## **Digital Supplement to Manuscript**

## Coherent uncertainty analysis of aerosol measurements from multiple satellite sensors

## M. Petrenko<sup>1,2</sup>, C. Ichoku<sup>2</sup>

[1]{Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland}

[2] {NASA Goddard Space Flight Center, Greenbelt, Maryland}

Correspondence to: M. Petrenko (maksym.petrenko@nasa.gov)

## Description

This digital supplement to the paper 'Coherent uncertainty analysis of aerosol measurements from multiple satellite sensors' presents additional statistics and figures that were not included in the main paper to avoid overcrowding. While the main paper focuses on the analysis of the **mean** AOD values of the spatial subsets of the satellite data within 55-km diameter circles centered over the ground-based AERONET sites and coincident 1-hour AERONET data segments centered at each satellite overpass time (i.e., the spatially-averaged spaceborne aerosol observations were compared to the time-averaged ground-based observations from AERONET), this supplement replicates the analysis of Sect. 6 and Sect. 7 by using the central (**cval**) AOD values instead of the mean. For the spaceborne data, the central value is the value of a pixel in the subset that has the smallest distance to the ground station. For the ground-based data, this is the value of a measurement in the subset that is the closest in time to the satellite overpass. To facilitate cross-referencing between the main paper and this supplement, the **cval**-based figures and tables in the supplement are numbered similarly to the corresponding **mean**-based figures in the main document, e.g., Fig. 6b. in the supplement corresponds to Fig. 6 in the main document.

Table 3b. Statistics of the studied aerosol data sets based on all AERONET stations during the period of 2006-06-07 and 2010-12-11. 'Ntot' indicates the total number of the collocated Spaceborne AOD - AERONET AOD data points, while 'Nfilt' indicates the number of data points after filtering (screening) the spaceborne data by QA as described in Section 4 and Table 2. 'Nout' is the total number of the possible data outliers determined as explained in Section 5. The last 8 columns present the statistics on the collocated data based on regression fits also plotted in Fig. 6b.

| Dataset     | Nfilt | Nfilt        | Nout | Nfilt/ Complete data |         |      |       |           |                | Outliers removed |       |           |  |
|-------------|-------|--------------|------|----------------------|---------|------|-------|-----------|----------------|------------------|-------|-----------|--|
|             |       | /Ntot<br>(%) | -    | Nout (%)             | $R^2$ I | RMSE | Slope | Intercept | R <sup>2</sup> | RMSE             | Slope | Intercept |  |
| All seasons |       |              |      |                      |         |      |       |           |                |                  |       |           |  |
| TMODIS DT   | 26162 | 56.3         | 840  | 3.2                  | 0.81    | 0.11 | 1.00  | 0.00      | 0.86           | 0.08             | 0.99  | 0.00      |  |
| TMODIS DB   | 1363  | 18.9         | 85   | 6.2                  | 0.73    | 0.21 | 0.76  | 0.09      | 0.81           | 0.13             | 0.91  | 0.04      |  |
| TMODIS O    | 1696  | 99.6         | 99   | 5.8                  | 0.88    | 0.10 | 1.14  | 0.00      | 0.92           | 0.05             | 0.97  | 0.02      |  |
| AMODIS DT   | 20644 | 51.9         | 792  | 3.8                  | 0.80    | 0.11 | 0.99  | 0.01      | 0.85           | 0.08             | 1.00  | 0.00      |  |
| AMODIS DB   | 3672  | 17.7         | 184  | 5                    | 0.76    | 0.20 | 0.87  | 0.03      | 0.84           | 0.14             | 0.93  | 0.01      |  |
| AMODIS O    | 1827  | 99.7         | 111  | 6.1                  | 0.81    | 0.10 | 1.06  | 0.01      | 0.92           | 0.04             | 0.95  | 0.02      |  |
| MISR        | 8517  | 87.8         | 464  | 5.4                  | 0.78    | 0.12 | 0.66  | 0.06      | 0.85           | 0.06             | 0.85  | 0.03      |  |
| OMI         | 39600 | 95.6         | 1930 | 4.9                  | 0.41    | 0.25 | 0.76  | 0.14      | 0.55           | 0.18             | 0.79  | 0.11      |  |
| CALIOP      | 1482  | 88.3         | 118  | 8                    | 0.29    | 0.24 | 0.48  | 0.07      | 0.62           | 0.12             | 0.75  | 0.00      |  |
| POLDER3 L   | 26669 | 74.9         | 3128 | 11.7                 | 0.27    | 0.21 | 0.18  | 0.02      | 0.59           | 0.08             | 0.53  | -0.01     |  |
| POLDER3 O   | 4243  | 48.6         | 406  | 9.6                  | 0.38    | 0.16 | 0.24  | 0.03      | 0.58           | 0.08             | 0.56  | 0.00      |  |
| SeaWiFS L   | 10366 | 37.3         | 547  | 5.3                  | 0.78    | 0.13 | 0.74  | 0.04      | 0.84           | 0.08             | 0.89  | 0.01      |  |
| SeaWiFS O   | 3416  | 70.8         | 276  | 8.1                  | 0.65    | 0.13 | 1.04  | 0.04      | 0.81           | 0.06             | 0.92  | 0.03      |  |
|             |       |              |      |                      |         | Fall |       |           |                |                  |       |           |  |
| TMODIS DT   | 7072  | 55           | 242  | 3.4                  | 0.86    | 0.11 | 1.06  | -0.02     | 0.89           | 0.08             | 0.98  | -0.01     |  |
| TMODIS DB   | 399   | 16.5         | 10   | 2.5                  | 0.53    | 0.17 | 0.92  | 0.03      | 0.63           | 0.13             | 0.91  | 0.03      |  |
| TMODIS O    | 456   | 99.8         | 24   | 5.3                  | 0.89    | 0.06 | 0.98  | 0.02      | 0.93           | 0.04             | 0.96  | 0.02      |  |
| AMODIS DT   | 5253  | 49.8         | 190  | 3.6                  | 0.85    | 0.10 | 1.04  | -0.01     | 0.87           | 0.07             | 0.99  | 0.00      |  |
| AMODIS DB   | 1034  | 17.2         | 39   | 3.8                  | 0.76    | 0.16 | 1.00  | -0.01     | 0.83           | 0.12             | 0.99  | -0.01     |  |
| AMODIS O    | 493   | 99.8         | 33   | 6.7                  | 0.85    | 0.06 | 0.81  | 0.03      | 0.92           | 0.04             | 0.89  | 0.02      |  |
| MISR        | 2219  | 86.5         | 138  | 6.2                  | 0.79    | 0.11 | 0.62  | 0.05      | 0.86           | 0.05             | 0.84  | 0.02      |  |
| OMI         | 10124 | 94.3         | 545  | 5.4                  | 0.32    | 0.22 | 0.70  | 0.13      | 0.51           | 0.15             | 0.76  | 0.09      |  |
| CALIOP      | 417   | 88           | 33   | 7.9                  | 0.26    | 0.26 | 0.44  | 0.08      | 0.62           | 0.11             | 0.75  | 0.00      |  |
| POLDER3 L   | 8309  | 75.2         | 836  | 10.1                 | 0.43    | 0.15 | 0.35  | 0.00      | 0.69           | 0.07             | 0.65  | -0.02     |  |
| POLDER3 O   | 1090  | 45.9         | 84   | 7.7                  | 0.48    | 0.13 | 0.32  | 0.02      | 0.61           | 0.07             | 0.59  | -0.01     |  |
| SeaWiFS L   | 3347  | 40.3         | 141  | 4.2                  | 0.83    | 0.10 | 0.81  | 0.02      | 0.86           | 0.07             | 0.91  | 0.01      |  |
| SeaWiFS O   | 922   | 70           | 85   | 9.2                  | 0.64    | 0.13 | 1.08  | 0.04      | 0.81           | 0.06             | 0.91  | 0.03      |  |

Table 3b (continued)

| Dataset                | Nfilt        | Nfilt        | Nout             | Nfilt      | /            | Com          | plete d       | lata      | Outliers removed |              |              |           |
|------------------------|--------------|--------------|------------------|------------|--------------|--------------|---------------|-----------|------------------|--------------|--------------|-----------|
|                        |              | /Nto         | t                | Nout       | $R^2$        | RMSE         | Slope         | Intercept | $\mathbb{R}^2$   | RMSE         | Slope        | Intercept |
|                        |              | (%)          |                  | (%)        |              |              | 1 -           |           |                  |              | F -          |           |
|                        |              |              |                  |            |              | Winte        | er            |           |                  |              |              |           |
| TMODIS DT              | 2390         | 47           | 112              | 4.7        | 0.81         | 0.13         | 0.77          | 0.04      | 0.87             | 0.09         | 0.90         | 0.02      |
| TMODIS DB              | 261          | 19.3         | 27               | 10.3       | 0.74         | 0.20         | 0.79          | 0.08      | 0.86             | 0.10         | 0.97         | 0.03      |
| TMODIS O               | 219          | 100          | 12               | 5.5        | 0.90         | 0.05         | 1.07          | 0.01      | 0.92             | 0.04         | 0.95         | 0.02      |
| AMODIS DT              | 1803         | 43.1         | 96               | 5.3        | 0.79         | 0.15         | 0.76          | 0.04      | 0.86             | 0.10         | 0.91         | 0.01      |
| AMODIS DE              | 829          | 18.9         | 54               | 6.5        | 0.78         | 0.17         | 0.83          | 0.03      | 0.85             | 0.12         | 0.88         | 0.02      |
| AMODIS O               | 227          | 100          | 18               | 7.9        | 0.87         | 0.06         | 0.85          | 0.03      | 0.93             | 0.03         | 0.97         | 0.01      |
| MISR                   | 1275         | 88 1         | 80               | 63         | 0.82         | 0.10         | 0.61          | 0.05      | 0.84             | 0.06         | 0.78         | 0.03      |
| OMI                    | 6283         | 94 1         | 266              | 4.2        | 0.02         | 0.24         | 0.68          | 0.15      | 0.58             | 0.18         | 0.72         | 0.12      |
| CALIOP                 | 242          | 86.7         | 23               | 9.5        | 0.29         | 0.28         | 0.37          | 0.11      | 0.63             | 0.12         | 0.75         | 0.02      |
| POLDER 3 L             | 4193         | 75.9         | 418              | 10         | 0.33         | 0.20         | 0.15          | 0.03      | 0.057            | 0.09         | 0.42         | 0.00      |
| POLDER3 O              | 642          | 48.3         | 38               | 59         | 0.55         | 0.11         | 0.10          | 0.03      | 0.60             | 0.09         | 0.12         | -0.01     |
| SeaWiFS I              | 1819         | 40.3         | 94               | 5.2        | 0.55         | 0.11         | 0.63          | 0.07      | 0.00             | 0.00         | 0.35         | 0.01      |
| SeaWiFS O              | 376          | 67           | 37               | 0.8        | 0.00         | 0.13         | 0.05          | 0.07      | 0.74             | 0.11         | 0.70         | 0.04      |
|                        | 570          | 07           | 51               | 7.0        | 0.57         | Sprin        | 0. <i>)</i> / | 0.00      | 0.74             | 0.07         | 0.05         | 0.04      |
| TMODIS DT              | 6213         | 576          | 108              | 3 2        | 0.81         | 0.11         | 5<br>00/      | 0.03      | 0.86             | 0.00         | 0.08         | 0.01      |
| TMODIS DR              | 215          | 20.0         | 13               | 53         | 0.01         | 0.11         | 0.74          | 0.03      | 0.00             | 0.07         | 0.98         | 0.01      |
| TMODIS DD              | 3/18         | 20.9<br>00 / | 19               | 5.5        | 0.00         | 0.27         | 1.25          | -0.01     | 0.0              | 0.18         | 0.80         | 0.08      |
|                        | 7/070        | 53 /         | 181              | 3.2        | 0.07         | 0.12         | 0.07          | -0.01     | 0.91             | 0.07         | 1.04         | 0.02      |
| AMODIS DE              | 1927         | 18.0         | 27               | 3.7        | 0.01         | 0.12<br>0.24 | 0.97          | 0.03      | 0.00             | 0.07         | 0.87         | 0.02      |
| AMODIS DE              | 366          | 00.7         | $\frac{27}{22}$  | 5          | 0.75         | 0.24         | 1 30          | 0.08      | 0.79             | 0.19         | 0.07         | 0.04      |
| MISP                   | 2180         | 99.7<br>88.7 | 135              | 62         | 0.02         | 0.10         | 0.66          | -0.03     | 0.95             | 0.05         | 0.98         | 0.02      |
| OMI                    | 0/7/         | 06.3         | 133              | 0.2        | 0.70         | 0.14         | 0.00          | 0.07      | 0.00             | 0.07         | 0.80         | 0.05      |
|                        | 3/0          | 88.6         | 32               | ч./<br>0.2 | 0.38         | $0.2^{-1}$   | 0.61          | 0.13      | 0.57             | 0.13         | 0.05         | -0.01     |
| POL DER 3 I            | 66/8         | 77 1         | 963              | 1/1 = 5    | 0.50         | 0.24         | 0.01          | 0.04      | 0.02             | 0.15         | 0.74         | -0.01     |
| POLDER3 O              | 1130         | 50           | 123              | 10.0       | 0.25         | 0.28         | 0.12          | 0.03      | 0.50             | 0.10         | 0.41         | -0.01     |
| SeeWiFS I              | 2458         | 30 2         | 125              | 10.J       | 0.50         | 0.10         | 0.25          | 0.04      | 0.52             | 0.09         | 0.47         | 0.01      |
| Scawir's L             | 2430         | 59.2<br>60.0 | 64               | 0.4<br>Q / | 0.05         | 0.15         | 1.05          | 0.03      | 0.09             | 0.08         | 0.92         | 0.02      |
| Seawin's O             | /03          | 09.9         | 04               | 0.4        | 0.00         | 0.10<br>Summ | 1.05<br>or    | 0.04      | 0.62             | 0.07         | 0.95         | 0.05      |
| TMODIS DT              | 10/87        | 7501         | 277              | 26         | 0 70         | 0.11         | 1 10          | -0.02     | 0.82             | 0.08         | 1.03         | -0.01     |
| TMODIS DR              | 10407        | 20           | 277              | 2.0<br>7   | 0.72         | 0.11         | 0.76          | -0.02     | 0.02             | 0.08         | 0.00         | -0.01     |
|                        | 673          | 20<br>00 6   | 22<br>28         | 12         | 0.72         | 0.22         | 1 15          | 0.00      | 0.00             | 0.15         | 0.90         | 0.03      |
|                        | °8650        | 5/ 8         | 20<br>276        | 4.2        | 0.00         | 0.11         | 1.15          | 0.00      | 0.91             | 0.00         | 1.04         | 0.05      |
| AMODIS DE              | 2017         | 16.5         | 270<br>/0        | 5.2        | 0.80         | 0.10         | 0.00          | -0.01     | 0.80             | 0.08         | 0.05         | 0.00      |
| AMODIS DL              | 7/1          | 00.5         | 4)<br>//2        | 5.8        | 0.74         | 0.20         | 1.05          | 0.03      | 0.05             | 0.14         | 0.95         | 0.00      |
| MISD                   | 741          | 99.3         | 121              | J.0<br>1 2 | 0.04         | 0.09         | 0.72          | 0.01      | 0.91             | 0.03         | 0.95         | 0.02      |
| OMI                    | 12710        | 00.5         | 121<br>617       | 4.5        | 0.77         | 0.11         | 0.72          | 0.05      | 0.04             | 0.07         | 0.88         | 0.05      |
|                        | 13/15        | 20.0<br>20.2 | 22               | 4.5        | 0.55         | 0.20         | 0.74          | 0.10      | 0.40             | 0.19         | 0.79         | 0.12      |
| DOI DED 2 I            | +/4<br>7510  | 07.3<br>77 1 | 52<br>876        | 0.0        | 0.20         | 0.20         | 0.34          | 0.03      | 0.30             | 0.12         | 0.75         | 0.00      |
| DOI DED 2 O            | 1317         | 12.4         | 152              | 11./<br>11 | 0.22         | 0.19         | 0.17          | 0.02      | 0.33             | 0.07         | 0.54         | 0.01      |
| I OLDERS U             | 1301<br>2742 | 47.7         | 114              | 11<br>1/2  | 0.51         | 0.19         | 0.17          | 0.04      | 0.39             | 0.07         | 0.37         | 0.00      |
| SCAWIES L              | 2742<br>1255 | 51.5<br>72 1 | 07               | +.∠<br>7 0 | 0.72         | 0.15         | 1.02          | 0.03      | 0.11             | 0.00         | 0.00         | 0.00      |
| SeaWiFS L<br>SeaWiFS O | 2742<br>1355 | 31.5<br>73.1 | 132<br>116<br>97 | 4.2<br>7.2 | 0.72<br>0.68 | 0.13<br>0.10 | 0.71<br>1.02  | 0.03      | 0.77<br>0.82     | 0.08<br>0.06 | 0.86<br>0.94 | 0.00 0.03 |

Table 4b. Linear fit correlation coefficient (R2) between the collocated spaceborne and ground-based observations of AOD estimated at the stations that coincide with different IGBP land cover types. Empty cells indicate no collocated data available from a specific sensor over a specific land cover type. No AERONET stations are available at the areas occupied by Deciduous needleleaf forest. The statistics were calculated based on the data that was pre-filtered by QA and screened of outliers as described in Sections 4 and Section 5. A graphical representation of this table is in Figure 13b.

|                                  | TMODIS DT | TMODIS DB | TMODIS O | AMODIS DT | AMODIS DB | <b>AMODIS O</b> | MISR | OMI  | CALIOP | POLDER3 L | POLDER3 O | SeaWiFS L | SeaWiFS O |
|----------------------------------|-----------|-----------|----------|-----------|-----------|-----------------|------|------|--------|-----------|-----------|-----------|-----------|
| Water                            |           |           | 0.87     |           |           | 0.88            | 0.78 | 0.47 | 0.53   |           | 0.56      |           | 0.65      |
| Evergreen needleleaf             |           |           |          |           |           |                 |      |      |        |           |           |           |           |
| forest<br>Evergreen<br>broadleaf | 0.80      |           |          | 0.82      | 0.87      |                 | 0.76 | 0.38 | 0.60   | 0.59      |           | 0.58      |           |
| forest<br>Deciduous<br>broadleaf | 0.77      |           |          | 0.87      |           |                 | 0.69 | 0.49 | 0.15   | 0.94      |           | 0.91      |           |
| forest                           | 0.85      |           |          | 0.89      |           |                 | 0.82 | 0.58 | 0.35   | 0.72      |           | 0.75      |           |
| Mixed forests                    | s0.79     |           |          | 0.83      |           |                 | 0.74 | 0.39 | 0.62   | 0.71      |           | 0.70      |           |
| Closed                           |           |           |          |           |           |                 |      |      |        |           |           |           |           |
| shrubland                        | 0.73      | 0.86      |          | 0.78      | 0.77      |                 | 0.77 | 0.48 | 0.64   | 0.40      |           | 0.79      |           |
| Open                             |           |           |          |           |           |                 |      |      |        |           |           |           |           |
| shrublands                       | 0.54      | 0.61      |          | 0.64      | 0.75      |                 | 0.69 | 0.28 | 0.70   | 0.38      |           | 0.60      |           |
| Woody                            |           |           |          |           |           |                 |      |      |        |           |           |           |           |
| savannas                         | 0.76      | 0.90      |          | 0.84      | 0.87      |                 | 0.79 | 0.52 | 0.60   | 0.55      |           | 0.83      |           |
| Savannas                         | 0.76      | 0.65      |          | 0.86      | 0.61      |                 | 0.81 | 0.53 | 0.46   | 0.67      |           | 0.74      |           |
| Grasslands                       | 0.62      | 0.88      |          | 0.68      | 0.75      |                 | 0.70 | 0.40 | 0.48   | 0.36      |           | 0.61      |           |
| Permanent                        |           |           |          |           |           |                 |      |      |        |           |           |           |           |
| wetlands                         | 0.79      |           |          | 0.90      |           |                 | 0.84 | 0.33 | 0.57   | 0.33      |           |           |           |
| Croplands                        | 0.77      | 0.70      |          | 0.79      | 0.57      |                 | 0.77 | 0.49 | 0.56   | 0.47      |           | 0.67      |           |
| Urban and                        |           |           |          |           |           |                 |      |      |        |           |           |           |           |
| built-up                         | 0.75      | 0.67      |          | 0.74      | 0.70      |                 | 0.73 | 0.44 | 0.46   | 0.42      |           | 0.69      |           |
| Cropland /                       |           |           |          |           |           |                 |      |      |        |           |           |           |           |
| natural veget.                   |           |           |          |           |           |                 |      |      |        |           |           |           |           |
| mosaic                           | 0.77      |           |          | 0.81      | 0.53      |                 | 0.81 | 0.56 | 0.57   | 0.59      |           | 0.73      |           |
| Snow and ice                     | 1.00      |           |          |           |           |                 | 0.73 |      | 1.00   | 0.54      |           |           |           |
| Barren or                        |           |           |          |           |           |                 |      |      |        |           |           |           |           |
| sparsely                         |           | 0 -       |          |           | 0.40      |                 |      | 0.01 | 0 5 4  | 0.00      |           | 0.50      |           |
| vegetated                        | 0.72      | 0.71      |          | 0.72      | 0.48      |                 | 0.72 | 0.21 | 0.54   | 0.32      |           | 0.53      |           |

Table 5b. Root mean square error (RMSE) between the collocated spaceborne and groundbased observations of AOD estimated at the stations that coincide with different IGBP land cover types. Empty cells indicate no collocated data available from a specific sensor over a specific land cover type. No AERONET stations are available at the areas occupied by Deciduous needleleaf forest. The statistics were calculated based on the data that was prefiltered by QA and screened of outliers as described in Sections 4 and Section 5. A graphical representation of this table is in Figure 14b.

|                | TMODIS DT | TMODIS DB | <b>TMODIS O</b> | AMODIS DT    | AMODIS DB | AMODIS O | MISR         | OMI  | CALIOP | POLDER3 L | POLDER3 O | SeaWiFS L | SeaWiFS O |
|----------------|-----------|-----------|-----------------|--------------|-----------|----------|--------------|------|--------|-----------|-----------|-----------|-----------|
| Water          |           |           | 0.06            |              |           | 0.05     | 0.09         | 0.16 | 0.12   |           | 0.08      |           | 0.09      |
| Evergreen      |           |           |                 |              |           |          |              |      |        |           |           |           |           |
| needleleaf     | 0.00      | 0.00      |                 | 0.00         | 0.24      |          | 0.07         | 0.15 | 0.11   | 0.00      |           | 0.05      |           |
| forest         | 0.06      | 0.06      |                 | 0.06         | 0.34      |          | 0.06         | 0.15 | 0.11   | 0.06      |           | 0.05      |           |
| broadleaf      |           |           |                 |              |           |          |              |      |        |           |           |           |           |
| forest         | 0.11      |           |                 | 0.10         |           |          | 0.15         | 0.25 | 0.36   | 0.08      |           | 0.18      |           |
| Deciduous      | 0.11      |           |                 | 0.10         |           |          | 0.10         | 0.23 | 0.50   | 0.00      |           | 0.10      |           |
| broadleaf      |           |           |                 |              |           |          |              |      |        |           |           |           |           |
| forest         | 0.06      |           |                 | 0.06         |           |          | 0.05         | 0.11 | 0.13   | 0.05      |           | 0.05      |           |
| Mixed forests  | \$0.06    |           |                 | 0.05         |           |          | 0.04         | 0.14 | 0.12   | 0.06      |           | 0.06      |           |
| Closed         |           |           |                 |              |           |          |              |      |        |           |           |           |           |
| shrubland      | 0.13      | 0.09      |                 | 0.08         | 0.06      |          | 0.06         | 0.19 | 0.06   | 0.10      |           | 0.05      |           |
| Open           | 0.00      |           |                 | • • <b>-</b> |           |          | • • <b>-</b> |      |        |           |           | 0.4.0     |           |
| shrublands     | 0.09      | 0.09      |                 | 0.07         | 0.14      |          | 0.07         | 0.25 | 0.14   | 0.14      |           | 0.10      |           |
| Woody          | 0.00      | 0.44      |                 | 0.10         | 0.22      |          | 0.00         | 0.22 | 0.22   | 0.15      |           | 0.00      |           |
| savannas       | 0.09      | 0.44      |                 | 0.10         | 0.23      |          | 0.08         | 0.22 | 0.23   | 0.15      |           | 0.08      |           |
| Grasslands     | 0.10      | 0.19      |                 | 0.09         | 0.13      |          | 0.08         | 0.25 | 0.12   | 0.15      |           | 0.15      |           |
| Permanent      | 0.08      | 0.22      |                 | 0.08         | 0.15      |          | 0.05         | 0.19 | 0.15   | 0.11      |           | 0.07      |           |
| wetlands       | 0.07      |           |                 | 0.07         |           |          | 0.08         | 0 16 | 0 1 2  | 0.09      |           | 0 19      |           |
| Croplands      | 0.09      | 0.10      |                 | 0.09         | 0.12      |          | 0.08         | 0.16 | 0.16   | 0.11      |           | 0.09      |           |
| Urban and      |           |           |                 |              |           |          |              |      |        |           |           |           |           |
| built-up       | 0.10      | 0.15      |                 | 0.10         | 0.14      |          | 0.07         | 0.21 | 0.14   | 0.10      |           | 0.09      |           |
| Cropland /     |           |           |                 |              |           |          |              |      |        |           |           |           |           |
| natural veget. |           |           |                 |              |           |          |              |      |        |           |           |           |           |
| mosaic         | 0.09      |           |                 | 0.09         | 0.17      |          | 0.05         | 0.14 | 0.20   | 0.09      |           | 0.10      |           |
| Snow and ice   | 0.10      |           |                 |              |           |          | 0.02         |      | 0.04   | 0.01      |           |           |           |
| Barren or      |           |           |                 |              |           |          |              |      |        |           |           |           |           |
| sparsely       | 0.00      | 0.07      |                 | 0.10         | 0.11      |          | 0.00         | 0.20 | 0.12   | 0.12      |           | 0.16      |           |
| vegetated      | 0.09      | 0.06      |                 | 0.10         | 0.11      |          | 0.09         | 0.38 | 0.12   | 0.12      |           | 0.16      |           |



Figure 6b. Regression fits of AERONET AOD (x-axes) to AOD measured by spaceborne sensors (y-axes). Satellite data were pre-screened by QA as explained in Section 4. The color of each data point indicates the percentage of all data points on the plot that fall within 0.05 AOD of this point (in Cartesian coordinates). Scatter plot in the green frame demonstrates the results of the possible data outlier detection and removal procedure described in Section 5.



Figure 7b. Distribution of the difference (residuals) between Spaceborne AOD and AERONET AOD. Satellite data were pre-screened by QA as explained in Section 4. In each histogram, the data are split into equal-length bins of 0.05 AOD. The red vertical line indicates the residual of 0 AOD, while the blue lines mark minimum and maximum residuals of each distribution. Histogram in the green frame demonstrates the results of the possible data outlier detection and removal procedure described in Section 5.



Figure 8b. Normality of the difference between Spaceborne AOD and AERONET AOD. In each plot, points closely following the blue fitted line indicate the data that are approximately normally distributed. Curvatures around the center of the straight line represent the departure from the normality and indicate a presence of possible outliers, particularly at the tails of the distributions. The difference in the slope and offset of the fitted blue line from the gray 1:1 line indicates a deviation from the standard location (i.e., mean=0) and scale (i.e., standard deviation=1) of the normal distribution. Satellite data were pre-screened by QA as explained in Section 4. Plot in the green frame demonstrates the results of the possible data outlier detection and removal procedure described in Section 5.



Figure 9b. Distribution of the possible data outliers for the studied spaceborne aerosol data sets. Displayed values are percentages from all outliers detected for each of the data sets as listed in the 4<sup>th</sup> column of Table 3. Stations with less than 1% from the total number of outliers are not shown. The statistical technique for detection and removal of the possible data outliers is described in Section 5.



Figure 10b. Seasonal dependence of squared linear fit correlation coefficient ( $R^2$ ) and root mean square error (RMSE) statistics between the collocated spaceborne and ground-based (AERONET) observations of AOD, based on the data in Table 3b.



Sensors providing the best R<sup>2</sup> of AOD over land at 368 AERONET stations, at all seasons (outliers removed)

Sensors providing the best R<sup>2</sup> of AOD over ocean at 154 AERONET stations, at all seasons (outliers removed)



Figure 11. Spaceborne datasets with the best correlation ( $R^2$ ) of the retrieved AOD to the AOD measured by inland (top) and coastal or island-based (bottom) AERONET sites. The intensity of marker shading indicates the degree of correlation. Marker shape indicates the range of root mean square error (RMSE) associated with the displayed best  $R^2$ . Finally, marker size corresponds to the number of collocated data points used to compute the displayed statistics. Histograms in the bottom insets highlight the distribution of these statistics over all sites based on bins of 0.05 AOD. The statistics were calculated based on the data that were pre-filtered by QA and screened of outliers as described in Sections 4 and Section 5.



Sensors providing the best RMSE of AOD over land at 368 AERONET stations, at all seasons (outliers removed)

Sensors providing the best RMSE of AOD over ocean at 154 AERONET stations, at all seasons (outliers removed)



Figure 12b. Spaceborne datasets with the best root mean square error (RMSE) of the retrieved AOD to the AOD measured by inland (top) and coastal or island-based (bottom) AERONET sites. The symbols used are the same as the symbols in Figure 11b. The statistics were calculated based on the data that were pre-filtered by QA and screened of outliers as described in Sections 4 and Section 5.



Figure 13b. Land cover type dependence of squared linear fit correlation coefficient (R2) between the collocated spaceborne and ground-based (AERONET) observations of AOD. Areas corresponding to each IGBP land cover type (bottom right inset) are colored based on the average of the data from those AERONET sites that reside in these areas. The statistics were calculated based on data that were pre-filtered by QA and screened of outliers as described in Sections 4 and Section 5.



Figure 14b. Land cover type dependence of root mean square error (RMSE) between the collocated spaceborne and ground-based (AERONET) observations of AOD. Areas corresponding to each IGBP land cover type (bottom right inset) are colored based on the average of the data from those AERONET sites that reside in these areas. The statistics were calculated based on the data that were pre-filtered by QA and screened of outliers as described in Sections 4 and Section 5.