- **1** Supplementary Information (SI)
- 2
- 3 Dependence of particle nucleation and growth on high molecular weight gas phase
- 4 products during ozonolysis of α-pinene
- 5 J. Zhao<sup>1,2</sup>, J. Ortega<sup>2</sup>, M. Chen<sup>1</sup>, P. H. McMurry<sup>1</sup>, and J. N. Smith<sup>2,3</sup>
- <sup>1</sup>Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota,
  55455, USA
- <sup>8</sup> <sup>2</sup>Atmospheric Chemistry Division, National Center for Atmospheric Research, Boulder,
- 9 Colorado, 80307, USA
- <sup>3</sup>Department of Applied Physics, University of Eastern Finland, Kuopio 70211, Finland
- 11

13 The supplementary material contains three sections.

**Section I:** contains 3 tables and 6 figures.

| Exp. | α-pinene | Ozone                                     |                       | Cluster CIMS  |  |
|------|----------|-------------------------------------------|-----------------------|---------------|--|
|      | (ppb)    | first 3 hours<br>(ppb min <sup>-1</sup> ) | steady state<br>(ppb) | reagent ions  |  |
| E1   | 20       | 0.2                                       | 75                    | Nitrate dimer |  |
| E2   | 5        | 0.1                                       | 50                    | Nitrate dimer |  |
| E3   | 20       | N/A                                       | 75                    | Acetate dimer |  |

2 Table S1. Summary of experimental conditions in this study.

| Ion                 | Peak conc. <sup>a</sup> | NO <sub>3</sub>        | Correspond | Corresponding neutral <sup>b</sup>                                                                 |             |
|---------------------|-------------------------|------------------------|------------|----------------------------------------------------------------------------------------------------|-------------|
| $(m/z)$ $(cm^{-3})$ | $(cm^{-3})$             | Clusters? <sup>b</sup> | Mass (amu) | Formula                                                                                            | coefficient |
| 142                 | $2.5 \times 10^{5}$     |                        |            |                                                                                                    | 0.63        |
| 158                 | $2.1 \times 10^5$       |                        |            |                                                                                                    | 0.67        |
| 228                 | $3.0 \times 10^5$       |                        |            |                                                                                                    | 0.66        |
| 240                 | $4.2 \times 10^{6}$     | Y                      | 178        | $C_5H_6O_7$                                                                                        | 0.80        |
| 241                 | $3.9 \times 10^5$       |                        |            |                                                                                                    | 0.60        |
| 257                 | $2.6 \times 10^5$       |                        |            |                                                                                                    | 0.75        |
| 282                 | 8.9x10 <sup>5</sup>     | Y                      | 220        | $C_7H_8O_8$ or $C_8H_{12}O_7$                                                                      | 0.51        |
| 287                 | $5.2 \times 10^5$       |                        |            |                                                                                                    | 0.82        |
| 297                 | $5.3 \times 10^{5}$     |                        |            |                                                                                                    | 0.81        |
| 298                 | $4.3 \times 10^{5}$     | Y                      | 236        | $C_8H_{12}O_8$                                                                                     | 0.69        |
| 308                 | $2.6 \times 10^{6}$     | Y                      | 246        | $C_{10}H_{14}O_7$                                                                                  | 0.78        |
| 309                 | $5.2 \times 10^5$       |                        |            |                                                                                                    | 0.66        |
| 310                 | $1.1 \times 10^{6}$     | Y                      | 248        | C <sub>9</sub> H <sub>12</sub> O <sub>8</sub> or<br>C <sub>10</sub> H <sub>16</sub> O <sub>7</sub> | 0.77        |
| 326                 | 7.5x10 <sup>5</sup>     |                        |            | C <sub>9</sub> H <sub>12</sub> O <sub>9</sub> or<br>C <sub>10</sub> H <sub>16</sub> O <sub>8</sub> | 0.61        |
| 327                 | $5.5 \times 10^{5}$     |                        |            |                                                                                                    | 0.80        |
| 329                 | $2.5 \times 10^{5}$     |                        |            |                                                                                                    | 0.82        |
| 339                 | $8.0 \times 10^{5}$     |                        |            |                                                                                                    | 0.72        |
| 341                 | $4.6 \times 10^5$       |                        |            |                                                                                                    | 0.61        |
| 343                 | $3.0 \times 10^5$       |                        |            |                                                                                                    | 0.50        |
| 355                 | 5.5x10 <sup>5</sup>     |                        |            |                                                                                                    | 0.74        |
| 356                 | $4.3 \times 10^5$       | Y                      | 294        | $C_{10}H_{14}O_{10}$                                                                               | 0.61        |
| 371                 | $3.1 \times 10^5$       |                        |            |                                                                                                    | 0.53        |
| 375                 | $2.0 \times 10^{3}$     |                        |            |                                                                                                    | 0.57        |

1 Table S2. Summary of all measured Category II products for *E1*: ion (m/z), peak concentration

2 (in cm<sup>-3</sup>), corresponding neutral identities, and correlation coefficients with > 20 nm particles.

3

<sup>a</sup> Concentration: background subtracted peak concentration (in cm<sup>-3</sup>) at time c in Fig. 1b;

5 <sup>b</sup> from Ehn et al. 2011;

<sup>c</sup> Correlation was performed with the concentration of >20 nm particles for time period t=0-10 hr

7 in Fig. 1b (t=0 was defined as the time when ozone was added to the chamber).

1 Table S3. Summary of all measured m/z of category III products for *E1*.

| Ion (m/z)                                                                                           |  |  |  |  |
|-----------------------------------------------------------------------------------------------------|--|--|--|--|
| 152, 154, 160, 164, 165, 166, 167, 168, 178, 179, 180, 182, 183, 192, 194, 196, 198, 206, 208, 209, |  |  |  |  |
| 210, 212, 213, 214, 217, 218, 220, 222, 223, 224, 225, 226, 227, 234, 235, 236, 238, 239, 244, 246, |  |  |  |  |
| 248, 249, 250, 251, 252, 253, 254, 262, 264, 265, 266, 267, 268, 270, 277, 278, 279, 280, 281, 285, |  |  |  |  |
| 292, 293, 294, 295, 296, 307, 311, 313, 314, 324, 325, 357                                          |  |  |  |  |



2 Fig. S1. Schematic diagram of the NCAR reaction chamber and the instruments used in this

3 study.



1

Fig. S2. Characteristics of particle formation from chamber  $\alpha$ -pinene ozonolysis for *E2*: (a) Contour plot of the particle size distribution measured with the SMPS in the 10-350 nm diameter range; (b) Temporal total concentration of 10-20 nm particles; (c) Estimated time-dependent Fuchs surface area (in  $\mu$ m<sup>2</sup> cm<sup>-3</sup>).



1

Fig. S3. Characteristics of particle formation from chamber  $\alpha$ -pinene ozonolysis for *E3*: (a) Contour plot of the particle size distribution measured with the SMPS in the 10-350 nm diameter range; (b) Temporal total concentration of particles between 10 and 20 nm; (c) Estimated timedependent Fuchs surface area (in  $\mu$ m<sup>2</sup> cm<sup>-3</sup>).



Fig. S4. Mass-dependent sensitivities used for estimating concentrations of oxidation products
(Zhao et al., 2010).



Fig. S5. Time-dependent total concentrations of the category I-III products measured with the
Cluster CIMS, along with the total concentrations of 10-20 nm particles and particles larger than
20 nm measured with the SMPS for *E2*. (a) Category I products and 10-20 nm particles; (b)
Category II products and particles larger than 20 nm; (c) Category III.



Fig. S6. Time-dependent total concentrations of the category I-III products measured with the
Cluster CIMS, along with the total concentrations of 10-20 nm particles measured with the
SMPS for *E3*. (a) Category I products and 10-20 nm particles; (b) Category (I+II+III) products.

1 Section II: This section describes the method used to estimate the formation and growth rates of

2 the first and second events for *E1-E3*.

3 1. Method:

6

4 The evolution of particle concentrations between 10 nm and 20 nm can be estimated from the 5 following general dynamic equation (eq. 1) (Gelbard and Seinfeld, 1974).

$$\frac{dN_{10-20}}{dt} = J_{10nm} - J_{20nm} + CoagSrc - CoagSnk$$
(1)

7  $\frac{dN_{10-20}}{dt}$  is the rate of change of particle concentrations between 10 and 20 nm. For *E1-E3*, this 8 rate was assumed to increase was linearly with time during the first half an hour when nucleation 9 occurs. Thus it can be approximated as  $\frac{\Delta N_{10-20}}{\Delta t}$ , the concentration change divided by the time 10 (half an hour).  $J_{20nm}$  is the formation rate of particles at 20 nm, which can be expressed as 11  $\frac{dN}{dDp}\Big|_{20nm} \cdot GR$ .

12 GR is the modal growth rate at 20 nm, and is estimated with the method described by

13 Stolzenburg (2005). *CoagSrc* and *CoagSnk* are the coagulation source and coagulation sink

terms respectively. These two terms are calculated according to Kuang et al. (2012).

15 Rearranging eq. 1, the particle formation rate at 10 nm  $(J_{10nm})$  can then be calculated by eq. 2.

16 
$$J_{10nm} \approx \frac{\Delta N_{10-20}}{\Delta t} + \frac{dN}{dDp}\Big|_{20nm} \cdot GR - CoagSrc + CoagSnk$$
(2)

17

18 2. Summary of particle formation rates and growth rates for *E1-E3*.

19 Table S4. Summary of formation rates and growth rates for *E1-E3* 

|           | 1st even             | ıt             | 2nd event            |                |
|-----------|----------------------|----------------|----------------------|----------------|
| Exp.      | Form. Rate           | Growth Rate    | Form. Rate           | Growth Rate    |
|           | $(cm^{-3} sec^{-1})$ | $(nm hr^{-1})$ | $(cm^{-3} sec^{-1})$ | $(nm hr^{-1})$ |
| <b>E1</b> | 0.42                 | 36             | 0.038                | 28             |
| E2        | 0.28                 | 16             | 0.026                | 12             |
| E3        | 0.53                 | 23             | 0.022                | 13             |

- Section III: This section describes how to estimate the minimum concentrations for growth of
   particles at the measured growth rates for *E1-E3*.
- The minimum concentration of a monomer N1 required to grow particles at a certain rate can be estimated by eq. 3. (Kuang et al., 2010).

$$5 \quad GR = \frac{1}{2} \nu_1 N_1 \bar{c} \tag{3}$$

6 Where GR is the diameter growth rate,  $\nu_l$  is the molecular volume for monomer and  $\bar{c}$  is the

thermal velocity of the monomer. A molecular weight of 500 amu is assumed for Category I

- 8 products.
- 9 Table S5. Summary of minimum concentrations of a low molecular weight vapor (i.e. N1=N<sub>98amu</sub>)
- 10 or a high molecular weight vapor (i.e.  $N1=N_{500amu}$ ) required to grow particle at the observed

| Exp. | 1st event                       |                        | 2nd event             |                        |  |
|------|---------------------------------|------------------------|-----------------------|------------------------|--|
|      | $N_{98amu}$ (cm <sup>-3</sup> ) | $N_{500amu} (cm^{-3})$ | $N_{98amu} (cm^{-3})$ | $N_{500amu} (cm^{-3})$ |  |
| E1   | 8.3x10 <sup>8</sup>             | 3.3 x10 <sup>8</sup>   | 6.5 x10 <sup>8</sup>  | 2.5x10 <sup>8</sup>    |  |
| E2   | 3.7 x10 <sup>8</sup>            | 1.4 x10 <sup>8</sup>   | 2.8 x10 <sup>8</sup>  | $1.1 \times 10^{8}$    |  |
| E3   | 5.3 x10 <sup>8</sup>            | 2.1 x10 <sup>8</sup>   | $3.0 \times 10^8$     | 1.2x10 <sup>8</sup>    |  |

11 growth rates for *E1-E3* 

12

- 14 References:
- 15 Gelbard, F., Seinfeld J. H.: Numerical-Solution of Dynamic Equation for Particulate Systems, J.
- 16 Comput. Phys., 28, 357-375, 1978.
- 17 Kuang, C., Riipinen, I., Sihto, S. L., Kulmala, M., McCormick, A. V., McMurry, P. H.: An
- improved criterion for new particle formation in diverse atmospheric environments, Atmos.
- 19 Chem. Phys., 10, 8469-8480, 2010.
- 20 Kuang, C., Chen, M., Zhao, J., Smith, J., McMurry, P. H., and Wang J.: Size and time resolved
- growth rate measurements of 1 to 5 nm freshly formed atmospheric nuclei, Atmos. Chem.
- 22 Phys., 12, 3573-3589,2012.

- 1 Stolzenburg, M. R., McMurry, P. H., Sakurai, H., Smith, J. N., Mauldin, R. L., Eisele, F. L.,
- 2 Clement, C. F.: Growth rates of freshly nucleated atmospheric particles in Atlanta, J.
- 3 Geophys. Res., 110, D22S05, doi:10.1029/2005JD005935, 2005.
- 4 Zhao, J., Eisele, F. L., Titcombe, M., Kuang, C. G., and McMurry, P. H.: Chemical ionization
- 5 mass spectrometric measurements of atmospheric neutral clusters using the cluster-CIMS, J.
- 6 Geophys. Res., 115, D08205, doi:10.1029/2009JD012606, 2010.