Supplementary Material

Chemical Insights, Explicit Chemistry and Yields of Secondary Organic Aerosol from Methylglyoxal and Glyoxal

Yong Bin Lim, Yi Tan, and Barbara J. Turpin

The supporting information contains 10 pages with following information: the chemical model (Table S1); the simulated concentration of dissolved oxygen during an experiment (Fig. S1); atmospheric CSTR simulated SOA yields (Fig. S2).

 Table S1. Reactions and rate/equilibrium constants used in the full kinetic model of

 unified glyoxal/methylglyoxal + OH

	Reactions	Rate constants (M ¹⁻ⁿ s ⁻¹)	Ref
1	$H_2O_2 \rightarrow 2OH$	1.1e-4×Trans ^a	T, e
2	$OH + H_2O_2 \rightarrow HO_2 + H_2O$	2.7e7	Т
3	$HO_2 + H_2O_2 \rightarrow OH + H_2O + O_2$	3.7	Т
4	$2 \text{ HO}_2 \rightarrow \text{H}_2\text{O}_2 + \text{O}_2$	8.3e5	Т
5	$OH + HO_2 \rightarrow H_2O + O_2$	7.1e9	Т
6	$HO_2 + O_2^- + H^+ \rightarrow H_2O_2 + O_2$	1e8	Т
7	$2OH \rightarrow H_2O_2$	5.5e9	Т
8	$OH + O_2^- \rightarrow OH^- + O_2$	1e10	Т
9	$O_{2g} \leftrightarrow O_2$	$K_{eq} = 1.3e-3$ $k_r = 5.3e2$	Τ, W
10	$CO_{2g} \leftrightarrow CO_2$	$K_{eq} = 3.4e-2$ $k_r = 5.3e2$	Τ, W
11	$CO_2 \leftrightarrow H^+ + HCO_3^-$	$K_{eq} = 4.3e-7$ k _r = 5.6e4	Т
12	$\text{HCO}_3^- \rightarrow \text{H}^+ + \text{CO}_3^{-2}$	$K_{eq} = 4.69e-11$ $k_r = 5.0e10$	Т
13	$\mathrm{CO}_2^- + \mathrm{O}_2 \rightarrow \mathrm{O}_2^- + \mathrm{CO}_2$	2.4e9	Т
14	$HCO_3^- + OH \rightarrow CO_3^- + H_2O$	1e7	Т
15	$\operatorname{CO}_3^- + \operatorname{O}_2^- \to \operatorname{CO}_3^{-2} + \operatorname{O}_2$	6.5e8	Т
16	$CO_3^- + HCO_2^- \rightarrow HCO_3^- + CO_2^-$	1.5e5	Т
17	$CO_3^- + H_2O_2 \rightarrow HCO_3^- + HO_2$	8e5	Т
18	$\text{GCOLAC} + \text{OH} \rightarrow \text{GCOLAC}^* + \text{H2O}$	6.0e8	Т
19	$\text{GCOLAC}^* + \text{O}_2 \rightarrow \text{GCOLACOO}^*$	1e6	G, L'
20	$GCOLACOO^* \rightarrow GLYAC + HO_2$	5e1	С
21	$2\text{GCOLACOO}^* \rightarrow 2\text{GCOLACO}^* + \text{O}_2$	3e8*0.95	L', e
22	$2\text{GCOLACOO}^* \rightarrow \text{GLYAC} + \text{OXLAC} + \text{O}_2$	3e8*0.05	L', e
23	$\text{GCOLACO}^* \rightarrow \text{HCO}_2\text{H} + \text{CO}_2$	Ι	Gi, e
24	$GCOLACO^* \rightarrow GLYAC^*$	1e7	Gi, e
25	$\text{GCOLAC} \leftrightarrow \text{H}^+ + \text{GCOLAC}^-$	$K_{eq} = 1.48e-4$ $k_r = 2.0e10$	Т
26	$\text{GCOLAC}^- + \text{OH} \rightarrow \text{GCOLAC}^{*-} + \text{H}_2\text{O}$	6.0e8	Т
27	$\text{GCOLAC}^{*-} + \text{O}_2 \rightarrow \text{GCOLACOO}^{*-}$	1e6	G, L'
28	$GCOLACOO^{*-} \rightarrow GLYAC^{-} + HO_2$	5e1	С
29	2 GCOLACROO* \rightarrow 2 GCOLACO* \rightarrow $+$ O_2	3e8×0.95	L', e
30	$2 \text{ GCOLACROO}^* \rightarrow \text{GLYAC}^+ + \text{OXLAC}^+ + \text{O}_2$	3e8×0.05	L', e
31	$\text{GCOLACO}^{*-} \rightarrow \text{HCO}_2\text{H} + \text{CO}_2^{-}$	Ι	Gi, e
32	$\text{GCOLACO}^{\ast} \rightarrow \text{GLYAC}^{\ast}$	1e7	Gi, e
33	$GLY + OH \rightarrow GLY^* + H_2O$	1.1e9	Т
34	$GLY^* + O_2 \rightarrow GLYOO^*$	1e6	G, L'
35	$GLYOO^* \rightarrow GLYAC + HO_2$	5e1	С
36	$2\overline{\text{GLYOO}^* \rightarrow 2^*\text{CHOHOH} + 2\text{CO}_2 + \text{O}_2 + 2\text{H}_2\text{O}}$	3e8	L'
37	$*CHOHOH + O_2 \rightarrow HCO_2H + HO_2$	5e6	G, L'
38	$GLYAC + OH \rightarrow GLYAC^* + H_2O$	3.62e8	Т
39	$GLYAC^* + O_2 \rightarrow GLYACOO^*$	1e6	G, L'
40	$GLYACOO^* \rightarrow OXLAC + HO_2$	5e1	С

41	$2\text{GLYACOO}^* \rightarrow 2\text{CO}_2 + 2\text{COOH}$	3e8	Ľ,
42	$*COOH + O_2 \rightarrow CO_2 + HO_2$	5e6	G, L'
43	$GLYAC \leftrightarrow H^+ + GLYAC^-$	$K_{eq} = 3.47e-4$ $K_r = 2.0e10$	Т
44	$GLYAC^- + OH \rightarrow GLYAC^{*-} + H_2O$	1.28e7	Т
45	$GLYAC^- + OH \rightarrow GLYAC^* + OH^-$	2.9e9	Т
46	$GLYAC^{*-} + O_2 \rightarrow GLYACOO^{*-}$	1e6	G, L'
47	$GLYACOO^{*-} \rightarrow OXLAC^{-} + HO_2$	1e2	C, L'
48	$2\text{GLYACOO}^* \rightarrow 2\text{CO}_2^+ + 2\text{*COOH}$	3e8	L'
49	$MGLY + OH \rightarrow MGLY^* + H_2O$	7.0e8×0.92	Т
50	$MGLY + OH \rightarrow *MGLY + H_2O$	7.0e8×0.08	Т
51	$MGLY^* + O_2 \rightarrow MGLYOO^*$	1e6	G, L'
52	$MGLYOO^* \rightarrow PYRAC + HO_2$	5e1	С
53	$2MGLYOO^* \rightarrow 2CO_2 + 2CH_3CO_2H + O_2$	3e8	L'
54	*MGLY + $O_2 \rightarrow$ *OOMGLY	1e6	G, L'
55	$2*OOMGLY \rightarrow 2*OMGLY + O_2$	3e8×0.95	L', e
56	$2*OOMGLY \rightarrow HOMGLY + OMGLY + O_2$	3e8×0.05	L', e
57	$*OMGLY \rightarrow HCHO + GLY*$	Ι	Gi, e
58	$*OMGLY \rightarrow *HOMGLY$	1e7	Gi, e
59	$HOMGLY + OH \rightarrow *HOMGLY + H_2O$	4.10e7	М
60	*HOMGLY + $O_2 \rightarrow$ *OOHOMGLY	1e6	G, L'
61	$*OOHOMGLY \rightarrow OMGLY + HO_2$	5e1	C
62	$OMGLY + OH \rightarrow *OMGLY + H_2O$	6.17e9	М
63	*OMGLY + $O_2 \rightarrow$ *OOOMGLY	5e1	С
64	$GLY^* + *CHOHOH \rightarrow C3D$	1.3e9	G, L'
65	$2GLY^* \rightarrow C4D$	1.3e9	G, L'
66	$GLY^* + *COOH \rightarrow C3D$	1.3e9	G, L'
67	$GLYAC^* + *COOH \rightarrow C3D$	1.3e9	G, L'
68	$GLYAC^* + *CHOHOH \rightarrow C3D$	1.3e9	G, L'
69	$2GLYAC^* \rightarrow C4D$	1.3e9	G, L'
70	$GLYAC^* + GLY^* \rightarrow C4D$	1.3e9	G, L'
71	$GLYAC^{*-} + GLY^* \rightarrow C4D$	1.3e9	G, L'
72	$GLYAC^{*-} + GLYAC^* \rightarrow C4D$	1.3e9	G, L'
73	$2\text{GLYAC}^* \rightarrow \text{C4D}$	1.3e9	G, L'
74	$GLYAC^{*-} + *COOH \rightarrow C3D$	1.3e9	G, L'
75	$GLYAC^{*-} + *CHOHOH \rightarrow C3D$	1.3e9	G, L'
76	$GLYCOL^{*1} + *CHOHOH \rightarrow C3D$	1.3e9	G, L'
77	$GLYCOL^{*1} + GLY^* \rightarrow C4D$	1.3e9	G, L'
78	$GLYCOL^{*1} + *COOH \rightarrow C3D$	1.3e9	G, L'
79	$GLYCOL^{*1} + GLYAC^* \rightarrow C4D$	1.3e9	G, L'
80	$GLYCOL^{*1} + GLYAC^{*-} \rightarrow C4D$	1.3e9	G, L'
81	$GLYCOL^{*2} + *CHOHOH \rightarrow C3D$	1.3e9	G, L'
82	$GLYCOL^{*2} + GLY^* \rightarrow C4D$	1.3e9	G, L'
83	$GLYCOL^{*2} + *COOH \rightarrow C3D$	1.3e9	G, L'
84	$GLYCOL^{*2} + GLYAC^* \rightarrow C4D$	1.3e9	G, L'
85	$GCOLAC* + *CHOHOH \rightarrow C3D$	1.3e9	G, L'
86	$GCOLAC^* + GLY^* \rightarrow C4D$	1.3e9	G, L'
87	$GCOLAC^* + *COOH \rightarrow C3D$	1.3e9	G, L'
88	$GCOLAC^* + GLYAC^* \rightarrow C4D$	1.3e9	G, L'
89	$GCOLAC^* + GLYAC^* \rightarrow C4D$	1.3e9	G, L'

90	$GCOLAC^* + GLYCOL^{*1} \rightarrow C4D$	1.3e9	G, L'
91	$GCOLAC^* + GLYCOL^{*2} \rightarrow C4D$	1.3e9	G, L'
92	$\text{GCOLAC}^* + \text{GCOLAC}^* \rightarrow \text{C4D}$	1.3e9	G, L'
93	GCOLAC^* + *CHOHOH \rightarrow C3D	1.3e9	G, L'
94	$\text{GCOLAC}^{*-} + \text{GLY}^* \rightarrow \text{C4D}$	1.3e9	G, L'
95	GCOLAC^* + *COOH \rightarrow C3D	1.3e9	G, L'
96	$GCOLAC^{*-} + GLYAC^* \rightarrow C4D$	1.3e9	G, L'
97	$GCOLAC^{*-} + GLYAC^{*-} \rightarrow C4D$	1.3e9	G, L'
98	$GCOLAC^{*-} + GLYAC^{*-} \rightarrow C4D$	1.3e9	G, L'
99	$GCOLAC^{*-} + GLYCOL^{*1} \rightarrow C4D$	1.3e9	G, L'
100	$GCOLAC^{*-} + GLYCOL^{*2} \rightarrow C4D$	1.3e9	G, L'
101	GCOLAC^* + $\text{GCOLAC}^* \rightarrow \text{C4D}$	1.3e9	G, L'
102	$2 \text{ GCOLAC}^* \rightarrow \text{C4D}$	1.3e9	G, L'
103	$2MGLY^* \rightarrow C6D$	1.3e9	G, L'
104	$MGLY^* + *CHOHOH \rightarrow C4D$	1.3e9	G, L'
105	$MGLY^* + GLY^* \rightarrow C5D$	1.3e9	G, L'
106	$MGLY^* + *COOH \rightarrow C4D$	1.3e9	G, L'
107	$MGLY^* + GLYAC^* \rightarrow C5D$	1.3e9	G, L'
108	$MGLY^* + GLYAC^* \rightarrow C5D$	1.3e9	G, L'
109	$MGLY^* + GLYCOL^{*1} \rightarrow C5D$	1.3e9	G, L'
110	$MGLY^* + GLYCOL^{*2} \rightarrow C5D$	1.3e9	G, L'
111	$MGLY^* + GCOLAC^* \rightarrow C5D$	1.3e9	G, L'
112	$MGLY^* + GCOLAC^{*-} \rightarrow C5D$	1.3e9	G, L'
113	$MGLY^* + CH_3CO^* \rightarrow C5D$	1.3e9	G, L'
114	$MGLY* + *HOPYRAC \rightarrow C6D$	1.3e9	G, L'
115	$2*HOPYRAC \rightarrow C6D$	1.3e9	G, L'
116	$MGLY^* + *HOPYRAC^- \rightarrow C6D$	1.3e9	G, L'
117	*HOPYRAC ⁻ + *HOPYRAC ⁻ \rightarrow C6D	1.3e9	G, L'
118	*HOPYRAC + *HOPYRAC \rightarrow C6D	1.3e9	G, L'
119	$CH_3CO^* + *HOPYRAC \rightarrow C6D$	1.3e9	G, L'
120	$CH_3CO^* + *HOPYRAC^- \rightarrow C6D$	1.3e9	G, L'
121	$2LA^* \rightarrow C6D$	1.3e9	G, L'
122	$LA^* + MGLY^* \rightarrow C6D$	1.3e9	G, L'
123	$LA^* + *CHOHOH \rightarrow C4D$	1.3e9	G, L'
124	$LA^* + GLY^* \rightarrow C5D$	1.3e9	G, L'
125	$LA^* + *COOH \rightarrow C4D$	1.3e9	G, L'
126	$LA^* + GLYAC^* \rightarrow C5D$	1.3e9	G, L'
127	$LA^* + GLYAC^{*-} \rightarrow C5D$	1.3e9	G, L'
128	$LA^* + GLYCOL^{*1} \rightarrow C5D$	1.3e9	G, L'
129	$LA^* + GLYCOL^{*2} \rightarrow C5D$	1.3e9	G, L'
130	$LA^* + GCOLAC^* \rightarrow C5D$	1.3e9	G, L'
131	$LA^* + GCOLAC^{*-} \rightarrow C5D$	1.3e9	G, L'
132	$LA^* + CH_3CO^* \rightarrow C5D$	1.3e9	G, L'
133	$2CH_3CO^* \rightarrow C4D$	1.3e9	G, L'
134	$LA^* + *HOPYRAC \rightarrow C6D$	1.3e9	G, L'
135	$LA^* + *HOPYRAC^- \rightarrow C6D$	1.3e9	G, L'
136	$OXLAC + OH \rightarrow COOH + CO_2 + H_2O$	1.4e6	Т
137	$OXLAC \leftrightarrow H^+ + OXLAC^-$	$K_{eq} = 5.67e-2$ $k_r = 5.0e10$	Т
138	$OXLAC^{-} + OH \rightarrow COOH + CO_{2}^{-} + H_{2}O$	2.0e7	T, L'

139	$OXLAC^{-} \leftrightarrow H^{+} + OXLAC^{-2}$	$K_{eq} = 5.42e-5$ $k_{eq} = 5e10$	Т
140	$OXLAC^{-2} + OH \rightarrow *COOH + CO_{2}^{-} + OH^{-}$	4.0e7	T, L'
141	$LA + OH \rightarrow LA^* + H_2O$	4.3e8	Ĥ
142	$LA^* + O_2 \rightarrow LAOO^*$	1e6	G, L'
143	$LAROO^* \rightarrow PYRAC + HO_2$	5e1	C
144	T A T A- TT+	$K_{eq} = 1.38e-4$	
144	$LA \leftrightarrow LA + H^{+}$	$k_r = 5.0e10$	E&C
145	$LA^- + OH \rightarrow LA^{*-} + H_2O$	3e8	В
146	$LA^{*-} + O_2 \rightarrow LAOO^{*-}$	1e6	G, L'
147	$LAOO^{*-} \rightarrow PYRAC^{-} + HO_2$	5e1	С
148	$PYRAC + OH \rightarrow PYRAC^* + H_2O$	6.0e7×0.85	Т
149	$PYRAC + OH \rightarrow CH_3CO^* + CO_2 + H_2O$	6.0e7×0.15	Т
150	$CH_3CO^* + O_2 \rightarrow CH_3C(O)OO^*$	1e6	G, L'
151	$CH3C(O)OO^* \rightarrow CH_3CO_2H + HO_2$	5e1	С
152	$2CH3C(O)OO^* \rightarrow 2CH_3C(O)O^* + O_2$	3e8	L'
153	$CH_3C(O)O^* \rightarrow CO_2 + HCHO$	1e7	Gi
154	$PYRAC^* + O_2 \rightarrow PYRACOO^*$	1e6	G, L'
144	$2PYRACOO^* \rightarrow 2PYRACO^* + O_2$	3e8×0.95	L', e
145	$2PYRACOO^* \rightarrow HOPYRAC + OPYRAC + O_2$	3e8×0.15	L', e
146	$PYRACO^* \rightarrow HCHO + GLYAC^*$	Ι	Gi, e
147	$PYRACO^* \rightarrow *HOPYRAC$	1e7	Gi, e
148	HOPYRAC + OH \rightarrow *HOPYRAC + H ₂ O	3.6e8	Н
149	*HOPYRAC + $O_2 \rightarrow$ *OOHOPYRAC	1e6	G, L'
150	*OOHOPYRAC \rightarrow OPYRAC + HO ₂	5e1	С
151	$OPYRAC + OH \rightarrow *OPYRAC + H_2O$	5e7	e
152	$*OPYRAC + O_2 \rightarrow *OO(O)PYRAC$	1e6	G, L'
153	$*OO(O)PYRAC \rightarrow MOXLAC + HO_2$	5e1	С
154	$PYRAC \leftrightarrow PYRAC^{-} + H^{+}$	$K_{eq} = 3.2e-3$	Т
155	$DVD \wedge C^{-} + OH \rightarrow DVD \wedge C^{*-} + H O$	$K_r = 2010$	т
155	$\frac{1}{1} \frac{1}{1} \frac{1}$	6.0e7×0.95	T
157	111111111111111111111111111111111111	5e1	C I
157	111111111111111111111111111111111111	3.08×0.05	L'e
150	2111111111111111111111111111111111111	3e8×0.05	L'e
160	2111111111111111111111111111111111111		Gi e
161	$\frac{1}{1} \frac{1}{1} \frac{1}$	1e7	Gie
101		K = 3.2e-3	01, 0
162	$HOPYRAC \leftrightarrow HOPYRAC^{-} + H^{+}$	$\frac{k_{eq} = 5.2e^{-5}}{k_r} = 2e10$	e
163	$OPYRAC \leftrightarrow OPYRAC^- + H^+$	$K_{eq} = 3.2e-3$ k = 2e10	е
164	$HOPYRAC^- + OH \rightarrow *HOPYRAC^- + H_2O$	2.6e9	Н
165	*HOPYRAC ⁻ + $O_2 \rightarrow$ *OOHOPYRAC ⁻	1e6	G, L'
166	*OOHOPYRAC ⁻ \rightarrow OPYRAC ⁻ + HO ₂	5e1	С
167	$OPYRAC^{-} + OH \rightarrow *OPYRAC^{-} + H_2O$	5e7	М
168	$*OPYRAC^- + O2 \rightarrow *OO(O)PYRAC^-$	1e6	G, L'
169	$*OO(O)PYRAC \rightarrow MOXLAC + HO_2$	5e1	C
170	$MOXLAC + OH \rightarrow GLYAC^* + CO_2 + H_2O$	5.7e7	Gl
171	$MOXLAC^{-} + OH \rightarrow GLYAC^{*-} + CO_2 + H_2O$	7.85e7	e
172	$MOXLAC^{-2} + OH \rightarrow GLYAC^{*-} + CO_2 + OH^{-1}$	1.0e8	Н

$ \begin{array}{ c c c c c c c } \hline 174 & MOXLAC^{-2} + H^{+} & K_{eq} = 1.5e-2 \\ \hline k_{r} = 5e10 & V \\ \hline 175 & CH_{3}CO_{2}H + OH \rightarrow *CH_{2}CO_{2}H + H_{2}O & 1.36e7 & T \\ \hline 176 & CH_{3}CO_{2}H + OH \rightarrow CO_{2} + HCHO + HO_{2} + H_{2}O & 2.40e6 & T \\ \hline 177 & *CH_{2}CO_{2}H + O_{2} \rightarrow *OOCH_{2}CO_{2}H & 1e6 & G, L' \\ \hline 178 & 2*OOCH_{2}CO_{2}H \rightarrow 2*OCH_{2}CO_{2}H + O_{2} & 3e8*0.95 & L', e \\ \hline 179 & 2*OOCH_{2}CO_{2}H \rightarrow GLYAC + GCOLAC + O_{2} & 3e8*0.05 & L', e \\ \hline 180 & *OCH_{2}CO_{2}H \rightarrow 2CO_{2} + 2HCHO & I & Gi e \\ \hline \end{array} $
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
176 $CH_3CO_2H + OH \rightarrow CO_2 + HCHO + HO_2 + H_2O$ 2.40e6 T 177 $*CH_2CO_2H + O_2 \rightarrow *OOCH_2CO_2H$ 1e6 G, L' 178 $2*OOCH_2CO_2H \rightarrow 2*OCH_2CO_2H + O_2$ 3e8*0.95 L', e 179 $2*OOCH_2CO_2H \rightarrow GLYAC + GCOLAC + O_2$ 3e8*0.05 L', e 180 $*OCH_2CO_2H \rightarrow 2CO_2 + 2HCHO$ I Gi e
177 $*CH_2CO_2H + O_2 \rightarrow *OOCH_2CO_2H$ 1e6G, L'178 $2*OOCH_2CO_2H \rightarrow 2*OCH_2CO_2H + O_2$ $3e8*0.95$ L', e179 $2*OOCH_2CO_2H \rightarrow GLYAC + GCOLAC + O_2$ $3e8*0.05$ L', e180 $*OCH_2CO_2H \rightarrow 2CO_2 + 2HCHO$ IGi e
178 $2*OOCH_2CO_2H \rightarrow 2*OCH_2CO_2H + O_2$ $3e8*0.95$ L', e179 $2*OOCH_2CO_2H \rightarrow GLYAC + GCOLAC + O_2$ $3e8*0.05$ L', e180 $*OCH_2CO_2H \rightarrow 2CO_2 + 2HCHO$ IGi e
179 $2*OOCH_2CO_2H \rightarrow GLYAC + GCOLAC + O_2$ $3e8*0.05$ L', e180 $*OCH_2CO_2H \rightarrow 2CO_2 + 2HCHO$ IGi e
180 *OCH ₂ CO ₂ H \rightarrow 2CO ₂ + 2HCHO I Gi e
181 *OCH ₂ CO ₂ H \rightarrow GCOLAC* 1e7 Gi, e
182 $CH_3CO_2H \leftrightarrow CH_3CO_2^- + H^+$ $K_{eq} = 1.75e-5$ $k_r = 5.0e10$ T
183 $CH_3CO_2^- + OH \rightarrow *CH_2CO_2^- + H_2O$ 7.23e7 T
184 $CH_2CO_2^+ \rightarrow CO_2 + HCHO + HO_2 + OH^-$ 1.28e7 T
185 *CH ₂ CO ₂ + O ₂ \rightarrow *OOCH ₂ CO ₂ 1e6 G, L'
186 $2*OOCH_2CO_2n1 \rightarrow 2*OCH_2CO_2 + O_2$ $3e8\times0.95$ L', e
187 $2*OOCH_2CO_2 \rightarrow GLYAC + GCOLAC + O2$ $3e8 \times 0.05$ L', e
188 *OCH ₂ CO ₂ \rightarrow 2CO ₂ + 2HCHO I Gi, e
189 *OCH ₂ CO ₂ \rightarrow GCOLAC* 1e7 Gi. e
190 $H_2O \leftrightarrow H^+ + OH^ K_{eq} = 1.0e-14$ $k_r = 1.4e11$ T
191 $HO_2 \leftrightarrow H^+ + O_2^ K_{eq} = 1.6e-5$ $k_r = 5.0e10$ T
192 $HCO_2H + OH \rightarrow *COOH + H_2O$ 1e8 T
193 $HCO_2^- + OH \rightarrow CO_2^- + H_2O$ 2.4e9 T
194 $HCO_{2}H \leftrightarrow H^{+} + HCO_{2}^{-} \qquad \qquad K_{eq} = 1.77e-4 \\ k_{r} = 5.0e10 \qquad T$
$195 \qquad \qquad \text{GLYAC} + \text{H}_2\text{O}_2 \rightarrow \text{HCO}_2\text{H} + \text{CO}_2 + \text{H}_2\text{O} \qquad \qquad 0.3 \qquad \text{T}$
196 $PYRAC + H_2O_2 \rightarrow CH_2CO_2H + H_2O + CO_2 \qquad 0.11 \qquad T$
197 PYRAC ⁻ + $H_2O_2 \rightarrow CH_2CO_2^-$ + $H_2O + CO_2$ 0.11 T
198 MOXLAC + $H_2O_2 \rightarrow OXLAC + CO_2 + H_2O$ 0.5 T
199 MOXLAC ⁻ + $H_2O_2 \rightarrow OXLAC^- + CO_2 + H_2O$ 0.5 T
200 $HCO_2H + OH \rightarrow COOH + H_2O$ 1e8 T
201 $HCO_2^- + OH \rightarrow CO_2^- + H_2O$ 2.4e9 T
202 $HCO_2H \leftrightarrow H^+ + HCO_2^ K_{eq} = 1.77e-4$ $k_r = 5.0e10$ T
203 $2*CHOHOH \rightarrow GLY$ 1.3e9 G, L'
204 *CHOHOH + *COOH \rightarrow GLYAC 1.3e9 G, L'
205 $2*COOH \rightarrow OXLAC$ 1.3e9 G, L'
206 $C3D \leftrightarrow MA + H2O$ $K_{eq} = 1e5$ L'
207 $MA + OH \rightarrow C3D^* + H_2O$ 1.6e7 E
208 $TA + OH \rightarrow C4D^* + H_2O$ 3.1e8 M
209 $2*COOH \rightarrow OXLAC$ 1.3e9 G, L'
210 $CO_2 + *COOH \rightarrow OXLAC$ 1.3e9 G.L'
211 $2CO_2^- \rightarrow OXLAC^{-2}$ 1.3e9 G.L'
212 PYRAC ⁻ $\rightarrow 0.45$ CH ₃ CO ₂ ^{-b} 1e-4 ^b C, e

^aTrans = Transmittance = $10^{-18.4 \times 0.80 \times [H_2O_2]}$; * = radical (e.g., glyoxal* = glyoxal radical); *ⁿ = radical type n (e.g., GLYCOLAC*¹ = glycolic acid radical type 1); O* (or *O) = alkoxy radical; OO* (or *OO) = peroxy radical; CnD = C_n dimer (e.g., C2D = C₂ dimer); X_g = X in the gas phase (e.g., O_{2g} = O₂ in the gas

phase); MGLY = methylglyoxal, PYRAC = pyruvic acid, GLYAC = glyoxylic acid, GLYCOL = glycolaldehyde, GLYCOLAC = glycolic acid, LA = lactic acid, MOXLAC = mesoxalic acid, OXLAC = oxalic acid; n = nth order; K_{eq} = the equilibrium constant (M), k_r = the reverse rate constant for corresponding K_{eq} . Thus, the forward rate constant can be calculated by $K_{eq} \times k_r$; (g) = in the gas phase; I (= the decomposition rate constant from alkoxy radicals) = 5e6 s⁻¹ for ~10µM acetic acid/methylglyoxal, 8e6 s⁻¹ for ~10² µM acetic acid/methylglyoxal, and 2e7 s⁻¹ for ~10³µM acetic acid/ 3.2e7 s⁻¹ for ~10³µM methylglyoxal; ^b PYRAC is assumed to photolyze to produce only 45% acetic acid with 5 times slower than the literature value (Carlton et al., 2006).

Reference

- T = Tan et al., 2009, 2010 and 2012 G = Guzman et al., JPCA, 2006 C = Carter et al., JPC, 1979 H = Herrmann et al., AE, 2005 E = Ervens et al., PCCP, 2003 M = Monod et al., AE, 2005, 2008 L = Lim et al., EST, 2005 L' = Lim et al., ACP, 2010 W = Warneck, PCCP, 1999 E&C = Eyal and Canari, Ind. Eng. Chem. Res., 1995 B = Buxton et al., JPCRD, 1988 Gi = Gilbert et al., 1976 and 1981 V = Volgger et al., J. Chrom. A, 1997 e = Estimation by fitting
- Tan, Y., Perri, M. J., Seitzinger S. P., and Turpin, B. J.: Effects of precursor concentration and acidic sulfate in aqueous glyoxal-OH radical oxidation and implications for secondary organic aerosol, Environ. Sci. Technol., 43, 8105-8112, 2009.

Tan, Y., Carlton, A. G., Seitzinger, S. P., and Turpin, B. J.: SOA from methylglyoxal in clouds and wet aerosols: Mearsurement and prediction of key products, Environ. Sci. Technol, 43, 8105-8112, 2010.

Tan, Y., Lim, Y. B., Altieri, K. E., Seitzinger, S. P., and Turpin, B. J.: Mechanisms leading to oligomers and SOA through aqueous photooxidation: insights from OH radical oxidation of acetic acid, Atmos. Chem. Phys., 12, 801-813, 2012

Guzman, M. I., Colussi, A. J., and Hoffman, M. R.: Photoinduced oligomerization of aqueous pyruvic acid. J. Phys. Chem. A., 110, 3619-3626, 2006.

Carter, W. P. L., Darnall, K. R., Graham, R. A., Winer, A. M., and Pittts, Jr., J.: Reactions of C_2 and $C_4 \alpha$ –Hydroxy radicals with Oxygen, J. Phys. Chem., 83, 2305-2311, 1979.

Herrmann, H., Tilgner, A., Barzaghi, P., Majdik, Z., Gilgorovski, S., Poulain, and Monod, A.: Toward a more detailed description of tropospheric aqueous phase organic chemistry: CAPRAM 3.0, Atmos. Environ., 39, 4351-4363, 2005.

Ervens, B., Gligorovski, S., and Herrmann, H.: Temperature-dependent rate constants for hydroxyl radical reactions with organic compounds in aqueous solutions, Phys. Chem. Chem. Phys., 5, 1811-1824, 2003.

Monod, A., Poulain, L., Grubert, S., Voisin, D., and Wortham, H.: Kinetics of OH-initiated oxidation of oxygenated organic compounds in the aqueous phase: new rate constants, structure-activity relationships and atmospheric implications, Atmos. Environ., 39, 7667-7688, 2005.

Monod, A. and Doussin, J. F.: Structure-activity relationship for the estimation of OH-oxidation rate constants of aliphatic organic compounds in the aqueous phase: alkanes, alcohols, organic acids and bases, Atmos. Environ., 42, 7611-7622, 2008.

Lim, H. J., Carlton, A. G., and Turpin, B. J.: Isoprene forms secondary organic aerosol through cloud processing: model simulations, Environ. Sci. Tech., 39, 4441-4446, 2005.

Lim, Y. B., Tan, Y., Perri, M. J., Seitzinger, S. P., and Turpin, B. J.: Aqueous chemistry and its role in secondary organic aerosol (SOA) formation, Atmos. Chem. Phys., 10 10521-10539, 2010.

Warneck P.: The relative importance of various pathways for the oxidation of sulfur dioxide and nitrogen dioxide in sunlit continental fair weather clouds, Phys. Chem. Chem. Phys., 1, 5471-5483, 1999.

Eyal, A. M. and Canari, R.: pH dependence of carboxylic and mineral acid extraction by amine-based extractants: effects of pK_a, amine basicity, and diluents properties, Ind., Eng. Chem. Res., 34, 1789-1798, 1995.

Buxton, G. V., Greenstock, C., Herlmen, W. P., and Ross, A. B.: Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O-) in aqueous solution, J. Phys. Chem. Ref. Data, 17, 513-886, 1988.

Gilbert, B. C., Holmes, R. G., Laue, H., A and Norman, R. O.: Electron spin resonance studies. Part L. Reactions of alkoxy radicals generated from alkyl hydroperoxides and titanium (III) ion in aqueous solution, J. Chem. Soc., Perkin Trans. 2, 1047-1052, 1976.

Gilbert, B. C., Marshall, D. R., Norman, R. O., Pineda, N. And Williams, P. S.: Electron spin resonance studies. Part 61. The generation and reactions of the t-butoxy radical in aqueous solution, J. Chem. Soc., Perkin Trans. 2, 1392-1400, 1981.

Volgger, D., Zemann, A. J., Bonn, G. K., and Antal, Jr., M. J.: High-speed separation of carboxylic acids by co-electroosmotic apillary electrophoresis with direct and indirect UV detection, J. Chrom. A, 758, 263-276, 1997.

Carlton, A. G., Turpin, B. J., Lim, H. J., Altieri, K. E., and Seitzinger, S.: Link between isoprene and secondary organic aerosol (SOA): Pyruvic acid oxidation yields low volatility organic acids in clouds, Geophys. Res. Lett., 33, L06822, doi:10.1029/2005GL025374, 2006.

Figure S1. The simulated concentration of dissolved O_2 during the reaction of methylglyoxal (3000 μ M) + OH

Figure S2. Atmospheric CSTR simulations (**A**) for particle-phase mass yields of oxalate (Y_{OXLAC}) with increasing initial concentrations of glyoxal ([GLY]₀) for aqueous-phase OH radical reactions ($Y_{OXLAC} = 1.19/(1+1450[GLY]_0)$; $Y_{SOA}(GLY) = Y_{OXLAC}$), and (**B**) for particle-phase mass yields of oxalate (Y_{OXLAC}) and pyruvate (Y_{PYRAC}) with increasing initial concentrations of methylglyoxal ([MGLY]₀) for aqueous-phase OH radical reactions($Y_{PYRAC} = 0.759/(1+495[MGLY]_0)$; $Y_{OXLAC} = 0.0439/(1-127[MGLY]_0)$; $Y_{SOA}(MGLY) = Y_{PYRAC} + Y_{OXLAC}$).