulation results for the AERONET netdamrklifferent lidar

measurement days.

Day Obs. mean Sim. mean RMSE MFB MFE

% %
01July 0.59 0.47 0.20 -21 29
04 July 0.25 0.14 0.12 -58 58
16 July 0.26 0.18 0.08 -33 33
26 July 0.15 0.08 0.07 -53 53
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Fig. 4. Comparisons between the vertical profiles observed by GBML (black)lared simulated by ®.YPHE-
MUS (red lines) on 01 July 2009 at 11:00, 12:00 and 13:00 UTC. Lidar ohiens below the altitude of full

overlap are not represented. The lower right panel shows the pasdfahe different lidar profiles and the

horizontal distribution of the mean of the AODs at 11:00, 12:00 and 13:00.UT
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MUS (red lines) on 04 July 2009 at 15:03 and 16:00 UTC. Lidar observatieles\ithe altitude of full overlap
are not represented. The lower left panel shows the positions of fleeedif lidar profiles and the horizontal
distribution of the mean of the AODs at 15:00 and 16:00 UTC.
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Fig. 6. Comparisons between the vertical profiles observed by GBML (black)lared simulated by ®.YPHE-
MUS (red lines) on 16 July 2009 at 11:03, 12:00, 13:25 and 14:09 UTC. Lidservations below the altitude
of full overlap are not represented. The lower left panel shows tiséipns of the different lidar profiles and
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Fig. 7. Comparisons between the vertical profiles observed by GBML (black)lared simulated by ®.YPHE-
MUS (red lines) on 21 July 2009 at 12:15, 13:16, 14:10 and 15:10 UTC. Lidservations below the altitude

of full overlap are not represented. The lower left panel shows tiséipns of the different lidar profiles and
the horizontal distribution of the mean of the AODs at 12:00, 13:00, 14:60.8r00 UTC.
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Fig. 8. Comparisons between the vertical profiles observed by GBML (black)lared simulated by ®.YPHE-

MUS (red lines) on 26 July 2009 at 13:00, 14:00, 15:00, 17:00 and 18:00 Uiti@r observations below the
altitude of full overlap are not represented. The lower right panelsttbe positions of the different lidar
profiles and the horizontal distribution of the mean of the AODs at 13:000145:00, 17:00 and 18:00 UTC.
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Fig. 10. Time evolution ofx? /N (blue lines) for DA runs on 01 and 26 July 2009. The mean over DA windo
of x?/N is 1.02 (resp. 1.02) for 01 (resp. 26) July 2009.

Table 4. Statistics (see Appendix A) of the simulation results (BNMnd PM 5) without DA and with DA
for the Airparif network for 01 and 26 July 2009. “With DA (PM)” stands for the assimilation of lidar
observations correcting directly RM “With DA (PM2.s and PM 5_1¢)" stands for the assimilation of lidar

observations correcting separately PMand PM 5_10.

25

Day Species  Simulation Stations Obs. mean Sim. mean RMSE Corr. MFB MFE
ugm-* pg m-? Hgm—® % % %
01 July PMy Without DA 15 47.26 32.35 17.74 84 -41 43
With DA (PM1o) 36.20 13.69 90 -29 32
With DA (PM2 5 and PM.5_10) 39.85 11.63 84 -19 25
PMa 5 Without DA 5 30.52 30.21 8.54 69 -5 23
With DA (PM0) 33.04 1044 59 5 27
With DA (PM..5 and PM.s_10) 33.08 10.45 58 5 27
26 July  PMy Without DA 15 16.25 9.96 6.67 -20 -47 47
With DA (PM1o) 10.55 6.08 15 -42 42
With DA (PMa.5 and PM.5_10) 12.80 4.73 26 25 30
PM, 5 Without DA 5 10.25 8.99 2.80 7 -9 25
With DA (PM1o) 9.64 2.51 22 -2 22
With DA (PM2.5 and PM.5—10) 9.49 2.54 21 -4 22

33



010709 07:00 UTC 010709 09:00 UTC

4000 4000
3500 3500 — O_bS. 1
—Sim.
3000 3000 «- DA
© 2500 © 2500
el el
=} =}
2000 2000
< 1500 < 1500
1000 1000
500 500 Dy 35
]
% 12 3 4 5 6 7 8 % 1 2 3 ] 5 6 7
Lidar signal Lidar signal
010709 11:00 UTC 010709 13:00 UTC
4000 4000
3500 3500
3000 3000
© 2500 © 2500
el el
= =}
£ 2000 2000
< 1500 < 1500
1000 1000
500 500
%1 2 3 4 5 6 7 8 9 % 2 Z 6 8 10 1z 14
Lidar signal Lidar signal
010709 15:00 UTC 010709 16:42 UTC
4000 ‘ ‘ ‘ ‘ ‘ ‘ ‘ 4000 ‘ ‘ :
— Obs. — Obs.
3500 1 3500 1
3000 3000

2500 2500

Altitude
N
o
S
Altitude
N
o
S

1500 1500
1000 1000
500 500

T 2 3 6 7 8 9 % ] 8 10

4 5 4 6
Lidar signal Lidar signal

Fig. 11. Lidar vertical profiles observed by the ground-bageditu lidar at Saclay (black lines), simulated

without DA (red lines) and simulated with DA (magenta lines) on 01 July 2009.
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