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Abstract

Peroxyacetyl nitrate (PAN) formed in the atmospheric oxidation of non-methane volatile
organic compounds (NMVOCs), is the principal tropospheric reservoir for nitrogen oxide
radicals (NOx = NO + NO,). PAN enables the transport and release of NOy to the remote
troposphere with major implications for the global distributions of ozone and OH, the main
tropospheric oxidants. Simulation of PAN is a challenge for global models because of the
dependence of PAN on vertical transport as well as complex and uncertain NMVOC sources
and chemistry. Here we use an improved representation of NMVOC:s in a global 3-D
chemical transport model (GEOS-Chem) and show that it can simulate PAN observations
from aircraft campaigns worldwide. The immediate carbonyl precursors for PAN formation
include acetaldehyde (44% of the global source), methylglyoxal (30%), acetone (7%), and a
suite of other isoprene and terpene oxidation products (19%). A diversity of NMVOC
emissions is responsible for PAN formation globally including isoprene (37%) and alkanes
(14%). Anthropogenic sources are dominant in the extratropical northern hemisphere
outside the growing season. Open fires appear to play little role except at high northern
latitudes in spring, although results are very sensitive to plume chemistry and plume rise.
Lightning NOy is the dominant contributor to the observed PAN maximum in the free

troposphere over the South Atlantic.
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1. Introduction

Peroxyacetic nitric anhydride (CH;COO,NO;), commonly known by its misnomer
peroxyacetyl nitrate (PAN), is the principal tropospheric reservoir species for nitrogen oxide
radicals (NOx = NO + NO,) with important implications for the production of tropospheric
ozone (O3) and of the hydroxyl radical OH (the main atmospheric oxidant) (Singh and Hanst,
1981). PAN is formed by oxidation of non-methane volatile organic compounds
(NMVOCs) in the presence of NOx. NMVOCs and NOy have both natural and
anthropogenic sources. Fossil fuel combustion is the principal NOy source with additional
contributions from biomass burning, lightning and soils (van der A et al., 2008). The
organic side of PAN formation involves many stages of NMVOC oxidation. Most
NMVOC:s can serve as PAN precursors but the yields vary widely (Roberts, 2007).

PAN enables the long-range transport of NOy at cold temperatures, and PAN
decomposition releases NOy in the remote troposphere where it is most efficient at
producing Oz and OH (Singh and Hanst, 1981; Hudman et al., 2004; Fischer et al., 2010;
Singh, 1987). NOy abundance controls the balance of O3 production and destruction.
Without PAN formation the distributions of tropospheric NOy, O3 and OH would be very
different, with higher values in NOy source regions and lower values in the remote
troposphere (Kasibhatla et al., 1993; Moxim et al., 1996; Wang et al., 1998a). PAN
chemistry can also be important for oxidant formation on a regional scale. In polluted
environments, PAN formation is a sink for both NOy and hydrogen oxide radicals (HOy).
Observations show that O; concentrations increase when temperature increases, and this has
been in part related to PAN thermal instability (Sillman and Samson, 1995). Observations

also show that the production of PAN becomes more efficient relative to Os in highly
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polluted air masses (Roberts et al., 1995). Thus a comprehensive understanding of PAN is
needed to understand oxidant distributions on a spectrum of scales.

A large body of PAN observations worldwide has accumulated over the years,
including in particular from aircraft platforms and mountaintop sites. There have also been
recent retrievals of PAN concentrations in the upper troposphere from satellites (Glatthor et
al., 2007; Tereszchuk et al., 2013). Concentrations vary from pptv levels in warm remote
locations such as tropical oceans to ppbv levels in polluted source regions. Despite the
relatively large database of measurements compared to other photochemical indicators,
simulation of PAN in global chemical transport models (CTMs) has been a difficult
challenge because of the complexity of PAN chemistry. Recent model inter-comparisons
show very large difference among themselves and with observations in many regions of the
atmosphere (Thakur et al., 1999; Singh et al., 2007, von Kuhlmann et al., 2003; Sudo et al.,
2002), but confirm the very important role for PAN in sustaining O3 production in remote
air (Zhang et al., 2008; Hudman et al., 2004).

Here we exploit a worldwide collection of PAN observations to improve the PAN
simulation in the GEOS-Chem CTM, which has been used extensively in global studies of
tropospheric oxidants (Bey et al., 2001; Sauvage et al., 2007; Murray et al., 2012). The
earliest global models that included PAN chemistry (Kasibhatla et al., 1993; Moxim et al.,
1996) relied on highly simplified NMVOC budgets. Our improvements involve new
treatments of NMVOC sources and chemistry, a well-known weakness even in current
CTMs (Williams et al., 2013; Ito et al., 2007). Our new simulation, which captures the
major features of the existing observations, affords a new opportunity to understand the

factors driving the global PAN distribution and the essential chemistry that needs to be
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described. A detailed analysis of how PAN shapes the global distributions of the
atmospheric oxidants and nitrogen deposition will be the focus of a subsequent paper.
2. Model Description

We use the GEOS-Chem global 3-D CTM including detailed ozone-NOx-VOC-
aerosol chemistry (version 9.01.01, www.geos-chem.org) with significant modifications as

described below.

2.1 Chemistry

GEOS-Chem uses a chemical scheme originally described by Horowitz et al. (1998)
and Bey et al. (2001), with recent updates outlined in Mao et al. (2010). Following Marais
et al. (2012) we have updated the rate coefficients for the reactions of HO, with the >C,
peroxy radicals to Equation (iv) in Saunders et al. (2003). We also include nighttime
reactions of organic peroxy radicals with NOs following Stone et al. (2013). To implement
the Stone et al., (2013) nighttime chemistry, we went through each of the RO, + NO
reactions in the GEOS-Chem chemical mechanism, copied each of these reactions, and
changed the RO, reactants to react with NOs rather than NO. The Master Chemical
Mechanism (MCM) considers three different reactions rates for this class, one for CH3O,,
one for RC(O)0O; and one for all other RO,. There is no temperature dependence included
and all products are assumed to be the same as the corresponding reaction of the RO, radical
with NO (Bloss et al., 2005). We replaced the isoprene chemical mechanism with one based

on Paulot et al. (2009a, 2009b), as described by Mao et al. (2013b).

PAN is produced reversibly by reaction of the peroxyacetyl (PA) radical

CH;C(0)00 with NO:
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CH;C(0)00 + NO, + M 2 PAN + M (1)
where M is a third body (typically N, or O;). The dominant sources of CH;C(O)OO are the
oxidation of acetaldehyde (CH3CHO) and the photolysis of acetone (CH3C(O)CH3) and

methylglyoxal (CH;COCHO):

(0]

CH;CHO + OH = CH5C(0)00 + H,0 2)
(0]

CH5C(0)CHs + hv = CHsC(0)00 + CH, 3)
(0]

CH;COCHO + hv — CH5C(0)00 + HCO (4)

PAN can also be produced at night via reaction of acetaldehyde with the nitrate radical.
Acetaldehyde, acetone and methylglyoxal are all directly emitted (“primary” sources) and
produced in the atmosphere from oxidation of primary emitted NMVOCs (“secondary”
sources). These different sources will be discussed below. There are also other minor

sources of the PA radical, again to be discussed below.

Higher acyl peroxy nitrates (RC(O)OONO.,) are similarly formed from the oxidation
of NMVOC:s, but their yields are much lower than that for PAN. We focus on PAN because
observations show that it typically accounts for 75 - 90% of total acyl peroxy nitrates
(Roberts, 2007; Roberts et al., 2002; Roberts et al., 1998; Wolfe et al., 2007) and there are
an abundance of measurements of PAN. Closure on measurements of total reactive nitrogen
oxides (NOy) confirms the dominant role of PAN as an organic nitrate reservoir for NOyx

(Roberts et al., 1995; Bertram et al., 2013).

The main sink of PAN is thermal decomposition (reaction 1), and the effective PAN
lifetime depends on whether the released PA radical reacts with NO; to return PAN, or with

another species (mainly NO or HO,) leading to permanent loss. To describe this chemistry,
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GEOS-Chem uses the recommendation from Sander et al., (2011), which is taken from
Bridier et al. (1991). The parameters recommended by Bridier et al. (1991) are consistent
with later studies of PAN decomposition by Roberts and Bertman (1992), Orlando et al.
(1992), and Grosjean et al. (1994). The rate coefficient for the reaction of the PA radical

with NO is also from Tyndall et al. (2001).

Primary NMVOC:s in the standard GEOS-Chem mechanism that contribute to PAN
formation include ethane, propane, >Cj; alkanes (lumped), >C, alkenes (lumped), isoprene,
acetaldehyde, methylglyoxal, acetone, and >C; ketones (lumped). Our extended mechanism
adds several additional primary NMVOCS including ethanol, benzene, toluene and
ethylbenzene (lumped), xylenes and trimethyl benzenes (lumped), and monoterpenes
(lumped). The additions were partially motivated by the work of Ito et al. (2007) who
extended the GEOS-Chem mechanism within the IMPACT CTM to include a broader suite
of NMVOCs. One result of this exercise was a dramatic increase in PAN formation through
methylglyoxal and hydroxyacetone. Liu et al. (2010) found aromatics to be a major source
of PAN in urban China through the production of methylglyoxal. We calculate the
associated yield of methylglyoxal using recommended values for the individual aromatic
species (toluene, o-xylene, m-xylene, p-xylene, 1,2,3-trimethylbenzene, 1,2,4-
trimethylbenzene, and 1,3,5-trimethylbenzene) from Nishino et al. (2010) and the observed

mean aromatic speciation for Chinese cities from Barletta et al. (2006).

We adopted the treatment of monoterpene oxidation from the RACM?2 chemical
mechanism (Goliff et al., 2013), lumping terpenes with one double bond (alpha-pinene,
beta-pinene, sabinene and delta-3-carene) into one proxy. Unlike Ito et al. (2007),

hydroxyacetone is not a product of terpene oxidation in the revised RACM2 mechanism
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used here. The gas phase oxidation of monoterpenes is highly unconstrained. The RACM?2
mechanism is primarily based on Atkinson and Avery (2003). The yields of the immediate
PAN precursors resulting from terpene degradation as described by RACM2 embedded in
GEOS-Chem are given in Table 1. The mechanism produces methyl ethyl ketone and
acetone, both of which can serve as PA radical precursors. The addition of this lumped
terpene increases PAN in the model. The largest surface changes for PAN are for Eastern
Europe and Western Russia, where there are high biogenic terpene emissions but there is

little PAN data for comparison.

In addition to thermal decomposition, we include minor sinks for PAN from dry
deposition and photolysis. The dry deposition velocity for PAN is simulated using a
standard resistance-in-series approach (Wesely, 1989) as implemented in GEOS-Chem by
Wang et al. (1998b). We assume that the PAN reactivity with surfaces is as strong as that of
O3 (Shepson et al., 1992), but we explore the sensitivity to this choice. Photolysis and
deposition account globally for 1.8% and 1.2% of the global PAN sink respectively.
Photolysis of PAN is important in the upper troposphere where the lifetime against loss via
photolysis is on the order of a month (Talukdar et al., 1995). We find that assuming PAN
reactivity with surfaces is more similar to O; rather than NO,, decreases surface PAN
concentrations over northern hemisphere continents by 15-20% in spring. Reaction of PAN
with both the OH radical and Cl atoms is slow, and these are both minor loss pathways,
unnecessary to include in global models (Wallington et al., 1990; Talukdar et al., 1995).
Uptake on ice particles in convective clouds (Marecal et al., 2010) and on organic aerosols
(Roberts, 2005) are both thought to be negligible and are not included here. PAN is only

sparingly soluble, but hydrolysis of the PA radical is thought to explain observed PAN loss
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in fog (Villalta et al., 1996; Roberts et al., 1996). We do not consider this to be a significant
loss process for PAN on a global scale (Jacob, 2000).

2.2 Emissions

Production of PAN can be limited by either the supply of NOx or NMVOC:s, as
discussed below. Global fossil fuel emissions of NOy in GEOS-Chem are from the EDGAR
inventory (Oliver and Berdowski, 2001) and are overwritten with regional inventories for
Europe (EMEP) (Vestreng and Klein, 2002), Mexico (BRAVO) (Kuhns et al., 2003), East
Asia (Zhang et al., 2009), Canada (NPRI, http://www.ec.gc.ca/inrp-npri/), and the United
States (EPA/NEI2005, http://www.epa.gov/ttnchiel/net/2005inventory.html). All
anthropogenic NOy emissions are scaled to 2008 based on energy statistics (van Donkelaar
et al., 2008). Soil NOy emissions in GEOS-Chem are based on Yienger and Levy (1995) as
implemented by Wang et al. (1998b) . Lightning NOy emissions are described by Sauvage
et al. (2007).

Table 1 lists the global emissions of all NMVOC:s that contribute to PAN formation.
We use the RETRO (REanalysis of the TROpospheric chemical composition) emission
inventory (van het Bolscher et al., 2008) as global default for anthropogenic NMVOC
emissions aside from ethane and propane. Ethane and propane emissions in RETRO were
far too low compared to the GEOS-Chem inventories from Xiao et al. (2008), which are
unbiased relative to observations. Emissions of both species appeared to be missing from
the major natural gas production region in Russia. We used the ethane and propane
emission inventories which were developed as in Xiao et al. (2008). The RETRO emission
inventory is for 2000, and we scaled it to 2008 following van Donkelaar et al. (2008).

RETRO includes anthropogenic emissions for benzene, xylene and toluene. Based on the



205  observed CO to benzene ratio for TRACE-P, we increased benzene emissions over China by
206  25%. We then scaled xylene and toluene emissions to benzene based on measurements

207  from 43 Chinese cities from Barletta et al. (2006). Thus RETRO emissions of toluene were
208 increased by a factor of 4 over China to create our lumped toluene, and RETRO emissions
209  of xylene were increased by a factor of 8 over China to create our lumped xylene species.
210  Observations show large abundances of reactive aromatics over southern and eastern China

211 (Ranetal., 2009; Wang et al., 2002; Zhang et al., 2007a; Wang et al., 2013).

212 Terrestrial biogenic emissions of acetone, acetaldehyde, isoprene, ethanol, terpenes,
213 and >C; alkenes from metabolism and decay are calculated locally using the Model of

214  Emissions of Gases and Aerosols from Nature (MEGAN v2.0) (Guenther et al., 2006).

215 Specific other sources and sinks for acetone and acetaldehyde are described in Fischer et al.
216  (2012) and Millet et al. (2010) respectively. The atmospheric budget of ethanol is also as

217  described by Millet et al. (2010).

218 New estimates indicate that fires emit significantly more NMVOCs than previously
219  thought (Wiedinmyer et al., 2011), and there is a large contribution from oxygenated species,
220  many of which are unidentified (Warneke et al., 2011). Observations show rapid conversion
221 of NOy to PAN in fire plumes, seemingly due to the oxidation of very short-lived NMVOCs
222 (Jacob et al., 1992). We use 2008 Global Fire Emissions Database (GFED3) monthly

223 biomass burning emissions for NOyx and NMVOCs (van der Werf et al., 2010) with updated
224 emission factors for NMVOCs and NOy from extratropical forests, savannas and agricultural
225 fires from Akagi et al. (2011). The updated NOy emission factor for extratropical fires is

226  approximately a factor of three lower, and the emission factors for the NMVOCs are

227 generally higher. Following Alvarado et al. (2010) we directly partition 40% and 20% NOy
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emissions from fires directly to PAN and HNOs, respectively. The Alvarado et al. (2010)
partitioning is based on an observation of fresh boreal fire plumes, but we apply it here to all
fire types. Our additional NMVOC budgets include the addition of biomass burning

emissions as given in Table 1.

The standard version of GEOS-Chem releases all fire emissions in the boundary
layer; however, previous studies have pointed out that a significant fraction of biomass
burning emissions can be injected to the free troposphere because of buoyancy (Turquety et
al., 2007; Val Martin et al., 2010). This is especially important for PAN because lower
temperatures above the boundary layer enhance its stability. Val Martin et al. (2010)
showed that a substantial fraction of plumes from North American fires are injected into the
free troposphere. Smoke plumes over the boreal region reached the highest altitudes.
Analysis of smoke clouds, which are a later stage of plume evolution, indicated that ~35%
were above the boundary layer. Here we distribute 35% of biomass burning emissions by
mass in the 10 sigma layers (4 km) above the boundary layer, and this improves our
comparison with PAN observations at high latitudes. The PAN simulation is sensitive to
this choice.

Kaiser et al. (2012) and Yue et al. (personal communication) find that GFED3
underestimates fire emissions by not accounting for small fires, particularly at boreal
latitudes. Following their work, we increased wild fire emissions by 60% in North Asia (30
—75°N, 60 — 190°E), 25% in Canada and 50% in Alaska. Increasing fire emissions over
Russian and North American boreal regions improves the PAN simulation over the Arctic,
particularly above the surface

2.3. Model Configuration

10
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In our work GEOS-Chem is driven by NASA GEOS-5 assimilated meteorological
data with 0.5° x 0.67° horizontal resolution, 47 levels in the vertical, and 3—6 hour temporal
resolution. We degrade the horizontal resolution to 2° x 2.5° for input into our GEOS-Chem
simulation. We use a 1-year simulation for 2008, preceded by a 1-year spin-up to remove
the effect of initial conditions. We also present a number of sensitivity simulations
conducted at 4° x 5° horizontal resolution, which yields results very similar to the 2° x 2.5°
resolution. The largest differences in the two resolutions occur over regions of biomass
burning. Over these locations, the finer horizontal resolution produces 10 — 20% more PAN.
The likely explanation is that vertical transport is faster at higher resolution because eddies
are not averaged out. This was first shown by Wang et al. (2004) using a nested simulation
for CO over Asia.

Throughout the paper we present results using 2008 GEOS-5 assimilated
meteorology. However we have compared results using both GEOS-4 and GEOS-5 for
2006, the last year of overlap for these two meteorological datasets. The lifetime of PAN
doubles for every 4 K decrease in temperature. PAN is also sensitive to biogenic emissions,
lightning NOy emissions and vertical transport (Labrador et al., 2005), parameters that also
depend on the underlying meteorological field. We found that differences in the monthly
mean PAN produced using different assimilated meteorological grids are substantial in
some locations (< 100 pptv). Higher upper-tropospheric PAN mixing ratios over the
tropical Pacific in GEOS-5 appear to be driven by slower convective overturning in GEOS-
5 than GEOS-4. GEOS-4 agrees better with data from PEM-Tropics B (Maloney et al.,
2001). The PEM-Tropics B dataset suggests very low (<50 pptv) PAN mixing ratios in the

Pacific tropical UT. Differences between the simulated and observed Os profiles for the
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PEM-Tropics B regions are consistent with the view that differences in vertical motion are
driving the PAN differences. There are limited opportunities to chemically constrain
convective overturning in data assimilation models. However, existing analyses suggest
substantial differences between overturning rates derived from in situ measurements and
those in GEOS-4 (Bertram et al., 2007). Mitoviski et al. (2012) assessed the impact of
convection on O3 in GEOS-Chem and found tropical upper tropospheric O; biases driven by
the parameterized vertical transport in both GEOS-4 and GEOS-5.

3. Global PAN distribution

We used a large database of recent PAN observations from surface sites and airborne
campaigns to evaluate the model, and these are presented in Table 2. For comparison to the
model, we averaged the aircraft observations over the coherent regions in Figure 1. The
measurements either relied on gas chromatography with electron capture detector (GC-
ECD) (Flocke et al., 2005) or thermal decomposition chemical ionization mass spectrometry

(TD-CIMS) (Zheng et al., 2011).

Figures 2 and 3 compare the observed global distribution of PAN to that simulated
by GEOS-Chem. Mean observations from the studies compiled in Table 2 are shown as
filled circles. Model fields are background contours. Full vertical profiles (median and
mean) for the aircraft campaigns and seasonal cycles for several European mountain top
datasets are in the supplementary materials. We compare model output from 2008 to
observations collected over many years. Interannual variability in the model is smaller than
other sources of error. There are relatively few in situ observations that can be used to
assess interannual variability in PAN (Bottenheim et al., 1994). Observations at Mount

Bachelor, (Oregon, USA) indicate interannual variability of 20% during the spring

12
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maximum (Fischer et al., 2011). Recent trends in PAN in many regions of the atmosphere
are also hard to assess given a paucity of consistent data (Parrish et al., 2004). As shown
later PAN is highly sensitive to NOyx and NMVOC emissions, both of which have changed

considerably in some regions (Pollack et al., 2013).

Figure 2 indicates that spring and summer northern hemisphere average PAN
abundances below 6 km are comparable over polluted continental region. The northern
hemisphere springtime maximum, previously attributed to photochemical production at a
time when PAN has a long thermal lifetime (Penkett and Brice, 1986; Brice et al., 1988), is
primarily a feature of remote air. Long term PAN measurements from the
Hohenpeissenberg and Schauinsland European mountaintop observatories, both primarily
within the atmospheric boundary layer, show either spring or summer maxima depending on
the year (Supplementary Figure 2). Pandey Deolal et al. (2013) found that the PAN spring
maximum at the Jungfraujoch is mainly attributable to airmasses advected from the polluted
European boundary layer, and PAN formation in the free troposphere does not play a
dominant role. Both the model and surface observations indicate that the springtime
maximum is pronounced over the Arctic, and this has previously been attributed to transport
of northern mid-latitudes pollution (Moxim et al., 1996). We find that springtime fires in
Russia and China also contribute to this feature, and this is discussed later in the context of

our sensitivity simulations.

Successful simulation of PAN in Asian outflow is contingent on the inclusion of
emissions of aromatic species. These account for 30% of the PAN in that region in the
model. Even with the addition of aromatics, the model is biased low for this region. This

could suggest missing NMVOC emissions in China, as suggested by Fu et al. (2007) or
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unrealistically low PA radical yields from aromatics in the chemical scheme. The model
largely reproduces the average vertical profiles observed during TRACE-P (see vertical
profiles in Supplementary Figure 1), but these were collected in 2001 and the model output
is for 2008. Chinese NOx and NMVOCs emissions have increased by more than 55% and

29% over this period respectively (Zhang et al., 2009; Zhang et al., 2007b).

PAN is also sensitive to the parameterization of the uptake of the hydroperoxyl
radical (HO,) by aerosols. Recent work (Mao et al., 2013a) suggests that the reactive
uptake of HO; is a much more efficient sink of HOy than previously thought (Thornton et al.,
2008) and implemented in the version of GEOS-Chem used here. We tested the impact of
more efficient uptake of HO; by aerosols on PAN by setting the reactive uptake coefficient
of HO; to 1 and eliminating conversion of HO, to H,O; on aerosols. We found that the
faster uptake of HO, drastically reduced (50%) springtime PAN over East Asia. The faster
uptake produces springtime PAN outflow in the model that is inconsistent with observations
in that region, and would imply a large missing source of PAN.

Though the differences are smaller, PAN observations from European mountain top
sites also suggest missing PAN sources there. These PAN observations have not been used
to justify emissions changes as observations from both Zugspitze (2658 m) and
Jungfraujoch (3580 m) reflect terrain-induced injections of PAN rich boundary layer air
(Zanis et al., 2007; Zellweger et al., 2000; Carpenter et al., 2000; Zanis et al., 2003; Pandey
Deolal et al., 2013), and this transport scale is not captured in the model. However, Figure 3
indicates that the observations are also higher than the model output below the altitude of

the measurements.

In northern hemisphere summer, both the model and observations show a strong
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contrast between high concentrations over source continents and adjacent oceans (Figure 3),
reflecting the short lifetime of PAN against thermal decomposition. PAN concentrations in
the model are generally higher aloft, consistent with INTEX-A aircraft observations over the
eastern US (90 °W — 45 °W, Panel 3, Figure 3) and measurements from the Azores (Val
Martin et al., 2008), reflecting the longer PAN lifetime. The INTEX-A observations
indicate that PAN mixing ratios begin to decrease with altitude above 8 km over the
northeastern U.S. and the western Atlantic, but not over the southeastern U.S. where

lightning and convection support PAN production aloft (Hudman et al., 2007).

The lowest three panels of Figure 3 show that outside of winter months, there is a
reservoir of 200 — 400 pptv PAN between 5 — 8 km over northern mid-latitudes. A similar
PAN reservoir aloft has also been observed over the Arctic during aircraft campaigns in
spring and summer (Singh et al., 1994). PAN can be 80 — 90% of total NOy in the cold
arctic atmosphere (Atlas et al., 2003; Jaffe et al., 1997; Bottenheim et al., 1986). Liang et al.
(2011) note that the 2008 ARCTAS PAN observations are not notably different from either
the 1988 ABLE or 2000 TOPSE observations, despite dramatic changes to NOx emissions
in the major anthropogenic source regions. In the upper troposphere, northern hemisphere
PAN mixing ratios peak in summer, with contributions from anthropogenic sources,
biomass burning and lightning. This summertime upper tropospheric maximum is
consistent with MIPAS retrievals for 300 — 150 hPa which indicate the highest Northern
Hemisphere PAN concentrations in August and the lowest PAN from October to January

(Moore and Remedios, 2010).

The Polarstern Cruise data from Germany to South Africa in summer reveals a sharp

meridional gradient with mixing ratios dropping below the detection limit (25 pptv) outside

15



366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

northern mid-latitudes (Figure 2) (Jacobi et al., 1999). The meridional gradient is much less
defined in the free troposphere, reflecting biogenic and fire contributions in the southern

tropics with efficient convective lofting (Figure 2).

We see from the SON seasonal mean plots in Figure 2 that the southern hemisphere
features a spring PAN maximum in the upper troposphere, similar to the remote northern
extra-tropics. Moore and Remedios (2010) observed a spring PAN maximum in the upper
troposphere at 0-35°S from MIPAS retrievals and attributed it to seasonal biomass burning
over Central Africa. Moxim et al. (1999) also simulated the southern hemisphere springtime
free tropospheric PAN maximum, but suggested that it is driven by convective transport
rapidly mixing PAN upward from continental surface production regions. As discussed
below, our model suggests that much of the PAN in the austral free troposphere is due to
continental convective injection of biogenic NMVOCs together with the lightning NOy

source.

4. Contributions of different NMVOCs to PAN formation

PAN depends on NMVOCs and NOy in nonlinear ways. To diagnose this
dependence and identify the most critical precursor, we conducted two sensitivity studies
where NO, and NMVOC emissions were separately reduced by 20% across all sectors. The
results are presented in Figure 4. We see that PAN concentration depends in general more
strongly on NMVOC than NOy emissions. Exceptions are fire-dominated regions at
northern high latitudes, reflecting the very low NO,/NMVOCs emission ratio from fires.
This result is also partially an artifact of partitioning 40% of GFED fire NOy emissions

directly to PAN. A remarkable result is that PAN responds supra-linearly to NMVOC

16



388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

emissions in many locations, with the strongest effect over the North Pacific in spring and
over the Arctic in summer. In both of these regions PAN is a principal source of NOy
(Singh et al., 1992; Zhang et al., 2008), so that reducing PAN causes decreases in O3, in turn
decreasing the [NO,]/[NO] ratio and thus reducing the effective lifetime of PAN. This
chemical feedback amplifies the sensitivity of PAN to NMVOC emission changes. Another
chemical feedback in source regions is that reducing NMVOC emissions increases the

concentration of OH and hence the conversion of NOy to nitric acid.

In order to understand the contributions of different NMVOC precursors to PAN
formation, we conducted 14 sensitivity simulations where the emissions of each precursor in
the leftmost column of Table 1 were turned off individually. The change in the total burden
of PAN was compared to a standard simulation with all emissions switched on. In the case
of isoprene where the effect is large, we reduced emissions by 20% (and multiplied the
change by 5) in order to minimize non-linear effects. Figure 5 presents a schematic of the
relative contributions of individual NMVOC:s to global PAN formation through the major
carbonyl species (acetaldehyde, acetone, methylglyoxal) serving as precursors of PAN
(reactions (2) — (4)). The absolute contributions are in Table 1. Anthropogenic, biogenic
and biomass burning emissions make significant contributions to all three of the most
important immediate PAN precursors (acetaldehyde, acetone, and methylglyoxal). We track
PA radical formation via four different chemical pathways, from acetaldehyde, acetone,
methylglyoxal and via all other intermediate species. The bottom pie chart in Figure 5
summarizes the relative importance of these four pathways for global annual total PA

radical production.

Figure 6 summarizes the geographical distribution of annual total PA radical
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production for the lower, mid- and upper troposphere. PA production is strongest in
NMVOC source regions, propagating to the free troposphere in the tropics through deep
convection. The patterns in Figure 6 reflect the dominant sources and lifetime for each PA
radical precursor: mean lifetimes 1-2 hours for methylglyoxal, 0.8 days for acetaldehyde and
14 days for acetone. The bottom row of Figure 6 shows total PA radical production from
other pathways, mainly via isoprene and monoterpene oxidation intermediates including
methylvinyl ketone and methacrolein. These latter species contribute to PA radical
formation predominantly via photolysis. We traced PA radical formation via these species

together with all other intermediates.

Figure 5 and Figure 6 reveal that acetaldehyde is the most important PA radical
precursor globally, responsible for ~40% of total PA radical production at all altitudes.
Photochemical production is the dominant source of acetaldehyde, with large contributions
from both biogenic and anthropogenic primary emissions (Figure 5). There is also PA
production from acetaldehyde in the marine boundary layer, partially reflecting the ocean
acetaldehyde source (Millet et al., 2010). The alkanes, >C, alkenes and ethanol all have
high molar yields for acetaldehyde (Table 1). Though most originate over continents, the
lifetimes of the primary precursors of acetaldehyde range from hours (isoprene) to months
(ethane). Thus there is significant production of the PA radical from acetaldehyde at all

altitudes over both continental regions and the downwind oceans (Millet et al., 2010).

Based on global simulations with and without acetone, Singh et al. (1995) estimated
that up to 50% of observed PAN in the mid-upper troposphere could be formed from
acetone. However, they assumed a photolysis rate for acetone now known to be too high.

Using a similar approach and the acetone budget from Fischer et al. (2012), we find that the
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contribution of acetone to PAN is 25% in the upper troposphere over the northern
hemisphere during summer and less under other conditions. Acetone is the most important

PA precursor only in the most remote regions of the upper troposphere.

Isoprene and monoterpenes are also important precursors for PAN formation through
methylgyoxal and other intermediates. Due to relatively short lifetimes, their role is largest
in continental boundary layers (Figure 6). von Kuhlmann et al. (2004) showed that PAN
formation in models is highly sensitive to the treatment of isoprene chemistry, and there
have been a number of more recent advances regarding the oxidation chemistry of isoprene
(Lelieveld et al., 2008; Paulot et al., 2009b; Peeters et al., 2009; Mao et al., 2012). There
are also ongoing efforts to determine appropriate yields for methylglyoxal and other
important intermediates under the high NOy conditions most relevant for PAN formation
(Galloway et al., 2011). Implementation of the Paulot et al. (2009a,b) oxidation scheme in
GEOS-Chem improves the simulation of summertime observations over the southeastern
U.S (Mao et al., 2013b). It also substantially increases surface PAN mixing ratios over the
Amazon and Central Africa, where there is very little observational data (Angelo, 2012). In
these regions surface PAN increases by 100 — 300 pptv with the Paulot et al. (2009a,b)
scheme, but the impact is more modest above the boundary layer, generally less than 50
pptv. In the model, most of the free tropospheric PAN in convective regions is produced

above the boundary layer.

5. Contributions from Different Source Types to PAN formation

Figure 7 presents the sensitivity of PAN concentrations to different emission types,

as diagnosed by the relative decrease in a sensitivity simulation with that emission type shut
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off. Contributions do not add up to 100% because of non-linearity.

During northern hemisphere spring, shutting off anthropogenic emissions decreases
the integrated PAN burden by ~50%. Alkanes are the most important class of
anthropogenic NMVOC precursors for PAN in northern mid-latitudes. Their role is more
important in spring when NMVOC emissions from the biosphere are smaller. In spring, the
time of the surface PAN maximum, biogenic and anthropogenic NMVOCs species each

support ~50% of the PAN burden.

Though most biomass burning occurs primarily in the tropics, the effect of fires on
PAN appears to be largest at northern latitudes. Shutting off emissions from springtime fires
located in Russia and China decreases the hemispheric burden by ~25%, but the decrease in
PAN mixing ratios is 30 — 40 % at high latitudes. These springtime fires, which exhibit
strong variability in magnitude and location, contribute to the observed spring PAN
maximum. Russian fires likely accentuated this feature in April 2008, an unusually strong
fire season (Vivchar, 2010; Warneke et al., 2009; Warneke et al., 2010). PAN in fire
plumes from the Russian Federation was shown to support efficient Oz production over the
northeast Pacific during April 2008 (Fischer et al., 2010). Enhancements in O3 of up to 20
ppbv were observed during this time from Alaska to California (Oltmans et al., 2010).
Spring 2008 was an extreme burning year, but Macdonald et al. (2011) also attribute
elevated monthly mean O3 concentrations at Whistler Mountain, BC in fall 2002 and spring

2003 to fires in the Russian Federation.

As stated earlier, the treatment of PAN formation in fires plays an important role in

determining the global impact of this PAN source. Past model studies have found that
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reproducing observed free tropospheric CO and O; downwind from boreal fires requires
injecting a fraction of the emissions above the boundary layer (Leung et al., 2007; Turquety
et al., 2007; Generoso et al., 2007; Colarco et al., 2004). Tereszchuk et al. (2013) show that
PAN in the upper troposphere at high latitudes is mainly from large boreal fires in summer.
Emitting a fraction of the smoke above the boundary layer is an important model update that
improves the simulation of the 2 - 6 km PAN reservoir at high latitudes. The fraction of
NOx in the springtime Russian fires that is immediately partitioned to PAN also has a large
impact on springtime PAN over high latitudes because PAN has a long lifetime during this
season. The combination of model updates chosen here best reproduces the evolution of the
springtime PAN profile as observed during TOPSE (Wang et al., 2003). Specifically, PAN
remains relatively constant (150 — 200 pptv) with altitude in February and March, and the 2
- 6 km PAN reservoir forms in April. Springtime PAN in the model is acutely sensitive to
the amount of NOy that is immediately partitioned to PAN in fires. Given that O3
production in the Arctic lower troposphere is sensitive to the abundance of PAN (Walker et
al., 2012; Beine et al., 1997), more work is warranted to determine the best way to

incorporate the chemistry that rapidly produces PAN in fires.

We find that biogenic species drive PAN production in summer and fall. From June
to October, shutting off biogenic emissions decreases the northern hemisphere integrated
PAN burden by ~75 %. In summer, the contribution to PAN from other biogenic NMVOCs
(terpenes, acetone, acetaldehyde, ethanol and higher alkenes) is ~50 % that of isoprene.
Consistent with our analysis, Roberts et al. (2006) estimated that the isoprene contribution
to PAN formation is 1.6 to 4 times larger than the anthropogenic NMVOC contribution in

the northeastern U.S. in summer.
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The austral spring mid-to-upper tropospheric PAN maximum (>400 pptv) spanning
the Atlantic (Figure 2) is also apparent in MIPAS PAN retrievals (Glatthor et al., 2007;
Moore and Remedios, 2010; Wiegele et al., 2012). Figure 7 shows that this feature is more
sensitive to emissions of NOy from lightning than emissions from either biomass burning or
anthropogenic sources. Biomass burning takes place from July to October in the part of
Africa located in the southern hemisphere. Singh et al. (1996a) found that PAN correlated
with tracers of biomass combustion in the eastern South Atlantic in the lower and middle
troposphere, but not in the upper troposphere. To explain observed NOy at higher altitudes,
they had to invoke a large contribution from lightning (Smyth et al., 1996). Our simulation
reproduces the TRACE-A vertical PAN profiles for the South Atlantic (Supplementary
Figure 1, Panels 43-45) and the correlation between PAN and CO (not shown). We find that
fires are responsible for approximately 30% of the PAN over the tropical Atlantic between 2
and 4 km. Above 6 km, the contribution from fires is small. In the upper troposphere, the
oxidation of biogenic NMVOC:s (lifted by convection (Murphy et al., 2010; Bechara et al.,
2010; Warneke et al., 2001)) in the presence of lightning NOy is a large source of PAN (Tie
et al., 2001; Labrador et al., 2005). Compared to the previous version of GEOS-Chem, the
sensitivity of upper tropospheric PAN to lightning is reduced by 30%. We attribute this
change to increased OH in the boundary layer through the use of the Paulot et al. (2009a, b)
isoprene scheme, that reduces the amount of NMVOC injected into the free troposphere
(Paulot et al., 2012). Boundary layer and upper tropospheric chemistry in the tropics are
tightly coupled (Paulot et al., 2012). Hence the simulation of upper tropospheric PAN is
sensitive to the representation of boundary layer chemistry, which remains very uncertain

(Hewitt et al., 2010).
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6. Conclusions

We utilized a worldwide collection of observations to improve a global simulation of
PAN in the GEOS-Chem model. This new simulation, which includes an improved
representation of numerous NMVOCs and a different treatment of biomass burning
emissions, affords the opportunity to understand the factors driving the PAN distribution on

the global scale.

1. We find that PAN is generally more sensitive to NMVOC emissions than NOy emissions.
In many regions of the atmosphere, changes to NMVOC emissions produce a supra-linear
change in PAN through feedbacks to remote NOy and Oz budgets. A different mixture of
NMVOCs supports PAN formation in each region and season. Considerable improvement
of the PAN simulation for the Asian outflow region is achieved by including aromatics. Our
results stress the need for global CTMs, which can yield different results for PAN (Singh et

al., 2007), to include and evaluate budgets for many NMVOC:s that are routinely ignored.

2. In order to reproduce the observed PAN reservoir at 3-6 km over high northern latitudes,
we have changed the way emissions from fires are incorporated into the model. We
increased the simulated PAN reservoir over high latitudes by 1) adding biomass burning
emissions of shorter lived NMVOCs (monoterpenes, aromatics), 2) emitting a fraction of the
biomass burning NOy directly as PAN (Alvarado et al., 2010), 3) emitting a portion of the
smoke above the boundary layer, 4) updating the emission factors for NMVOCs and NOy
(Akagi et al., 2011), and increasing emissions to account for undetected small fires at high
latitudes (Kaiser et al., 2012). We find that PAN over the Arctic is very sensitive to fires,

and particularly sensitive to the amount of NOj that is immediately partitioned to PAN in
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fires and to the altitude of the emissions. Given that O3 production in the Arctic lower
troposphere is very sensitive to NOy abundance (Stroud et al., 2004; Walker et al., 2012),
more work is warranted to determine the best way to incorporate the plume chemistry that

rapidly produces PAN into CTMs.

3. The principal carbonyl precursors of PAN are acetaldehyde (44% of the global source),
methylglyoxal (30%) and acetone (7%). Acetaldehyde is produced by a large suite of
NMVOCs and also directly emitted. Methylglyoxal is mostly from isoprene. Isoprene
oxidation products, other than methylglyoxal, are also significant. With updated (lower)
photolysis yields, acetone is a substantially less important pathway for PAN formation than

previously thought (Singh et al., 1995).

4. Isoprene accounts for 37% of the global PAN burden. Many other NMVOC emissions
contribute to the balance, with no single species contributing more than 10% (Table 1). At
northern hemisphere mid-latitudes, alkanes contribute to a third of PAN formation during

the springtime maximum.

5. A springtime upper troposphere PAN maximum across the tropical Atlantic is the major
feature of the southern hemisphere PAN distribution. Lightning is the most important NOy
source for PAN formation in this region of the atmosphere. A cascade of isoprene oxidation
products, delivered to the upper troposphere by deep convection, provides the PA radical
source. This finding is sensitive to the description of boundary layer chemistry under low

NOy conditions.

The work presented here has increased confidence in our ability to simulate the observed

distribution of PAN within the GEOS-Chem CTM. In a follow-up paper we will examine
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the importance of PAN in affecting global tropospheric O3 and OH, and the implications for
intercontinental transport of pollution, the oxidizing power of the atmosphere, and climate
forcing.
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Tables

Table 1: Global contributions of primary NMVOCs to PAN formation®

1 Molar Yields of Immediate PAN
Sources, Tg C a

Precursors PAN
Primary o Fueland Open . . d Methyl- | Contribution
NMVOC Iztifae}tglbe Industry®  Fires Biogenic | Acetaldehyde Acetone glyoxal (%)
Isoprene 0.10 - - 427 0.019 - 0.32 37
Terpenes 0.46% - 1.3 65° 0.025" 0.017" 0.050" 9
>C; alkanes' 5 24 0.67 - 1.07 0.30 - 9
Acetone 14 0.45 1.7 69! - 1 0.14 9
Acetaldehyde 0.8 1.1 1.6 44 1 - - 8
Ethane 60 8.5 1.9 - 0.78 - - 6
Propane 14 17 0.77 - 0.30 0.75 - 5
>C, alkenes' 0.38 3.9 2.7 12 0.85 - - 4
Ethanol 2.8 1.0 0.04 12 0.95 - - 4
2/1[;;1111 0.067 - 26 - 035" : 1 <1
Xylenes" 0.58 11 0.73 - - - 0.21 <1
Toluene’ 22 14 0.26 - - - 0.46 <1
iif;ﬁ:y 21 - 0.65 - - - 0.82" <1
kMGfg;? cthyl 43 034 099 ; 0.002 ; - <1

* Global primary emitted NMVOC sources of PAN and their estimated yields for the three
most important immediate carbonyl PAN precursors: acetaldehyde, acetone, and
methylglyoxal. Details of sources can be found in Section 2.2.

® Global annual mean tropospheric lifetime. Lifetimes were calculated from global annual
average burdens and loss rates.

¢ Includes biofuel use

4 Assumes 1 ppbv NOy from Millet et al. (2010) unless otherwise noted

®The contribution to the global annual PAN burden from individual NMVOCs is calculated
Contribution to global annual mean PAN calculated by simulations with corresponding
emissions turned off. To avoid large nonlinear effect in the case of isoprene, emissions were
reduced by 20%, and the difference between that simulation and the standard simulation was
multiplied by 5.

"PAN production from isoprene involves additional precursors other than acetaldehyde and
methylglyoxal including methyl vinyl ketone, methacrolein and other short lived oxidation
intermediates.

£ 34 Tg C as a-pinene, 16 Tg C as B-pinene, 7.3 Tg C as sabinene, and 6.1 Tg C as 8-3-
carene; lifetime is calculated as a lumped species

%1 calculated using difference between global simulations with and without terpene chemistry
' >Cj; alkanes are emitted as a mixed butane-pentane lumped species on a carbon-weighted
basis (Lurmann et al., 1986)

) Includes primary terrestrial and ocean sources

¥ From Fu et al. (2008)

!>, alkenes are emitted as propene on a carbon-weighted basis
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™ Photolysis of methylglyoxal produces acetaldehyde in GEOS-Chem. Calculation assumes

each of two absorption bands is responsible for half of the photolysis.

" > Lumped species including, o-xylene, m-xylene, p-xylene, 1,2,3-trimethylbenzene, 1,2,4-

trimethylbenzene and1,2,5-trimethylbenzene with the reactivity of m-xylene
° Also including ethylbenzene with the reactivity of toluene

P Chemical yield from photolysis and reaction with OH of hydroxyacetone is unity, but 18 %

of hydroxyacetone is removed by wet deposition.
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Table 2: Global PAN measurements used for model evaluation listed in order of map
regions labeled on Figure 2.
Aircraft Missions
. , . Figure 1
Experiment Timeframe Location Map Regions Reference
TRACE-P Mar-Apr 2001 W Pacific 1,2,5,6 (Talbot et al., 2003)
PEM-West B Feb — Mar 1994 W Pacific 3 (Singh et al., 1998)
PEM-West A Sep — Oct 1991 W Pacific 4,7,8 (Singh et al., 1996b)
PEM-Tropics B Mar — Apr 1999 Tropical Pacific 9-13 (Maloney et al., 2001)
PEM-Tropics A Aug — Oct 1996 S Pacific 14-17 (Talbot et al., 2000)
INTEX-B Mar — May 2006 E Pacific 18 -20 (Singh et al., 2009)
PHOBEA Mar — Apr 1999 E Pacific 21 (Kotchenruther et al., 2001)
ITCT-2K2 Apr — May 2002 E Pacific 22 (Roberts et al., 2004)
MILAGRO Mar — May 2006 Mexico 23 (Singh et al., 2009)
CITE-2 Aug - Sep 1986 WU.S. 24-25 (Singh et al., 1990a)
INTEX-A Jul — Aug 2004 Eastern N America 26 - 28 (Singh et al., 2006)
SONEX Oct—Nov 1997 N Atlantic 29,42 (Talbot et al., 1999)
ABLE-2B Apr - May 1987 Amazon 30 (Singh et al., 1990b)
TRACE-A Sep — Oct 1992 S Atlantic 31-32, 43-45 (Singh et al., 1996a)
ABLE-3A Jul —Aug 1988 Alaska 33 (Singh et al., 1992)
ABLE-3B July — Aug 1990 E Canada 34-35 (Singh et al., 1994)
ARCTAS Apr — Jul 2008 N American Arctic 36 - 38 (Alvarado et al., 2010)
ARCPAC Mar — Apr 2008 Alaska 39 (Slusher et al., 2004)
POLARCAT July 2008 Greenland 40 (Roiger et al., 2011)
TOPSE Feb — Mar 2000 N American Arctic 41 (Atlas et al., 2003)
AMMA Aug 2006 West Africa 46 (Stewart et al., 2008)
Surface Measurements
Site Name Timeframe Location Elevation Reference
Mount Bachelor %ﬁro’ May 2008 - 440N, 1220w 2.7 km (Fischer et al., 2010)
(Balzani Loov et al., 2008;
. 1997 — 1998, 2005 o ° Whalley et al., 2004; Zellweger et
Jungfraujoch -2006, 2008 47°N, 9°E 3.6 km al., 2000; Pandey Deolal et al.,
2013)
Hohenpeissenberg 2003 - 2008 48°N, 1°E 985 m g}t":/ /ds.data,jma.go jp/gmd/wdcg
Schauinsland 1995 - 2010 48°N, 8°F 1.2 km Z}t":/ /ds.data,jma.go jp/gmd/wdcg
Zugspitze 2004 - 2008 47°N, 11°E 2.7 km g}t":/ /ds.data jma.go.jp/gmd/wdcg
Waliguan Jul — Aug 2006 36°N, 101°E 3.8 km (Xue et al., 2011)
Bush Estate 1994 - 1998 56°N, 3°W 200 m (McFayden et al., 2005)
Rishiri 1999 45°N, 141°E 35m (Tanimoto et al., 2002)
Mar — May 1993, o o .
Poker Flat 1995 65°N, 148°W 470 m (Beine et al., 1996)
Jan — Apr 1992, o o (Dassau et al., 2004; Worthy et
Alert 1998, 2000 82°N, 62°W 200 m al., 1994)
. (Beine et al., 1997; Beine and
_ o o
Zeppelin 1994 - 1998 78°N, 16°W 474 m Krognes, 2000)
Polarstern Cruise May — Jun 1998 52°N —17°S, 7°E — 19°W Sea level (Jacobi et al., 1999)
Thompson Farm 2005 - 2007 43°N, 71°W 25m Robert Talbot, Ryan Chartier,
unpublished data
Summit Greenland {‘;‘;'9]“1 1998, Jan 470N, 9o 3.2km (Ford et al., 2002)
Pico Mountain Jul — Sep 2008, 38°N, 28°W 29 km Katja Dzepina, Jim Roberts,

Mar — Jul 2009

unpublished data
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Figure Captions

Figure 1: Locations of PAN observations used in our analysis (Table 2): surface sites (red
*); aircraft missions (black boxes) with region numbers indicated; and one cruise (red line).

Figure 2: Global mean distribution of PAN for different seasons and altitude ranges. Model
results for 2008 (background solid contours) are compared to observations from Table 2 for
all years (filled circles). Aircraft observations are averaged vertically and horizontally over
the coherent regions of Figure 2.

Figure 3: Longitudinal cross-section of seasonal mean PAN concentrations at northern
mid-latitudes (30 — 60 °N) as a function of altitude. Model results for 2008 (background
solid contours) are compared to observations from many years in Table 2 (filled circles).
Circles are placed at the mean longitude of the coherent regions (Figure 2) that fall between
(30— 60 °N).

Figure 4: Relative sensitivity of total column PAN concentrations to emissions of NOy and
NMVOC:s in April and July. The sensitivity is diagnosed as APAN/AE, where APAN is the
change in monthly mean PAN column concentrations resulting from a 20% decrease AE in
global emissions of either NMVOC:s (top) or NOy (bottom), including all sources and
sustained year-round. Zero indicates no sensitivity, while one indicates 1:1 sensitivity.

Figure 5: Global contributions of individual NMVOCs to PAN formation, expressed as the
relative contributions to the major carbonyl species producing the peroxyacetyl radical (PA),
and from there, the relative contributions of the carbonyl species to global PA production.
Values are from Table 1. The geographical and vertical distribution of total PA radical
production is given in Figure 6.

Figure 6: Annual total PA radical production for three altitude ranges contributed by the
immediate precursors methylglyoxal, acetone, and acetaldehyde. The other precursors
include a number of species produced in the oxidation of isoprene.

Figure 7: Sensitivity of PAN to different emission types. Results are shown as relative

decreases of monthly mean total PAN columns in sensitivity simulations with individual
emission types shut off. Biogenic signifies NMVOCs only.
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Figure 1: Locations of PAN observations used in our analysis (Table 2): surface sites (red
*); aircraft missions (black boxes) with region numbers indicated; and one cruise (red line).
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Figure 2: Global mean distribution of PAN for different seasons and altitude ranges. Model
results for 2008 (background solid contours) are compared to observations from Table 2 for
all years (filled circles). Aircraft observations are averaged vertically and horizontally over
the coherent regions of Figure 2.

49



1335
1336

1337
1338
1339
1340
1341
1342

DJF

Altitude(km)

MAM

Altitude(km) Altitude(km)

Altitude(km)

-180 -90 0 90 180
Longitude
0 100 200 300 400 500 600

Mean PAN at 30 — 60°N (pptv)

Figure 3: Longitudinal cross-section of seasonal mean PAN concentrations at northern
mid-latitudes (30 — 60 °N) as a function of altitude. Model results for 2008 (background
solid contours) are compared to observations from many years in Table 2 (filled circles).
Circles are placed at the mean longitude of the coherent regions (Figure 2) that fall between
(30 — 60 °N).
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Figure 4: Relative sensitivity of total column PAN concentrations to emissions of NOy and
NMVOCs in April and July. The sensitivity is diagnosed as APAN/AE, where APAN is the
change in monthly mean PAN column concentrations resulting from a 20% decrease AE in
global emissions of either NMVOC:s (top) or NOy (bottom), including all sources and
sustained year-round. Zero indicates no sensitivity, while one indicates 1:1 sensitivity.
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Figure 6: Annual total PA radical production for three altitude ranges contributed by the
immediate precursors methylglyoxal, acetone, and acetaldehyde. The other precursors
include a number of species produced in the oxidation of isoprene.
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Figure 7: Sensitivity of PAN to different emission types. Results are shown as relative
decreases of monthly mean total PAN columns in sensitivity simulations with individual
emission types shut off. Biogenic signifies NMVOCs only.
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Figure S1: Vertical profiles of PAN for the regions in Figure 1 and Table 1. Symbols and
horizontal bars are mean and standard deviations of aircraft observations. The model results
(red lines) calculated using GEOS-5 for 2008, are monthly mean values for the flight
regions. * Indicates that the data has been filtered to remove biomass burning plumes.
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Different filters were applied for each dataset following the analysis of Liang et al. (2011)
and Brock et al. (2011). Biomass burning plumes were identified in ARCTAS-A as samples
with CH3CN > 145 pptv and CO > 160 ppbv, in ARCTAS-B as samples with CH;CN > 320
pptv and CO > 120 ppbv, and in ARCPAC as samples with CH3;CN > 100 pptv and CO >
170 ppbv. Only marine data and model results west of 125°W have been included for
INTEX-B and ITCT-2K2. Transit flights, where the San Francisco and Los Angeles plumes
were encountered, were also removed from the ITCT-2K2 data. Note the differences in
scales between panels.
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Figure S2: PAN mixing ratios for European mountaintop sites: Jungfraujoch (JFJ),
Zugspitze (ZUG), Hohenpeissenberg (HOH) and Schauinsland (SCH). Black lines are

monthly mean observed values over many years (Table 1). Grey vertical bars are standard
deviations for each monthly mean. The model results (red lines) are monthly mean values

for 2008.
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