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Abstract

Gas-phase concentrations of semi-volatile organic compounds (SVOCs) were calcu-
lated from gas/particle (G/P) partitioning theory using their measured particle-phase
concentrations. The particle-phase data were obtained from an existing filter measure-
ment campaign (27 January 2003–2 October 2005) as a part of the Denver Aerosol5

Sources and Health (DASH) study, including 970 observations of 71 SVOCs (Xie et al.,
2013). In each compound class of SVOCs, the lighter species (e.g. docosane in n-
alkanes, fluoranthene in PAHs) had higher total concentrations (gas+particle phase)
and lower particle-phase fractions. The total SVOC concentrations were analyzed using
positive matrix factorization (PMF). Then the results were compared with source ap-10

portionment results where only particle-phase SVOC concentrations were used (filter-
based study; Xie et al., 2013). For the filter-based PMF analysis, the factors primarily
associated with primary or secondary sources (n-alkane, EC/sterane and inorganic ion
factors) exhibit similar contribution time series (r = 0.92–0.98) with their corresponding
factors (n-alkane, sterane and nitrate+ sulfate factors) in the current work. Three other15

factors (light n-alkane/PAH, PAH and summer/odd n-alkane factors) are linked with pol-
lution sources influenced by atmospheric processes (e.g. G/P partitioning, photochem-
ical reaction), and were less correlated (r = 0.69–0.84) with their corresponding factors
(light SVOC, PAH and bulk carbon factors) in the current work, suggesting that the
source apportionment results derived from filter-based SVOC data could be affected20

by atmospheric processes. PMF analysis was also performed on three temperature-
stratified subsets of the total SVOC data, representing ambient sampling during cold
(daily average temperature < 10 ◦C), warm (≥ 10 ◦C and ≤ 20 ◦C) and hot (> 20 ◦C) pe-
riods. Unlike the filter-based study, in this work the factor characterized by the low
molecular weight (MW) compounds (light SVOC factor) exhibited strong correlations25

(r = 0.82–0.98) between the full data set and each sub-data set solution, indicating
that the impacts of G/P partitioning on receptor-based source apportionment could be
eliminated by using total SVOC concentrations.
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1 Introduction

The Denver Aerosol Sources and Health (DASH) study was designed to explore the
associations between short-term exposure to individual PM2.5 components, sources
and negative health effects (Vedal et al., 2009). Daily 24-h PM2.5 sampling was con-
ducted from mid-2002 to the end of 2008. Speciation of PM2.5 has been carried out5

for gravimetric mass, inorganic ionic compounds (sulfate, nitrate and ammonium) and
carbonaceous components, including elemental carbon (EC), organic carbon (OC) and
a large array of semi-volatile organic compounds (SVOCs). Kim et al. (2012) have in-
vestigated the lag structure of the association between PM2.5 constituents and hospital
admissions by disease using the 5-yr bulk speciation data set of DASH study (nitrate,10

sulfate, EC and OC). They found that the estimated short-term effects of PM2.5 bulk
components, especially those of EC and OC, were more immediate for cardiovascu-
lar diseases and more delayed for respiratory diseases. Future work will focus on the
association between specific PM2.5 sources and health outcomes.

To develop control strategies for PM2.5, receptor-based models (e.g. positive matrix15

factorization, chemical mass balance) have been applied to quantitatively apportion
PM2.5 to sources that are detrimental to human health (Laden et al., 2000; Mar et al.,
2005; Ito et al., 2006). One basic assumption of receptor-based models is that source
profiles are constant over the period of ambient and source sampling (Chen et al.,
2011). However, the output factors of a receptor model are not necessarily emission20

sources, and could be affected by atmospheric processes like photochemical reaction
or gas/particle (G/P) partitioning (May et al., 2012). The influence of atmospheric pro-
cesses on certain output factors can change with meteorological conditions (e.g. solar
irradiance, ambient temperature). Thus, the assumption of constant source profiles
does not hold for all output factors, especially for long time series studies.25

PM2.5 associated SVOCs data have been used as inputs for receptor models in
many studies (Jaeckels et al., 2007; Schnelle-Kreis et al., 2007; Shrivastava et al.,
2007; Dutton et al., 2010). All SVOCs are subject to G/P partitioning and thus partly
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distributed in the gas phase. According to the G/P partitioning theory developed by
Pankow (1994a, b), which has been applied to the predictions of particulate matter
(PM) formation (Liang and Pankow, 1996; Liang et al., 1997; Mader and Pankow, 2002),
the partitioning of each individual compound is governed by its absorptive G/P parti-
tioning coefficient, Kp,OM, which can either be measured directly (Eq. 1) or calculated5

from theory (Eq. 2):

Kp,OM =
Kp

fOM
=

F/MOM

A
(1)

Kp,OM =
RT

106MWOMζOMp
o
L

(2)

where it is assumed that particle-phase organic material (OM) is primarily responsible10

for the absorptive uptake. Thus, it is meaningful to normalize the G/P partitioning con-
stant (Kp, m3 µg−1) by the weight fraction of the absorptive OM phase (fOM) in the total

PM phase (Eq. 1), so as to obtain Kp,OM (m3 µg−1). F (ngm−3) is the mass concen-

tration of each compound associated with the particle phase; A (ngm−3) is the mass
concentration of each compound in the gas phase; MOM (µgm−3) is the mass con-15

centration of the particle-phase OM; R (m3 atmK−1 mol−1) is the ideal gas constant; T
(K) is the ambient temperature; MWOM (gmol−1) is the mean molecular weight (MW)
of the absorbing OM phase; ζOM is the mole fraction scale activity coefficient of each
compound in the absorbing OM phase; and po

L (atm) is the vapor pressure of each
pure compound. For a given SVOC and a single OM phase, the G/P partitioning is20

only controlled by ambient temperature (Eq. 2). The mass fraction of the total SVOC
in the atmosphere that contributes to the particle phase thus can change with ambi-
ent temperature. As such, the source profiles of particle-phase SVOCs are expected to
vary due to the influence of G/P partitioning, especially for those sources primarily con-
tributing light SVOCs (e.g. docosane, fluoranthene). Therefore, when using a long time25

series of speciated PM2.5 data as input for receptor model analysis, the light SVOC
5203
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related sources/factors for a sub period of observation might be obscured by the influ-
ence of G/P partitioning, which will subsequently affect the health effect estimation of
specific PM2.5 sources.

In this study, gas-phase SVOC concentrations were estimated using their particle-
phase concentrations based on Eq. (1). The particle-phase concentrations of SVOCs5

were obtained from an existing 32-month series of daily PM2.5 speciation, which has
been used for source apportionment in a previous study (Xie et al., 2013). In order to
eliminate the influence of G/P partitioning on source apportionment, the total concen-
trations of gas- and particle-phase SVOCs were used as inputs for PMF analysis. The
PMF2 model (Paatero, 1998a,b), coupled with a stationary block bootstrap technique10

quantifying errors due to random sampling (Hemann et al., 2009), was the primary
source apportionment tool. Moreover, the 32-month data set of total SVOCs was di-
vided into three sub-data sets by daily average temperature for source apportionment
using the identical method. The use of smaller sub-data sets as inputs is to verify the
elimination of G/P partitioning influence from the total SVOC-based PMF analysis.15

2 Methods

2.1 Particle phase measurements

Daily PM2.5 samples were collected on the top of a two-story elementary school build-
ing in urban Denver. Details of the sampling site, set up, protocols and chemical analy-
sis have been published by Vedal et al. (2009) and Dutton et al. (2009a,b). Daily aver-20

age particle-phase SVOCs concentrations were obtained from existing PM2.5 measure-
ments, including 970 observations of 71 species (27 January 2003–2 October 2005).
Concentrations of inorganic ions, bulk elemental carbon (EC) and organic carbon (OC)
were also measured for the same study period. The pointwise, blank corrected concen-
tration uncertainties of each species were estimated by using the root sum of squares25

(RSS) method (Dutton et al., 2009a,b). The concentration and uncertainty data sets
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have been used as inputs for a filter-based source apportionment in a previous study
(Xie et al., 2013). The meteorological (temperature, relative humidity and solar irradi-
ance) and trace gas (ozone, nitrogen oxides (NOx) and CO) data used in this study
were also obtained from Xie et al. (2013).

2.2 Gas phase concentration and uncertainty estimation5

The Kp,OM value for each species on each day was calculated by Eq. (2). Here four

parameters are required, including T , MWOM, ζOM and po
L. For this application T is the

measured daily average temperature. Based on smog chamber and ambient studies
(Odum et al., 1996; Hallquist et al., 2009), 150–250 gmol−1 is a reasonable range
for the average MW of the particulate OM phase; here we assume the MWOM to be10

200 gmol−1 for all samples, as is used in previous work (Barsanti and Pankow, 2004;
Williams et al., 2010). Values of ζOM were assumed to be unity for all species in each
sample. Values of po

L were estimated using the group contribution methods (GCMs)
SPARC (Hilal et al., 1995; http://archemcalc.com/sparc/test/) and SIMPOL (Pankow
and Asher, 2008). The po

L value for each species on each day was adjusted by daily15

average temperature:

po
L = po,∗

L exp

[
∆H∗

vap

R

(
1

298.15
− 1
T

)]
(3)

where po,∗
L is the vapor pressure of each pure compound at 298.15 K; ∆H∗

vap is the en-

thalpy of vaporization of the liquid (kJmol−1) at 298.15 K. The po,∗
L , ∆H∗

vap and average
Kp,OM value for each species are given in Table S1.20

Gas-phase concentrations of each SVOC were calculated by Eq. (1). The values
of F for each SVOC in Eq. (1) were obtained from existing PM2.5 measurements (Xie
et al., 2013); MOM was estimated by multiplying the OC concentrations by a scaling
factor of 1.53, which resulted in optimum mass closure of PM2.5 in a previous DASH
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study (Dutton et al., 2009a). The total concentration of each SVOC (S, gas+particle
phase) on each day is then obtained by Eq. (4),

S = F +A =
1+Kp,OMMOM

Kp,OMMOM
F (4)

The uncertainty associated with S estimation was also calculated using the RSS
method,5

δS =

√(
∂S
∂F

δF
)2

+
(

∂S
∂MOM

δMOM

)2

(5)

where δS is the propagated uncertainty in S; δF and δMOM are the propagated un-
certainties associated with particle-phase SVOC and MOM measurements, and could
be obtained from the uncertainty data sets introduced in Sect. 2.1. The Kp,OM value
uncertainty was not estimated in the current work. Statistics for the total concentration10

of each SVOC from 27 January 2003 to 2 October 2005 are listed in Table S1, in-
cluding the mean and median concentrations, mean particle-phase fractions, signal to
noise ratios (S/N =mean concentration/mean uncertainty) and coefficients of variation
(CV= standard deviation/mean concentration). Table S1 also lists statistics of particu-
late bulk components (mass, nitrate, sulfate, ammonium, EC and OC). The OC concen-15

trations are shown in 5 fractions (OC1–4 and PC), representing the carbon measured
at four distinct temperature steps (340, 500, 615 and 900 ◦C) with a pyrolized carbon
adjustment in the first heating cycle of NOISH 5040 thermal optical transmission (TOT)
method (NOISH, 2003; Schauer et al., 2003).

2.3 PMF analysis and uncertainty assessment20

PMF2 (Paatero, 1998a,b), a multivariate receptor model, was used for source appor-
tionment in this study. It is the primary source apportionment tool applied in the DASH
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project, and is discussed in detail by Dutton et al. (2010). PMF uses an uncertainty-
weighted least-squares fitting approach to identify distinct factor profiles and quantify
factor contributions from a time series of observations. The bias and variability in fac-
tor profile and contribution due to random sampling error were estimated by applying
a method from Hemann et al. (2009). 1000 replicate data sets were generated from the5

original data set using a stationary block bootstrap technique and each was analyzed
with PMF. Because the ordering of factors may differ across solutions on bootstrap
replicate data sets (e.g. factor i in one solution may correspond to factor j in another),
the Multilayer Feed Forward Neural Networks were trained to sort and align the factor
profiles from each PMF bootstrap solution to that of the original solution based on the10

observed data (known as the base case). A PMF bootstrap solution was recorded only
when each factor of that solution could be uniquely matched to a base case factor.
The measurement days resampled in each recorded solution were tracked to examine
the bias and variability in contribution of each factor on each day, which could then be
used to assess the variability of the PMF model fit. In this work, the factor number was15

determined based on the interpretability of different PMF solutions (5–9 factors) as well
stability across bootstrap-replicate data sets as represented by factor matching rate.

2.4 Preparation of PMF input data set

Fifty one SVOCs and four bulk species were selected from all species with 970 daily ob-
servations for filter-based PM2.5 source apportionment (Xie et al., 2013). The species20

screening was based on the percentage of missing values and observations below
detection limit (BDL), S/N ratios and the stability of PMF solution. In this work, the
candidate SVOCs for source apportionment were selected from the fifty one species
used in the previous study. Bulk species were selected from nitrate, sulfate, EC and the
five OC fractions. Interpretability and factor matching rate (> 50%) of the PMF solution25

were criteria for species screening. Among the five OC fractions, the OC1 concentra-
tion was measured under the lowest temperature (340 ◦C) and most likely influenced
by G/P partitioning; and the gas-phase concentration of OC1 could not be estimated
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due to the complex composition. The OC4 concentration was very low with low S/N
ratio. Thus OC1 and OC4 were excluded for PMF analysis. The other three fractions
(OC2, OC3, PC) were assumed to be less or non-volatile and were included for PMF
analysis. Finally, the six bulk species with 970 daily observations and forty six SVOCs
with 970 estimated total concentrations constituted the primary PMF input data set.5

Similarly to the previous Xie et al. (2013) study, PMF analysis was also performed
for three temperature-stratified subsets of the original 970 samples. The three sub-
data sets consisted of sampling days with daily average temperature less than 10 ◦C
(N = 364), between 10 ◦C and 20 ◦C (N = 318), and greater than 20 ◦C (N = 288), re-
spectively. The sampling periods of these three sub-data sets were defined as cold,10

warm and hot. The statistics of total SVOCs during each of these three periods are
shown in Tables S2–S4. PMF input species screening for each sub-data set was con-
ducted in the same manner as for the full data set.

3 Result and discussion

3.1 Total SVOCs and their particle-phase fractions15

Except steranes, the low MW species have the highest total concentrations and the
lowest particle-phase fractions in each class of SVOCs (Table S1). For example, do-
cosane and fluoranthene are the most abundant species in n-alkanes and PAHs with
mean concentrations of 32.8 ngm−3 and 11.2 ngm−3 respectively, one to two orders
of magnitudes higher than those of high MW species in their chemical classes. In this20

study, the total concentrations of light n-alkane (e.g. docosane–pentacosane) and PAH
(e.g. MW = 202) species increased by more than 100 % from the cold to the hot peri-
ods (Tables S2–S4), possibly due to the evaporation of fossil fuels (Nahir, 1999) and
increases in biogenic VOC emissions with increasing temerature.

The average particle-phase fraction of each SVOC was calculated for the cold, warm25

and hot periods and shown in Fig. 1. All SVOCs exhibit the highest particle-phase

5208

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/13/5199/2013/acpd-13-5199-2013-print.pdf
http://www.atmos-chem-phys-discuss.net/13/5199/2013/acpd-13-5199-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
13, 5199–5232, 2013

Positive matrix
factorization of PM2.5

M. Xie et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

fractions in cold periods and the lowest in hot periods, especially for those light
SVOCs (e.g. docosane, fluoranthene), indicating a change in G/P partitioning behavior
across different temperatures. Long chain n-alkanes (chain length > 27), heavy PAHs
(MW > 252), steranes, hopanes, and sterols are mostly in the particle phase (> 75%)
for all periods and less subject to evaporation (or partitioning to the gas phase) under5

higher temperatures. In Table S5, the estimated particle-phase fractions of selected
SVOCs (n-alkanes, PAHs, sterane and hopanes) in hot periods are more comparable
with those observed by Fraser et al. (1997, 1998) in summer Los Angeles than in sum-
mer Athens (Greece) (Mandalakis et al., 2002). Average fractions of particulate PAHs
for the whole period are similar to those annual averages measured by Tsapkis and10

Stephanou (2005) in Heraklion (Greece). While large differences were observed for
the particle-phase fractions of light PAHs (MW < 252) in cold and hot periods compared
with those measured in urban Chicago (Simcik et al., 1997, 1998). These comparisons
indicate that the estimations of G/P distributions of the SVOCs in this work are reason-
able. Keep in mind that these differences may be influenced by parameters other than15

T , like MWOM, ζOM and MOM in Eqs. (1) and (2).

3.2 Sensitivity of total SVOC estimation based on G/P partitioning theory

Based on G/P partitioning theory, changes in ambient temperature lead to the evapora-
tion or condensation of SVOCs; the extent of such changes with temperature depend
in part on values of MWOM and ζOM, here assumed to be 200 gmol−1 and unity re-20

spectively. However, MWOM and ζOM are highly dependent on the composition of PM,

which is complex in an urban area and mostly unknown. The MWOM values are typ-
ically based on MW of organic compounds detected in laboratory and field studies,
but in some cases (e.g. under high relative humidity, RH) need to be adjusted down-
ward for the presence of water in the particulate OM phase (Pankow and Chang, 2008;25

Chang and Pankow, 2010). The ζOM values for organic compounds in atmospheric ap-
plications are not necessarily unity for different SVOCs in varied PM composition (e.g.
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varied amounts of polar and non-polar organic compounds and water) (Pankow and
Chang, 2008; Pun, 2008). The uncertainties in these two parameters, as well as the
OM/OC ratio, could affect the estimation of total SVOC concentration as described in
Sect. 3.1.

Combining Eqs. (2) and (4), the equation for total SVOC calculation can be re-written5

as:

S = F +A =

1+
106po

LMWOMζOM

RTMOM

F (6)

from which we can infer that the estimation of total concentration (S value) for specific
SVOC is primarily determined by the following term:

z =
106po

LMWOMζOM

RTMOM
(7)10

if z is close to 0, then most of the target SVOC is in particle phase; if z is close to
or higher than 1, then the target SVOC is strongly subject to G/P partitioning. The
sensitivity of total SVOC estimation (S value) to T , ζOM, OM/OC ratio, MWOM can be
evaluated as the changes of z value to these uncertain parameters in Eq. (7). To test
the sensitivity, the average temperatures and OC concentrations during the cold, warm15

and hot periods (defined in Sect. 2.4) were investigated; docosane was selected as
an example to represent SVOCs with similar pure vapor pressure and G/P partitioning
behavior. Three ζOM (0.5, 1.0, 1.5) and four MWOM (50, 150, 200, 300 gmol−1) values,
based on Pankow and Chang (2008) and four OM/OC (1.3, 1.4, 1.5, 1.6) ratios, based
on Bae et al. (2006), were used to test the sensitivity of z value (or S value) calculation.20

The values of the above parameters investigated were listed in Table 1.
In Fig. 2, the sensitivity of z value to T , ζOM, OM/OC ratio and MWOM are shown in

nine mesh plots. Each mesh plot exhibits the changes of z value to varied MOM and
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MWOM for a given T and ζOM. From the left to the right in Fig. 2, z values are increased
by 1–2 times as ζOM increases, which can be expected from Eq. (7); while from the
top to the bottom, z values are increased by more than one order of magnitude when
the ambient temperature increases by 21 K. Thus, for docosane, the calculation of z
value (or S value) is more sensitive to the changes in ambient temperature than the5

prescribed changes in activity coefficient. This is largely due to the exponential increase
in vapor pressure with temperature of docosane and other SVOCs (Eq. 3).

Within each mesh plot, z value has a linear and reciprocal relationship with MWOM
and MOM, respectively, which can also be expected from Eq. (7). The maximum z value
is 7.4 times as the minimum z value in each mesh plot. In this test, the variations of10

MWOM is much larger than that of MOM, so the effects of MWOM to the calculation of

z value seems more important than that of OM/OC ratio. However, if MOM and MWOM

have similar variations (e.g. OM/OC ranges from 1.2 to 2.0, and MWOMranges from
150 to 250 gmol−1), then these two parameters should have similar effects on the cal-
culation of z value (or S value).15

As demonstrated by the sensitivity study, the estimation of total SVOC concentration
is mostly sensitive to ambient temperature. In this work, the sensitivity of G/P partition-
ing to ambient temperature is largely accounted for by adjusting the vapor pressure of
each SVOC according to the daily average temperature. However, the total SVOC con-
centration estimated in the current work might be subject to considerable uncertainty20

due to the variations of ζOM, MWOM and OM/OC ratio across the sampling period.

3.3 PMF results for the full data set

A 7-factor solution was determined for the full data set using total SVOC concentration
due to the most readily interpretable resulting factors and a relatively high factor match-
ing rate of 79.9 % between bootstrapped and base case solutions (Table 2). These25

seven factors are identified as nitrate, sulfate, n-alkane, sterane, light SVOC, PAH and
bulk carbon. Figures S1 and S2 present the median factor profiles and contributions
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with one standard deviation from bootstrapped PMF solutions, which represent the
variability of PMF solution due to random sampling error. The factor contributions are
also summarized by day of the week in boxplots (Fig. S3). The factor profiles have been
normalized by

F ∗
kj =

Fkj∑p
k=1 Fkj

(8)5

where F ∗
kj is the relative weighting of species j in factor k to all other factors. The

median factor contributions in Fig. S2 are expressed as reconstructed PM2.5 mass –
the sum of nitrate, sulfate, EC and straight OC fractions contributed by each factor. The
contribution time series were divided into three periods (cold, warm and hot) and shown
as the average contributions to major PM2.5 components (nitrate, sulfate, EC and OC;10

Table 3). The sum of factor contributions to each component can be compared with
the observed average concentration (Table 3). The sampling variability of factor con-
tributions are represented by the median CVs (CV= standard deviation/median factor
contribution). In addition, the factor contributions during each period were linearly re-
gressed to meteorological and trace gas measurements in the same manner as dis-15

cussed in the previous Xie et al. (2013) study, so as to understand the association
between each factor and pollution sources/processes. The resulting correlation coeffi-
cients are given in Table S6.

In Table 3, the nitrate and sulfate concentrations are dominated by the nitrate (aver-
age 59.4 %–97.4 %) and sulfate (79.5 %–96.0 %) factors in all periods. In cold periods,20

the PAH factor (39.9 %) had the highest contribution to EC concentrations, followed
by the sterane (25.2 %) and bulk carbon (23.0 %) factors; while in warm and hot pe-
riods, the bulk carbon factor contributed the most of the EC concentrations (warm,
53.3 %; hot, 76.5 %). The bulk carbon factor also has the highest contribution to OC
(36.6 %–67.9 %) in all periods. Here the OC consists of the three less or non-volatile25

OC fractions (OC2, OC3 and PC) that were used for source apportionment. The factors
with small contributions to reconstructed PM2.5 are prone to having high variability, as
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shown by their higher CVs (e.g. n-alkane, sterane and PAH factors). In each period, the
sum of factor contributions to each major PM2.5 component is close to the observed
average concentration.

3.4 Comparison to filter-based source apportionment

In the previous Xie et al. (2013) study, an 8-factor solution was determined with5

factors labeled as inorganic ion, n-alkanes, EC/sterane, light n-alkane/PAH, medium
alkane/alkanoic acid, PAH, winter/methoxyphenol and summer/odd n-alkane. The
medium alkane/alkanoic acid and winter/methoxyphenol factors only contributed
a small part (0.41 %–1.10 %; 0.16 %–4.21 %) of reconstructed PM2.5 mass and were
not resolved in this study. The 7 factors resolved in the current work could be matched10

with the remaining 6 factors in the filter-based solution after combining the nitrate and
sulfate factors. Correlations of factor contributions between the matched pairs of factors
are shown in Fig. 3.

The factors characterized by inorganic ions, heavy n-alkanes and steranes exhibit
strong correlations (r = 0.92–0.98) between the filter-based and total SVOC-based15

PMF solutions (Fig. 3). This strong correlation is because these factors are primar-
ily linked with secondary formation or primary emission, and the heavy n-alkanes
and steranes are mostly distributed in particle phase (Fig. 1). The light n-alkane/PAH
and PAH factors from the filter-based solution are less correlated with the light SVOC
(r = 0.73) and PAH (r = 0.84) factors from the total SVOC-based solution (Fig. 3). This20

is because these factors contain a significant fraction of light organic compounds, be-
ing subject more strongly to G/P partitioning. In Fig. 4a, the light SVOC factor shows
an increase in contribution when the temperature rises, supporting the association of
this factor with fossil fuel evaporation and biogenic emissions. In contrast, the light
n-alkane/PAH factor from the filter-based solution exhibits low contributions in mid-25

summer when the temperature is the highest of the year and small peaks in winter
when the temperature is low (Fig. 4b). The high temperatures in mid-summer keep
light organic compounds in the gas phase, while the low temperatures in winter benefit
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the partitioning of gas-phase organics to the particle phase. In addition, the high ozone
concentrations in mid-summer could also be responsible for the decrease in factor
contribution, since negative correlations have been observed between ozone concen-
tration and the two matched factors (Light SVOC: −0.48, Table S6; light n-alkane/PAH:
−0.52, Xie et al., 2013) from both solutions during hot periods. No obvious difference5

in contribution time series was observed for the PAH factor between the filter-based
and total SVOC-based PMF solutions, since the PAH factor was mostly characterized
by medium and high MW PAHs (MW ≥ 226; Fig. S1f).

The bulk carbon factor in the current work contains the largest percentages of EC and
OC fractions (Fig. S1g), and has maximum contributions in summer (Fig. S2g). This10

factor should be influenced by both secondary organic aerosols (SOA), as supported
by the correlation between the factor contribution and ozone concentrations in hot peri-
ods (r = 0.36; Table S6), and primary emissions from motor vehicles, as supported by
the weekend decrease in factor contribution (Fig. S3g) and the correlations between
the factor contribution and NOx and CO concentrations (Table S6). The summer/odd15

n-alkane factor from the filter-based solution was primarily associated with SOA forma-
tion, which lead to a moderate correlation (r = 0.69; Fig. 3f) with the bulk carbon factor
in the current work. Except the inorganic ion factors, all other carbonaceous factors
from the filter-based solution show higher contributions than their matched factors from
the total SVOC-based solution, as illustrated by the regression slopes ranging from 1.320

to 2.7 (Fig. 3). This can mostly be attributed to the fact that the OC1 fraction was not
included for source apportionment in the current study, which accounted for 47.6 % of
the total OC on average.

3.5 PMF results for temperature-stratified sub-data sets

Statistics of PMF simulations for the three temperature-stratified sub-data sets are25

given in Table 2. Comparing to the full data set, the same species and factor num-
ber were chosen for PMF analysis of the cold and warm period sub-data sets. The
factor matching rates are 88.6 % and 77.2 %, respectively (Table 2). For the hot period
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sub-data set, fewer species were used to obtain physically meaningful solution with
high factor matching rate. Finally, a 7-factor solution was chosen with a factor matching
rate of 61.9 % (Table 2). Figures S4–S6 show the normalized factor profiles for each
sub-data set solution with one standard deviation. The median factor contributions to
major PM2.5 components during each period were averaged and presented in Table 3,5

and can be compared to those from full data set solution. Median CVs of factor con-
tributions are also included in Table 3 to reflect the variability from random sampling
error. In addition, the correlations between factor contributions and meteorological and
trace gas measurements are given in Table S7. Similarly to the full data set solution,
the nitrate and sulfate concentrations are mostly accounted for by the nitrate (average10

93.9 %–94.7 %) and sulfate (85.2 %–87.9 %) factors (Table 3). The EC and OC con-
centrations are highest apportioned to the bulk carbon factor (EC, 48.9 %–64.9 %; OC,
32.9 %–50.7 %) for all periods.

3.6 Comparison to PMF results of the full data set

The factors from the analysis of each temperature-stratified sub-data set were matched15

to those from the full data set based on factor profiles. The linear regressions of factor
contributions between matched pairs of factors are given in Table 4, so as to verify that
the influence of G/P partitioning was eliminated from the PMF analysis by using the
total SVOC data set. However, we cannot rule out the impacts of other atmospheric
processes like photochemical reactions.20

3.6.1 Cold period

All the factors resolved by using the cold period sub-data set show similar factor pro-
files as their corresponding factors from the full data set solution (Figs. S1 and S4).
The EC concentration is more strongly apportioned to the bulk carbon factor from the
cold period solution (average 63.8 %) than that from the full data set solution (22.2 %;25

Table 3). Moreover, strong correlations were observed between the bulk carbon factor
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from the cold period solution and NOx (r = 0.76) and CO (r = 0.76; Table S7) concen-
trations. As such, the bulk carbon factor from the cold period solution should be mainly
associated with primary emissions (e.g. gasoline and diesel vehicles). The full data set
solution assumes constant co-influence of primary and secondary sources throughout
the sampling period, which leads to a moderate correlation (r = 0.54; Table 4) of the5

bulk carbon factor between the full data set and cold period solutions. For other fac-
tors, relatively strong correlations (r = 0.96–1.00; Table 4) were observed between the
two solutions, indicating that these matched pairs of factors could be linked to similar
pollution sources/processes. Among all the factors, the light SVOC factor is most likely
influenced by G/P partitioning when we only use the filter measurement data for source10

apportionment. The influence of G/P partitioning should be different across different pe-
riods due to the distinct temperature ranges, while the filter-based full data set solution
assumes constant G/P partitioning influence. In Fig. 5a, d, the light n-alkane/PAH factor
from the filter-based PMF analysis was more poorly correlated (r = 0.41) between the
cold period and the full data set solutions (Xie et al., 2013) than the light SVOC factor15

from the total SVOC-based PMF analysis (r = 0.96). These results suggested that the
G/P partitioning influence was removed from PMF analysis by using the total SVOC
data set as input.

3.6.2 Warm period

The factors resolved by using the warm period sub-data set are also similar as those20

from the full data set solution on factor profiles (Figs. S1 and S5). Moreover, the factor
contributions of the warm period and full data set solutions are relatively strongly cor-
related (r = 0.96–0.99) with regression slopes close to unity (0.73–1.30; Table 4). Such
consistency between the warm period and full data set solutions was also observed in
the previous Xie et al. (2013) study. One explanation is that the PMF model is solved by25

minimizing the sum of the squared, scaled residues, and then requires the mean con-
centrations of most species to be fit well. The average concentrations of most SVOCs
in warm periods are closer to the averages of the whole period than those during cold
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and hot periods. Thus, the factor contributions of the warm period solution are more
consistent with those of the full data set solution.

3.6.3 Hot period

For the hot period, the nitrate measurements were not included for source apportion-
ment due to the high percentages of missing and BDL observations, resulting in the5

omission of the nitrate factor. Meanwhile, a new factor was resolved and labeled as
median n-alkane. It contains significant fraction of n-alkane with a chain length rang-
ing from 22 to 29 (Fig. S6g). The factor contribution was moderately correlated with
ambient temperature (r = 0.59) and anti-correlated with relative humidity (r = −0.45;
Table S7). So the median n-alkane factor might be linked with temperature-dependent10

summertime emissions with contribution time series opposing to that of relative humid-
ity. The median n-alkane factor was also identified by using the filter-based sub-data
set for hot periods (Xie et al., 2013), and well correlated (r = 0.80) with that identified
in this work. The other factors were matched to those from the full data set solution
with strong correlations (r = 0.79–0.99; Table 4). However, the regression plot for the15

light SVOC factor in hot periods (Fig. 5f) is more scattered than those in cold and warm
periods (Fig. 5d, e); and from the cold to hot periods, the light SVOC factor becomes
less correlated with ambient temperature (r , 0.61 → 0.07; Table S7). These could be
caused by the increased photochemical reactions during hot periods, supported by the
negative correlation (r = −0.46) between the light SVOC factor and ozone concentra-20

tion.

4 Conclusions

The gas-phase concentrations of 71 SVOCs were estimated using particle-phase mea-
surements by G/P partitioning theory. In order to eliminate the impacts of G/P partition-
ing on PMF analysis, the gas-phase concentrations of all SVOCs were added to their25
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particle-phase concentrations as inputs for source apportionment. Seven factors were
identified from the full data set, including the nitrate, sulfate, n-alkane, sterane, light
SVOC, PAH and bulk carbon factors, and could be matched to those from a previ-
ous filter-based PMF study (Xie et al., 2013) with reasonable (r = 0.69) to excellent
(r = 0.98) correlations. Three temperature-stratified sub-data sets, representing ambi-5

ent sampling during the cold, warm and hot periods, were also analyzed using PMF.
Unlike the light n-alkane/PAH factor from the filter-based study, the light SVOC factor
from the total-SVOC based PMF solution exhibited strong correlations (r = 0.82–0.98)
between the full data set and each sub-data set solutions. These results suggested
that the influences of G/P partitioning on PMF analysis could be removed by using to-10

tal SVOC (gas+particle phase) data. However, the impact of photochemical process
has not been ruled out in this work, as illustrated by the moderate correlation (r = 0.54)
between the bulk carbon factor of the full data set solution and that of the cold period
solution.

This study is our first step in improving SVOC-based PMF analysis by removing15

the impacts of G/P partitioning. However, the pre-assumptions (e.g. MWOM and ζOM
values) made for the calculation of gas-phase SVOC concentrations need to be verified,
and if necessary refined, by comparing with field measurements. Additionally, more
source markers are required to further apportion the bulk carbon factor. Finally, gas-
phase OC data are needed to further understand the ambient OC sources. All of the20

above will be considered in our subsequent work.

Supplementary material related to this article is available online at:
http://www.atmos-chem-phys-discuss.net/13/5199/2013/
acpd-13-5199-2013-supplement.pdf.

Disclaimer. The views expressed are those of the authors and do not necessarily reflect the25

views or policies of the US Environmental Protection Agency.
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Table 1. Values of parameters used to test the sensitivity of total SVOC estimation.

Parameters Cold Warm Hot

T (K) 276.5 288.5 297.6
Moc (µgm−3)a 2.78 2.39 3.45
po

L (atm)b 8.52×10−10 6.80×10−9 2.96×10−8

ζOM 0.5, 1, 1.5

MWOM (gmol−1)c 50, 150, 200, 30
OM/OC 1.3, 1.4, 1.5, 1.6

a Mean organic carbon concentrations during different periods.
b Vapor pressures of docosane at different temperatures.
c Mean molecular weight of absorbing organic material.
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Table 2. PMF simulation statistics for different data sets.

Parameters Data sets

Full Cold Warm Hot

No. of species 52 52 52 37
No. of samples 970 364 318 288
No. of factors 7 7 7 7
No. of bootstrap replicate data sets 1000 1000 1000 1000
No. of data sets for which PMF did not converge to a solution 0 0 0 0
No. of data sets for which factors were uniquely matched 799 886 772 619
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Table 3. Average factor contributions to bulk components for full data set solution and sub-data
set solutions (µgm−3).

Factors Full data set solution Sub-data set solution

Nitrate Sulfate EC OCa CVb Nitrate Sulfate EC OC CV

Cold period Cold period
Nitrate 2.2 0.24 0.060 0.076 0.036 2.1 0.14 0.031 0.14 0.074
Sulfate 0.035 1.0 0.0026 0.022 0.060 0.12 1.1 0.015 0.015 0.11
n-Alkane 0.0004 0.0079 0.0003 0.26 0.35 0.0007 0.0023 0.00 0.25 0.27
Sterane 0.0008 0.0079 0.13 0.17 0.52 0.012 0.023 0.070 0.10 0.52
Light SVOC 0.0009 0.0013 0.0012 0.027 0.22 0.0040 0.0045 0.030 0.18 0.14
PAH 0.0003 0.0010 0.21 0.15 0.31 0.0005 0.0030 0.057 0.019 0.84
Bulk carbon 0.0081 0.0052 0.12 0.41 0.33 0.0009 0.0095 0.37 0.47 0.23

Subtotal 2.2 1.3 0.54 1.1 2.2 1.3 0.58 1.2
Observed Conc. 2.2 1.3 0.61 1.4

Warm period Warm period
Nitrate 0.32 0.036 0.0089 0.011 0.23 0.37 0.10 0.028 0.021 0.44
Sulfate 0.032 0.93 0.0023 0.020 0.031 0.011 0.86 0.00 0.12 0.11
n-Alkane 0.0002 0.0038 0.0001 0.12 0.39 0.0026 0.0034 0.00 0.16 0.44
Sterane 0.0003 0.0031 0.053 0.069 0.61 0.0007 0.0090 0.069 0.068 0.68
Light SVOC 0.0041 0.0061 0.0056 0.12 0.15 0.0012 0.0069 0.012 0.14 0.15
PAH 0.0002 0.0005 0.11 0.082 0.33 0.0001 0.0003 0.091 0.057 0.41
Bulk carbon 0.014 0.0089 0.21 0.70 0.13 0.0050 0.0010 0.19 0.58 0.21

Subtotal 0.37 0.99 0.39 1.1 0.39 0.98 0.39 1.1
Observed Conc. 0.40 1.0 0.43 1.2

Hot period Hot period
Nitrate 0.11 0.012 0.0030 0.0038 0.35 – – – – –
Sulfate 0.040 1.2 0.0029 0.025 0.037 – 1.0 0.035 0.13 0.14
n-Alkane 0.0002 0.0031 0.0001 0.10 0.46 – 0.0001 0.051 0.46 0.50
Sterane 0.0002 0.0020 0.035 0.045 0.73 – 0.035 0.077 0.24 0.52
Light SVOC 0.011 0.016 0.015 0.33 0.15 – 0.079 0.012 0.11 0.30
PAH 0.0001 0.0002 0.051 0.037 0.37 – 0.0005 0.039 0.0070 0.74
Bulk carbon 0.023 0.015 0.35 1.2 0.14 – 0.056 0.22 0.55 0.39
Median n-alkane – – – – – – 0.0026 0.0070 0.17 0.56

Subtotal 0.18 1.2 0.45 1.7 – 1.2 0.44 1.7
Observed Conc. 0.19 1.2 0.46 1.8

a Sum of contributions to OC2, OC3 and PC fractions.
b Median coefficient of variation (CV) of factor contributions, CV= standard deviation/median factor
contribution.
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Table 4. Regression statistics of factor contributions between full data set and sub-data set
solutions.

Factor Cold Warm Hot

Fulla Subb Slope Intercept r Slope Intercept r Slope Intercept r

Nitrate Nitrate 0.94 −49.7 1.00 1.20 56.7 0.98 – – –
Sulfate Sulfate 1.12 33.2 1.00 1.02 −20.9 0.99 1.12 −219 0.99
n-alkane n-alkane 0.98 −4.18 0.98 1.17 14.5 0.99 3.37 162 0.79
Sterane Sterane 0.70 12.8 0.98 1.19 −2.65 0.99 3.45 71.8 0.81
Light SVOC Light SVOC 5.34 50.2 0.96 1.30 −21.2 0.98 0.80 −102 0.82
PAH PAH 0.24 −10.9 0.97 0.73 5.33 0.99 0.39 12.6 0.91
Bulk carbon Bulk carbon 1.12 236 0.54 0.96 −118 0.96 0.59 −80.5 0.81

Sumc Sum 1.02 −34.3 0.99 1.00 17.9 0.99 0.74 153 0.89

a Full data set solution, of which the factor contribution were regarded as independent variables for regression.
b Temperature-stratified sub-data set solutions.
c Sum of factor contributions.
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Fig. 1. Mean particle-phase fractions of all SVOCs during cold, warm and hot periods.
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Fig. 2. Sensitivity of the calculation of total SVOC concentration (S value), determined by z
value, to ambient temperature (T ), mole fraction scale activity coefficient (ζOM), OM/OC ratio

and mean molecular weight of absorbing OM phase (MWOM). The z value equals to the ratio of
gas phase to particle phase SVOC.
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Fig. 3. Linear regressions of matched pairs of factors between filter-based and total SVOC-
based PMF analysis.

5230

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/13/5199/2013/acpd-13-5199-2013-print.pdf
http://www.atmos-chem-phys-discuss.net/13/5199/2013/acpd-13-5199-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
13, 5199–5232, 2013

Positive matrix
factorization of PM2.5

M. Xie et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 4. Median factor contribution time series (blank circle) of (a) light SVOC factor from the
total SVOC-based solution, and (b) light n-alkane/PAH factor from the filter-based solution. The
red line represents the timeseries of daily average temperature.
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Fig. 5. Linear regressions of factor contributions between the full data set and sub-data set
solutions, (a–c) light n-alkane/PAH factor from filter-based analysis; (d–f) light SVOC factor
from total SVOC-based analysis.
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