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Reply to Referee #1

General Response:

In response to Referee #1’s comments, first we would like to clarify two points that
seem to concern the referee the most as they were expressed a few times.

The first point is regarding the critique why we didn’t choose a contemporary chemi-
cal transport model (CTM) with a recent emissions inventory. First, we are developing
a hybrid method that aims to “correct” CMAQ DDM-based PM2.5 source apportion-
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ment results by using regularly available measurements (e.g., routine observations
from monitoring networks). The hybrid method as expressed in our Eq. (14) can
be applied to “correct” source apportionment results obtained from CMAQ with DDM,
CMAQ using other source apportionment approaches (including brute force methods)
or other CTM-based methods as well. We are not developing a method that has to
be attached to a specific CTM framework. We will revise our manuscript accordingly
to explicitly express this point. Therefore the CTM-based results to be “corrected” can
be from applications of a new CTM model with a recent emissions inventory or a “sea-
soned” but still widely used CTM with an extensively evaluated emissions inventory as
in our case study. We used CMAQ because it is widely used, and the choice of ver-
sion was made because it was the version available that had DDM at the time. Since
that time, a more recent version of CMAQ (i.e. v4.7.1) now has DDM, though CMAQ
v5.0.1 has not yet been released with DDM. The universal applicability is a very de-
sirable feature because there are many CTM-based source apportionment datasets
which have been produced using several different models for previous years, and this
approach can be used. In particular, there exist a number of multi-year, spatially-
distributed source apportionment datasets for health studies developed from different
CTM applications. These applications were conducted with different models (contem-
porary at the time) and different NEI inventories (appropriate for the application year)
for different years (http://www.epa.gov/heasd/research/cdc.html). An approach to help
correct CTM-based source apportionment results is important due to not only the un-
certainties in the underlying emissions inventory and the host model representation of
physical and chemical processes, but also the various theoretical limitations of each
method itself determining source impacts in the complex atmospheric system (Koo et
al. 2009, Burr and Zhang 2011). Additionally, NEI inventories are available for ev-
ery fourth year in the US, but not for years in between. For in between years, the
projected inventories certainly have higher uncertainties, though results from utilizing
CTM-based source apportionment results for any year needs to be done with careful
examination. As is described in the response below, we did, however, repeat part of
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the study using CMAQ v4.7.1, and as noted, the sensitivity results (we chose biomass
burning because that was the category that was most adjusted and it involves both
primary and secondary aerosol formation) are highly correlated between versions 4.5
and 4.7.1, much more so than between the observations and the model results and
even between the PM2.5 simulated by the two models.

Our choice of year (2004) was chosen because we are using this method to support
multiple health studies. There are significant limitations on the availability of health
data. In this case, 2004 was chosen as a year that overlapped with the availability of
the health data in multiple locations around the US.

In summary, a contemporary CTM model is not a necessary condition for our hybrid
method development or use. A recent emissions inventory is only necessary for recent
application years and it is more important to apply an appropriate NEI inventory for a
specific year.

The second point is regarding some unfounded remarks the referee made about our
hybrid results. Note that in our case study we have applied our hybrid method to
807 cases individually, each for a unique location and time (i.e., 164 CSN monitors in
the U.S. with one-in-three and one-in-six day sampling for January 2004). The hybrid
method has achieved varying results over the 164 CSN sites for a one-month winter
period. However, the referee suggests that: 1) our approach does not seem to make
meaningful adjustments where sectors do not emit primary PM2.5 and 2) our method
only changes sectors that have primary PM2.5 emissions. However, the method does
change secondary species concentrations (e.g., those resulting from ammonia from
livestock emissions). Further, a minimal change in the initial estimate after the hybrid
method is applied does not mean the hybrid results are not reasonable. It means that
the initial CMAQ-DDM results for that case were not in need of as much adjustment
(or “correction”). This is not surprising for sulfate, one of the major contributors to
secondary PM2.5 formation, as most of the sulfate comes from the oxidation of SO2,
which is viewed as being accurately inventoried as most of the emissions are measured
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directly by continuous emissions monitors, which is also true for a large fraction of the
NOx emissions. The other major NOx emission source, mobile sources, is viewed as
being more accurately inventoried than the sources that were adjusted most in this
application (e.g., dust, biomass burning). Thus, it is not surprising that those other
sources were adjusted much more.

Receptor models (RM) construct and solve the species balance equations can lead
to unrealistic source apportionment results. The hybrid method, however, reduces the
likelihood of obtaining unrealistic changes by constructing the species balance equa-
tions using CTM-based initial source impact estimates and various constraints (i.e., ob-
served species concentrations, measurement uncertainty, CTM modeling uncertainty,
assessment of the uncertainties in the inventories). We should point out that with this
kind of formulation there are still risks of obtaining incorrect adjustments. This is partic-
ularly true for the sectors that only contribute to one or two secondary PM2.5 species,
such as livestock and biogenics, however, the results are still constrained by the obser-
vations, and account for knowledge of likely sources impacting those observations.

Responses to specific comments

Comment: This manuscript illustrates an approach to estimate source sector contri-
bution to PM2.5 by combining well known source and receptor based methods. The
source based method is the application of the CMAQ photochemical transport model
using DDM sensitivity coefficients to estimate the impacts for a wide range of source
sectors. The receptor based approach is a traditional Chemical Mass Balance (CMB)
receptor model that uses source fingerprints of trace metal compounds to differentiate
chemically speciated measurements into various source groups. The source based ap-
proach estimates of sector contributions (CMAQ DDM) are adjusted based on source
sector contributions estimated with CMB using 24-hr average CSN speciated mea-
surement data. Ultimately, source sectors with very poorly estimated primary PM2.5
emissions (such as the dust sector) in the 2002 National Emission Inventory (NEI) are
reduced through ambient based constraints.
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Response: Referee #1’s understanding of our hybrid method is not quite correct as
stated: “The source based approach estimates of sector contributions (CMAQ DDM)
are adjusted based on source sector contributions estimated with CMB using 24-hr
average CSN speciated measurement data”. Our adjustments of the original source
based approach estimates of sector contributions are not based on source sector con-
tributions estimated by independently applying CMB. In particular, we start with the
source impacts estimated from the CTM, and adjust those results using observed con-
centrations of PM2.5 species, as is shown in Eq. (14): We begin with the original CTM
estimates of sector contributions, SAinit(i,j), and solve the species balance equations
with constraints to obtain scaling factors Rj that would adjust the original SAinit(i,j) for
a better fit to the species balance equations that were constructed using 24-hr aver-
age CSN speciated measurements. The fingerprints are not solely for primary PM2.5
species and include the impacts of meteorological processing on the emissions. The
physical meaning of the obtained scaling factors Rj is a set of “corrections” on the
original CTM-based estimates of source impacts, which includes sector specific contri-
butions to both primary and secondary PM2.5. The “corrections” are used to minimize
potential errors in CTM source impacts estimates at a specific location and time.

Referee #1’s observation, “Ultimately, source sectors with very poorly estimated pri-
mary PM2.5 emissions (such as the dust sector) in the 2002 National Emission In-
ventory (NEI) are reduced through ambient based constraints”, is quite true, but is an
understatement of the capability of the method. Our results have shown that sectors
such as prescribed burns whose emissions are subject to high day-to-day variability
while typical inventories use very smooth, averaged emission rates (Figure S1a and
Table 4), are much better captured. Our results have also shown that the adjustments
can also be significant for sectors such as solvents that emit little primary PM2.5 emis-
sions and mainly contribute to secondary PM2.5 (Figure S1d). Note that dust is the
only sector that contributes solely to primary PM2.5 in our case study. Similar sig-
nificant changes are also seen for many other sectors such as domestic woodstove
and other biomass burning sectors, natural gas combustion, fuel oil combustion and
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on-road gasoline (Figure S1). All these sectors have both primary PM2.5 and PM2.5
precursor emissions.

Comment: The authors start from an interesting premise that seeks to utilize strengths
of both systems to better estimate source contribution to PM2.5. Photochemical model
approaches are powerful in that collinearity is never an issue and they can attribute
secondarily formed pollutants, but the estimates are only as good as the underlying
emissions inventory and host model representation of physical and chemical processes
in the atmosphere. Receptor models using routinely measured speciated PM2.5 (e.g.
CSN, IMPROVE) are severely limited by collinearity issues (many sources have sim-
ilar emissions profiles) and rarely attribute the bulk of the measured mass to specific
sources as most is generally secondarily formed.

Response: Thank you.

Comment: With regard to the general approach, I have several concerns. It is not clear
that the limitation inherent with CMB in apportioning secondary PM2.5 mass does not
translate to a similar limitation in this “hybrid” approach. Since the receptor modeling
(CMB) used to adjust the CMAQ DDM source estimates only can resolve sources that
emit primarily emitted PM2.5 this approach only really changes CMAQ DDM source
sectors that have primary PM2.5 emissions. Based on presented Tables showing con-
tribution as a concentration, sectors such as confined animal operations (“livestock”)
that emit ammonia and biogenics that emit nitrogen oxide and VOC do not substan-
tively change after the “refined hybrid approach” is applied.

Response: As we have stated at the opening of our reply, there is a substantial differ-
ence between the traditional CMB method and our hybrid method. As shown in Eq.
(14), we begin with the original CTM estimates of sector contributions, SAinit(i,j), and
solve the species balance equations (with constraints) to obtain scaling factors Rj that
would adjust the original SAinit(i,j) for a better fit to the species balance equations. The
initial CTM estimates of sector contributions, SAinit(i,j), adjusted by the hybrid method,
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already include sector specific contributions to either primary PM2.5 only (dust), or sec-
ondary PM2.5 only (livestock and biogenics) or both primary and secondary PM2.5 (all
other sectors). Consequently, the hybrid method naturally resolves sectors that only
contribute to the secondary PM2.5 such as livestock and biogenics. Tables 4 and 5
show the hybrid results of source impact estimates resolved for these sectors that only
contribute to secondary PM2.5.

Our results do show changes in hybrid results compared to the initial CTM estimates
for biogenics and livestock impacts, and their adjustments were sometimes significant
(Figure S1d), though on average they were not as large as others. This shows that
the method does act locally, as well as regionally, to make adjustments, and modify
sources of secondary PM2.5. The hybrid method conserves original CTM source im-
pact estimates when those estimates agree with observed concentrations. Our results
also show little changes on some source sectors that have primary PM2.5 emissions
(e.g. railroads, aircraft, sea salt, etc.) when the observations do not provide evidence
that the impacts from those sources are not very inconsistent with the observations.

Comment: This approach does well for sources that are grossly overestimated due
to emissions inventory errors such as the fugitive dust sector. However, that could be
achieved by simply applying model performance bias ratios against the model predicted
species to obtain similar results without a back-end receptor model.

Response: We disagree with “that could be achieved by simply applying model perfor-
mance bias ratios against the model predicted species to obtain similar results”. Note
that dust sector shares multiple PM2.5 components (elements) with many other sec-
tors that have primary PM2.5 emissions. Our hybrid results show that differing scaling
factors were obtained for different sectors, which were also changing from day to day
(Figure S1). We don’t think “simply applying model performance bias ratios against
the model predicted species” can give similar results. Further, the method provides
changes that are consistent with all of the observed species and are adjusted after
including estimates of uncertainties in the observations and emissions inventory.
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Comment: This approach may have promise as a diagnostic tool to identify parts of
the emission inventory with overestimated primarily emitted PM2.5. A major limitation
is this approach does not seem to make meaningful adjustments where sectors do not
emit primary PM2.5 and since contributions go down after hybrid method application
it also may not work well where emissions are underestimated. I encourage the au-
thors to test how robust this tool is with extra diagnostics such as excluding a known
source from the photochemical model or making a systematic adjustment to a well
characterized category such as EGUs and see how well the hybrid system “corrects”
the perturbation.

Response: Much of this comment is addressed previously. We further note that it works
to increase source impacts when the observations support such, e.g., for biomass
burning on multiple days (Fig. S1 and Table 4). Biomass burning impacts are very
weather dependent and variable, so while some days those estimated impacts de-
crease, other days they increase markedly. Further, as Koo et al. (2009) has con-
cluded, DDM gave good predictions for the impact of removing 100% of SOA precur-
sor emissions (as evaluated with brute-force method (BFM)). We don’t agree with that
minimal adjustments are not meaningful adjustments.

Comment: The current description, formulation, and presentation of results gives the
appearance that the hybrid approach somehow “improves” sector estimates that are
entirely secondary in nature. Perhaps that is why such a short episode in a winter
month was chosen for the evaluation period; to minimize the limitations in the approach
that would be even more evident in the warmer seasons when secondary PM2.5 is
greater. Why was January 2004 selected? Does it coincide with elevated PM2.5 in
the areas selected? Is this method too inefficient to apply for longer periods of time?
The authors need to apply this approach to a variety of seasons to include the range
of physical and chemical processes important for PM2.5 formation.

Response: Again, as discussed above, our results show that the method works for
source that contributes to both primary and secondary PM2.5. Our choice of period
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had nothing to do with looking to minimize any limitations or with considering secondary
species. Indeed, secondary ammonium nitrate, which is one of the most difficult sec-
ondary PM2.5 species to model accurately, is more abundant in the winter. We chose a
winter episode for our case study for a number of reasons: (1) the time period of study
provided us a complete range of source sectors for a better evaluation of CTM source
impact results. A summer episode will miss many important source sectors such as
prescribed burns and open fires, etc. We have a split of total emissions into 33 sec-
tors. This has never been done in the past for any CTM or RM source apportionment
effort, (2) PM2.5 pollution happens more frequently during the winter season, as there
were many elevated PM2.5 measurements during the selected month-long period. (3)
Secondary nitrate PM2.5 is much more abundant during winter and becomes a ma-
jor portion of PM2.5, especially in the west coast. Although oxidation rates are lower
during winter, sulfate and SOA are still formed through secondary processes during
the winter, and the modeling domain covers areas that are relatively warm during the
episode. Note that our modeling domain covers the entire continental US. As noted
above, the choice of 2004 was driven by our desire to use this approach in health
studies.

As for the choice of just one month, this article is a method development article, similar
to other method development studies. For example Kowk et al. (2013) evaluated the
ISAM method for January 2005, Wang et al. (2009) evaluated the TSSA method for
January and July 2002, and Wagstrom et al. (2009) evaluated the OPSA and PSAT
methods for just one week, 12-19 July 2001. For a method development paper, we
think a one-month long episode during a time of year that modelers find challenging
is by no means a short episode as compared with current relevant literature. In future
analyses, this method will be applied for an extended period.

Comment: The manuscript needs to clearly explain why the authors choose an emis-
sions sensitivity approach to estimate sector impacts rather than photochemical model
source apportionment techniques like PSAT in CAMx (ENVIRON, 2013) or TSSA in
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CMAQ (Wang et al., 2009). Source apportionment for PM2.5 has been available in
CAMx since version 4.5 of CMAQ was released (which was used for this study) and
TSSA was implemented in a version of CMAQ contemporary with version 4.5. Recep-
tor models like CMB, PMF, and UNMIX provide information about a specific measure-
ment and do not provide information about how that measurement would be different if
emissions were zeroed out from large sectors because chemistry would fundamen-
tally change especially in nonlinear systems like PM2.5 nitrate. It seems to make
sense to match a photochemical model source apportionment approach with recep-
tor model source apportionment as opposed to matching a source sensitivity approach
(e.g. DDM, brute force emissions changes) with source apportionment. Please provide
some discussion in the manuscript that supports why a source sensitivity approach bet-
ter matches the type of information obtained from a receptor model source attribution
approach.

Response: Our goal of developing the hybrid method is mainly for improving the CTM-
based source impact estimates developed by any of a number of methods. Any of the
source impact estimation methods, including DDM, have limitations as discussed in the
literature (see below). As the referee has acknowledged, for the original CTM results,
“the estimates are only as good as the underlying emissions inventory and host model
representation of physical and chemical processes in the atmosphere”, there always is
an opportunity for “corrections” on source impacts results obtained from source-based
methods. This is because although host model representation of physical and chemi-
cal processes in the atmosphere can be improved gradually (usually slowly in practice),
the underlying emissions inventory can rarely be “good” enough especially at a specific
location for a specific time. This makes the “correction” effort we are developing with
the hybrid method development important. So, our answer to the referee’s question
of why we chose an emissions sensitivity approach for “correcting” its source impact
estimates is: the emissions sensitivity approach we chose for our case study is one
of the source-based methods. The referee has acknowledged in the very beginning
that the emissions sensitivity approach we chose in our case study is one of the well
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known source-based methods: “This manuscript illustrates an approach to estimate
source sector contribution to PM2.5 by combining well known source and receptor
based methods. The source based method is the application of the CMAQ photo-
chemical transport model using DDM sensitivity coefficients to estimate the impacts for
a wide range of source sectors.”

As noted in the beginning, we don’t have a preference for which source-based method’s
results should be “corrected”. In fact, our hybrid method as described in Eq. (14)
has been formulated in such a way that the initial CTM estimates of sector contribu-
tions, SAinit(i,j), can be generated using many source-based methods, such as the
“source apportionment techniques” the referee recommended. There were compar-
isons of emissions sensitivity approaches versus “source apportionment techniques”
for source impact estimation (Burr and Zhang 2011, Koo et al. 2009). Their con-
clusions were none of the methods were perfect, due not only to the uncertainties in
the underlying emissions inventory and the host model representation of physical and
chemical processes in the atmosphere, but also to the theory limitation of each method
itself determining source impacts from such a complex system. For example, Koo et
al. (2009) has pointed out, “Neither PSAT nor first-order (DDM) sensitivities provide
an ideal method to relate PM components to sources”. The study of Koo et al. (2009)
has shown that PSAT did not performed well (Figure 5 in the literature) in determining
the source impact from on-road mobile emissions, while on-road mobile emissions is
one of the most important contributors to PM2.5 at most locations and times. Burr
and Zhang (2011) has also shown that “the use of CAMx/PSAT source apportionment
data for exposure analysis will over- or under- estimate exposure to certain species
due to the exclusion of indirect effects and oxidant-limiting effects that occur in the
atmosphere”. We will include the above information in our revised manuscript.

Lastly, since the DDM approach we used its results is one of the “well known source-
based methods” for source impact estimates, we don’t see any problem in comparing
the further “improved” results to receptor model methods as we did in our results sec-
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tion. We should reemphasize that we don’t match the initial CTM estimates of sector
contributions, SAinit(i,j), to CMB source apportionment results. In stead, we somehow
“match” the total of the initial CTM estimates of sector contributions to species con-
centrations measured in order to solve a set of scaling factors Rj, as described in Eq.
(14). In fact, our hybrid method is a receptor-model framework approach, but uses
CTM-based results as inputs.

Comment: The author’s choice of first order sensitivities using DDM is not supported.
First order DDM sensitivities best approximate a small perturbation in a linear sys-
tem, which is the reason higher order sensitivities were later included in the method
(HDDM). PM2.5 nitrate is not a known linear system and would seem to need higher
order terms and possibly interaction terms. The reference provided to support the use
of first order DDM sensitivity coefficients to represent PM2.5 impacts is to (Hakami et
al., 2004), which is a comparison of small perturbations in ozone precursors to DDM
estimated ozone. An evaluation of the ozone DDM system is not a substitute for the
PM system.

Response: We agree that "First order DDM sensitivities best approximate a small per-
turbation in a linear system", and that including higher order sensitivities will make more
accurate initial source impacts estimates as inputs in our hybrid method.

We will add citation of Koo et al. (2009) here. As Koo et al. (2009) have shown that first
order DDM gave reasonably good predictions for impacts of SOA precursors, primary
aerosols and on-road mobile source emissions. Their results in Figures 4, 6 and 7 also
show that first-order DDM compared reasonably well with BFM for 100% reductions at
apportioning sulfate, nitrate and ammonium to sources emitting SO2, NOx and NH3
in winter times, with nitrate estimation slightly worse. They have found that first-order
DDM is good in determining the impact of sources that have indirect effects, such as
motor vehicles emissions that have substantial emissions of multiple pollutants. Note
that our first-order DDM sensitivities were calculated for all emitted compounds from
the sources, and this process utilized the DDM’s proven advantage of capturing indirect
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effects from multiple pollutants. In addition, we have split the total emissions into 33
sectors, which made most of the sectors have a small portion of emissions compared
to the total. This further diminishes the disadvantage of first-order DDM not capturing
well the impacts from large changes of emissions. In fact, "First order DDM sensitivities
best approximate a small perturbation in a linear system", and by using 33 sources, we
are minimizing the impact of any one source. Let us reemphasize that our hybrid
method is designed to improve on an imperfect CTM-based source impact estimation
method (no method is perfect on source apportionment), though we only showed the
improvement with a DDM-sensitivity-based source impact estimation method here.

Comment: Finally, I am very concerned by the author’s choice of an outdated photo-
chemical transport model to illustrate their approach. CMAQ version 4.5 (most notably
for this work) has outdated PM chemistry, particularly related to organic aerosol. CMAQ
version 4.5 was released in September of 2005. CMAQ 5.0 was released in February
of 2012 and version 5.0.1 in September of 2012 with versions 4.6 and 4.7 released in
the years between 2005 and 2012.

Response: We agree that the initial CTM based source impacts estimates that were
adjusted using our developed hybrid method have been obtained by using a relatively
“outdated” model, which is CMAQ v4.5. We discuss our choice of method in the be-
ginning. As DDM is being added to CMAQ v5.0.2, we hope to use that version in the
future.

While CMAQ v4.6, v4.7, v4.7.1, v5.0 and v5.0.1 have been improved on theory as com-
pared to v4.5 in many aspects, the improvements in the ability to simulate PM2.5 and
its components haven’t been substantial (Simon et al. 2012, Appel et. al. 2013), as in
the model performance evaluation of CMAQv5.0.1 in its application to the southeastern
US (http://semap.ce.gatech.edu/node/1835).

Additionally, of these newer CMAQ versions, DDM-3D is only available in v4.7.1. The
implementation of DDM-3D and higher order DDM-3D for PM2.5 to CMAQ 5.0.2 is
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still ongoing. We don’t find that DDM source impacts estimates produced by using
CMAQ v4.7.1 and those using CMAQ v4.5 will substantially impact our results. In
responding to the referee, we reran the model using v4.7.1 and assessed the impact on
the prescribed burn sensitivities (which were chosen as they were one of the sources
most adjusted and also contribute to SOA). The correlation (R2) in the sensitivities is
0.92, which is more correlated than the simulated PM2.5 between the two versions
(0.86), and is much more correlated than between the simulated and observed PM2.5
as using any contemporary CTM ( Figure 8 of Simon et al. 2012 shows that most of
the correlations were between approximately 0.2-0.5).

Comment: The use of emissions based on the 2002 NEI is also puzzling. Updated na-
tional emission inventories have been released for 2005 and 2011 and have improved
on many sectors, including the “dust” category.

Response: The case study episode was in 2004, and we used 2004 CEM data
for emissions of large point sources in the US. The reason we didn’t use NEI2005
(as base for projection to 2004) was because “EPA developed the 2005 NEI v2
based on a reduced level of effort. Part of this reduced effort involved using some
NEI 2002 v3 data in the NEI 2005 v2 as surrogates for emissions data represent-
ing 2005” (http://www.epa.gov/ttnchie1/net/2005inventory.html). It would be impro-
priate and difficult to do emissions projection based upon an inventory of mixture
emissions from different years. EPA has issued warning for the use of NEI2005
on their website: “Prior to using the 2005 NEI for analyses, users should con-
sider whether the use of 2002 data as a surrogate for the selected sources doc-
umented above materially affects their analysis.” We also note that the dust sec-
tor emissions in the 2005NEI were kept the same as the 2002NEI dust emissions
(see the release note on the page http://www.epa.gov/ttnchie1/net/2005inventory.html).
We note, the initial version of NEI2011 was only released on September 30,
2013 (http://www.epa.gov/ttn/chief/net/2011inventory.html) after we submitted our
manuscript.

C12015



Comment: The authors need to work within a modeling system framework that is rel-
evant and contemporary. That means using a photochemical model version that is a
recent representation of the state of the science, a recent emission inventory, and ap-
plying the photochemical model for at least an entire calendar year (preferably a recent
year or a meaningful period of time that coincides with elevated PM2.5 or a special field
campaign).

Response: Addressed above.

Comment: While not a requirement, it would be preferable to use 12 km sized grid
cells rather than 36 km and employ a vertical representation from the surface to at
least 100 mb, which is how most ozone and PM2.5 photochemical model applications
for regional and urban scales are currently applied.

Response: We do have a vertical representation in the model “from the surface to
at least 100mb”, as stated on page 7: “The modeling domain (Fig. 1) covers the
continental United States as well as portions of Canada and Mexico with 36-km x
36-km horizontal grids and 13 vertical layers of variable thickness extending from the
surface to 70 hPa.”

Comment: More specific comments follow. Abstract. I disagree that this approach
accounts for emissions uncertainties. The authors provide an estimate of uncertainty
for each emissions sector but the method itself does not estimate these.

Response: As shown in Eq. (14), the method “accounts for emissions uncertainties”.
The second term of the Eq. (14) accounts for uncertainties in the CTM-derived individ-
ual source impacts due to emissions error. As such, the scaling factors were obtained
by solving the Eq. (14) which used the emissions uncertainties.

Comment: I would agree that all photochemical model applications must be evaluated
with observations as noted in the abstract (regardless of intended use) but the ab-
stract seems to suggest this hybrid method must be done for every source attribution
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approach as the “evaluation”.

Response: The only related statement in our abstract is: “The rankings of source
impacts changed from the initial estimates, revealing that CTM-only results should be
evaluated with observations”. We stand by the statement that model results should
be evaluated with observations. The only other related sentence in the manuscript is
at Line 15 on page 26674: “This shows that it is necessary to evaluate SM source
apportionment results using measurements.” This still does not “suggest this hybrid
method must be done for every source attribution approach as the ’evaluation’.” And
we still view that one should evaluate model results using observations.

Comment: Introduction. Please provide some references to support the sentence at
lines 11-15 of 26659.

Response: Lines 11-15 of 26659: “However, that is far from measuring multiple
sources’ impacts at the same time and is typically limited to special studies. Instead,
source apportionment results are typically evaluated by comparing simulated concen-
trations of individual component and total mass of PM2.5 with observations”.

There are two sentences here. The first sentence reflects our comment on studies that
use tracer gases to directly measure source impacts from certain sources following
its previous sentence: “Tracer gases such as cyclic perfluoroalkanes and SF6 can be
utilized to help quantify source impacts (Martin et al., 2011)”. We will cite Watson et
al. 2008 and Viana et al. 2008 to support the second sentence: “Instead, source
apportionment results are typically evaluated by comparing simulated concentrations
of individual component and total mass of PM2.5 with observations”.

Comment: Since this paper is about source apportionment it is important that the au-
thors specifically acknowledge the existence of photochemical model source appor-
tionment ((ENVIRON, 2013; Fann et al., 2013; Kwok et al., 2013; Wagstrom et al.,
2008; Wang et al., 2009)) and provide some explanation why this approach would not
be better suited to be matched with a receptor based source apportionment model.
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Response: We have already cited Wagstrom et al. (2008) for the PSAT method devel-
opment and Burr and Zhang (2011) for their applcation of PSAT as a third party user
to acknowledge PSAT as one of the impotrant CTM source apportionment appoaches.
Of the five papers noted above, three of them (ENVIRON, 2013; Fann et al., 2013;
Wagstrom et al. 2008) are PSAT method related. ENVIRON (2013) is a user guide for
CAMx and we are not sure why it, too, should be cited as it is not apparent what addi-
tional crucial information it supplies. The other two papers, discussing ISAM (Kwok et
al., 2013) and TSSA (Wang et al., 2009) methods are “tagged species” methods and
are very similar to PSAT (see Kwok et al., 2013 and Wang et al., 2009 for the authors’
description on their methods’ relation to PSAT). Note, we already cite a large number
of source apportionment methods based on CTMs:

“Source-oriented modeling (SM) approaches, such as chemical transport models
(CTMs), follow the emission, transport, transformation and loss of chemical species
in the atmosphere to simulate ambient concentrations and source impacts. CTMs can
compensate for limitations in RM methods (Burr and Zhang, 2011a; b; Doraiswamy et
al., 2007; Held et al., 2005; Henze et al., 2009; Kleeman et al., 2007; Lowenthal et
al., 2010; Marmur et al., 2006; Russell, 2008; Schichtel et al., 2006; Wagstrom et al.,
2008; Ying et al., 2008) because they describe processes affecting source-receptor
relationships from a first principles basis”.

We will cite Kwok et al. (2013) and Wang et al. (2009) for the variations of PSAT and
their application in CMAQ. Again, the method can be linked to a variety of approaches.
Our hybrid method aimed to “correct” initial source impacts estimates using a CTM-
based method, but not for developing a new CTM-based method.

Comment: Methods. The authors need a much more contemporary model and model
application. An advantage of using one of the more recent CMAQ releases is that they
include most crustal species which would require fewer assumptions about speciation
in the post processing steps.
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Response: This point has been addressed above. We should point out that CMAQ
v5.0 and v5.0.1 added many metal species as their model species, and the complete
list of the explicitly modeled metals are: Al, Ca, Fe, Mg, Mn, K, Na, Si, and Ti. This
is still far from simulating all the 35 measured element species that were used in the
case study of our hybrid method, and, as discussed previously, DDM in CMAQ 5.01 is
not yet available.

Comment: Support for ignoring higher order sensitivities for nonlinear systems like
PM2.5 nitrate formation is needed. Do the first order sensitivities add up to the bulk
estimate?

Response: Koo et al. (2009) have shown that first order DDM gave reasonably good
predictions for impacts of SOA precursors, primary aerosols and on-road mobile source
emissions. Their results in Figures 4, 6 and 7 also show that first-order DDM compared
reasonably well with BFM for 100% reductions at apportioning sulfate, nitrate and am-
monium to sources emitting SO2, NOx and NH3 in winter times, with the nitrate esti-
mation being slightly worse. They have also proved that first-order DDM performs well
in determining the impact of sources that have indirect effects, for example, such as the
motor vehicles emissions that have substantial emissions of multiple pollutants. Note
that our first-order DDM sensitivities were calculated for all emitted compounds from
the sources, and this process utilized the DDM’s proved advantage of capturing indirect
effects. Also, we have split the total emissions into 33 sectors, which made most of the
sectors have a small portion of emissions compared to the total emissions. This fur-
ther diminishes the disadvantage of first-order DDM not capturing well the impacts from
large changes of emissions. In fact, "First order DDM sensitivities best approximate a
small perturbation in a liner system". Let us reemphasize that our hybrid method is
designed to improve on an imperfect CTM-based source impact estimation method (no
method is perfect on source apportionment), though we only showed the improvement
with a DDM-sensitivity-based source impact estimation method here. Napelenok et al.
(2006), Hakami et al. (2003, 2004) and Cohan et al. (2005) have also done numerous
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CMAQ-DDM-based studies and have come to largely the same conclusions.

It’s true that, the first order DDM sensitivities usually don’t exactly add up to the pre-
dicted total PM2.5 concentrations due to ignoring the higher order sensitivities. How-
ever, among the 932 cases we have tested with our hybrid method, only 125 cases
(13.4%) had a larger than 30% difference. We have done the analysis both with and
without these 125 cases (from 164 CSN sites for one-month measurements) from our
hybrid method application, and the changes are limited. In addition, both Burr and
Zhang (2011) and Koo et al. (2009) have found that the sum of BFM estimated source
contributions will not equal to the simulated concentrations in the base case either.

Comment: How are the authors able to show full mass closure in the Tables showing
percent contribution when lateral boundary inflow is ignored? It would likely be small for
a winter month but bigger than many of the small categories chosen for this analysis.

Response: We did find the initial CTM estimates of impacts negligible from lateral
boundary conditions at the CSN sites for the winter period studied. CSN sites are
all located in urban/suburban areas with two thirds of them located in the east coast
areas. We excluded impacts of lateral boundary conditions when reporting the total
source impacts for simplification. However, as our hybrid method is formulated (Eq.
14) the SAinit(i,j) is defined as “initial estimate of impact of source j (or initial or bound-
ary conditions)”, and the method can be used to adjust impacts from boundary condi-
tions as well if needed. In this case, the impact is small. For example, the calculated
boundary conditions’ contribution to PM2.5 at the select CSN site in Los Angeles (site
060658001) is less than 0.01 µg m-3 on daily basis in January 2014. Further, we do
include the impact of the boundary conditions in the method in the initial calculation of
the species concentration. The Tables were developed only for the source impacts.

Comment: On page 26665 at the bottom of the page, the authors state they are ignor-
ing higher order DDM terms based on (Hakami et al., 2004). This paper only evaluated
first and higher order terms for ozone and provides no such evaluation for PM2.5! Other
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papers by the same authors suggest higher order terms are needed to approximate a
50% change in NOX on modeled ozone (Hakami et al., 2003). Here, the authors are
assuming far beyond 50% reductions as sensitivities are being used to approximate
model response when 100% of the emissions for a particular sector are not included in
the simulation.

Response: First we should state that when higher order sensitivities are available for
CMAQ (for a complete coverage of PM2.5 processes), our method can be applied with
them. We have addressed the rest of this question above, though to reiterate:

We will add citation of Koo et al. (2009) here. As Koo et al. (2009) have shown that
first order DDM gave reasonably good predictions for impacts of SOA precursors, pri-
mary aerosols and on-road mobile source emissions. Their results in Figures 4, 6 and
7 also show that first-order DDM compared reasonably well with BFM for 100% re-
ductions at apportioning sulfate, nitrate and ammonium to sources emitting SO2, NOx
and NH3 in winter times, with nitrate estimation slightly worse. They have also proved
that first-order DDM are good in determining the impact of sources that have indirect
effects, such as motor vehicles emissions that have substantial emissions of multiple
pollutants. Note that our first-order DDM sensitivities were calculated for all emitted
compounds from the sources, and this process utilized the DDM’s proven advantage
of capturing indirect effects from multiple pollutants. In addition, we have split the to-
tal emissions into 33 sectors, which made most of the sectors have a small portion of
emissions compared to the total. This further diminishes the disadvantage of first-order
DDM not capturing well the impacts from large changes of emissions. Note that while
Hakami et al. (2003)’s 50% NOx reduction was domain-wide for all NOx sources, here
most of the 33 source sectors is a small fraction of the total emissions. In fact, "First
order DDM sensitivities best approximate a small perturbation in a liner system". Let
us reemphasize that our hybrid method is designed to improve on an imperfect CTM-
based source impact estimation method (no method is perfect on source apportion-
ment), though we only showed the improvement with a DDM-sensitivity-based source
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impact estimation method here.

Comment: Results. The comparisons with other receptor model studies should only
be included for Atlanta since they are both on similar (the same actually which is good)
time scales. The others should not be included unless the authors apply their approach
for at least an entire year otherwise it makes little sense to compare January 2004 with
studies that looked at contributions over multiple years.

Response: We disagree with the statement, “it makes little sense to compare January
2004 with studies that looked at contributions over multiple years”. This is because we
didn’t compare the results in a sense of absolute-values. Instead we compared the
results in their major features such as what sources being resolved and the relative
contributions between certain sources such as gasoline vs. diesel vehicles etc. Those
features were captured by those selected RM method studies with longer simulation
periods. Indeed, when we have discussed this method with others, they view that the
more we can compare our results with other study results, the better. We agree. If
our results were totally out of line with other study results, this would be indicative of a
problem.

Comment: Table 3. It is peculiar that this approach doesn’t result in substantially better
model performance. PM2.5 nitrate performance seems to be worse using the refined
approach.

Response: When multiple species (41 species in this study) are evaluated to assess
model performance, it has been suggested to use a weighted X2 (Watson et al. 1984)
for an overal evaluation. Our results do show substantial better overall model per-
formance for the hybrid method, which has the index for remaining error X2(c,refnd)
reduced from X2(c,init) by over 98% on average (Figure 3). The average modeled
concentration of PM2.5 nitrate was lower after application of the hybrid method. This
doesn’t mean the overall PM2.5 nitrate performance became worse. In fact, results do
show a slightly better PM2.5 nitrate performance with the hybrid method (Figure 2).
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Comment: Are the authors sure this method should be mandatory for people using
source based attribution methods?

Response: We never suggested that “this method should be mandatory for people
using source based attribution methods”.

Comment: Table 4. The “refined” total absolute contribution (as a concentration) always
seems to be lower or the same as the original estimate. Does this approach work best
in situations where the model is clearly overestimating primarily emitted PM2.5 and not
as well when the model is missing a sector or grossly underestimating the primarily
emitted emissions for a sector? That seems like a very important aspect of this that
needs explanation and discussion.

Response: As we have pointed out earlier, our results did show underestimated sec-
tors, such as prescribed burning (due to high day-to-day variability) which are increased
on some days, decreased on others (Figure S1a and Table 4)..

Comment: Table 5 is redundant with later Tables.

Response: Table 5 is needed because it lists the largest five contributing sources from
the 33 source categories, while later tables report results for the regrouped 13 source
categories (Table 6) and for the primary and secondary further-separated source cate-
gories (Table 7a and 7b).

Comment: Figure 1 is very difficult to read. Please just include the areas and monitors
used in this analysis.

Response: We will revise Figure 1 and its legend for a clearer presentation. However,
we should clarify that we used all the CSN monitors in our case study for application
of the hybrid method. We also used measurements from IMPROVE and SEARCH
monitors for evaluating speciated PM2.5 components. Specific information is listed in
Table S7 for the select six CNS sites.

Comment: Table S8 provides emissions totals for each category. PM10 should not be
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on this table as it is not relevant to this paper.

Response: We will remove PM10 emission totals from the Table S8.
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