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Abstract

Model-simulated transport of atmospheric trace components can be combined with
observed concentrations to obtain estimates of ground-based sources using various
inversion techniques. These approaches have been applied in the past primarily to
obtain source estimates for long-lived trace gases such as CO2. We consider the ap-5

plication of similar techniques to source estimation for atmospheric aerosols, using as
a case study the estimation of bacteria emissions from different ecosystem regions
in the global atmospheric chemistry and climate model ECHAM5/MESSy-Atmospheric
Chemistry (EMAC).

Source estimation via Monte Carlo Markov Chain is applied to a suite of sensitivity10

simulations and the global mean emissions are estimated. We present an analysis of
the uncertainties in the global mean emissions, and a partitioning of the uncertainties
that are attributable to particle size, activity as cloud condensation nuclei (CCN), the
ice nucleation scavenging ratios for mixed-phase and cold clouds, and measurement
error.15

Uncertainty due to CCN activity or to a 1 µm error in particle size is typically between
10 % and 40 % of the uncertainty due to observation uncertainty, as measured by the
5 %-ile to 95 %-ile range of the Monte Carlo ensemble. Uncertainty attributable to the
ice nucleation scavenging ratio in mixed-phase clouds is as high as 10 % to 20 % of that
attributable to observation uncertainty. Taken together, the four model parameters ex-20

amined contribute about half as much to the uncertainty in the estimated emissions as
do the observations. This was a surprisingly large contribution from model uncertainty
in light of the substantial observation uncertainty, which ranges from 81 % to 870 % of
the mean for each of ten ecosystems for this case study. The effects of these and other
model parameters in contributing to the uncertainties in the transport of atmospheric25

aerosol particles should be treated explicitly and systematically in both forward and
inverse modelling studies.
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1 Introduction

Atmospheric aerosol particles are recognized as a critical part of the climate system,
with their direct and indirect effects on climate identified as one of the key uncertainties
in current understanding of climate change (Solomon et al., 2007). In order to advance
prediction of aerosol climate impacts, their representation in global models must be5

improved, including their composition and distribution in the atmosphere. In particu-
lar, while much current research focuses on characterizing anthropogenic aerosols,
naturally-occurring aerosols are still poorly characterized in global models, due to a va-
riety of issues including sparsity of observational data, low model resolution, and inher-
ent uncertainties in model parameterizations (Kinne et al., 2006; Huneeus et al., 2011).10

While global models typically account for several classes of naturally-occurring aerosol
(sea spray, dust) and man-made aerosol (sulfate, soot from industry and biomass burn-
ing), almost no global atmospheric model currently includes any explicit representation
of primary biological aerosol particles (PBAP), material such as bacteria, pollen, fun-
gal spores, and leaf fragments, despite the fact that these particles make up a large15

fraction of the observed aerosol at many locations (Jaenicke, 2005; Després et al.,
2012).

While efforts to quantify emissions in models depend greatly on observations, these
efforts can be classed into two broad groups: forward modelling and inverse modelling
approaches. Briefly, forward-modelling approaches use empirical emissions data, de-20

rived e.g. from field experiments or industry data, and use ancillary information (e.g.
maps, climate variables) to upscale to a global emissions map. In contrast, inverse
modelling approaches use observed concentrations in conjunction with a model of at-
mospheric transport, and apply mathematical techniques to infer the necessary emis-
sions required for the model to optimally match observations. Inverse problems typi-25

cally are underconstrained, so their solution often requires the use of known emissions
as a priori information in order to obtain a stable solution. In addition, the observed
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variables typically differ from the modelled variables, e.g. in their spatial and temporal
distribution and representativeness.

An inherent challenge of inverse modelling is the appropriate estimation of uncer-
tainties, which can arise from many sources, including errors in the observational data,
differences between model and observations in sampling location and representative-5

ness, forecasting errors, and errors in modeling. This study considers some of the
uncertainties inherent in the estimation of aerosol emissions by inversion. In particu-
lar, we examine the uncertainty contributed by the following model parameters: particle
size, activity as cloud condensation nuclei (CCN), and the ice nucleation scavenging
ratio. The uncertainty arising from these model parameters is compared to uncertain-10

ties arising from observations.
In this study, we use the estimation of bacteria emissions from different ecosystems

as a case study. In Sect. 2, we briefly describe the observational data and the emis-
sions model. In Sect. 3, we describe the model, including a discussion of key processes
affecting aerosol removal, and the impact of selected model parameters on aerosol res-15

idence time. In Sect. 4, we briefly present the method used for inversion of atmospheric
transport and estimation of sources, and present the main results from this inversion
for different sensitivity cases. These results show how the estimated global mean emis-
sions respond to changes in key model parameters. In Sect. 5, we introduce the term
“normalized model uncertainties”, and present the normalized model uncertainties for20

a set of model parameters affecting atmospheric transport. In Sect. 6 we summarize
and discuss key findings. In Appendix A, we describe in detail the numerical methods
applied to calculate the inversion, and additional results are presented in Figs. A1–A4.
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2 Bacteria concentration observations and emissions model

2.1 Observational basis

Published observations of bacteria concentrations in the atmosphere are scarce, and
many suffer from methodological limitations. The concentrations of bacteria-containing
particles in the atmosphere can be measured by a variety of methods with varying de-5

grees of accuracy (Burrows et al., 2009b). Most commonly, atmospheric particulates
are collected onto either a filter or an impaction plate, which is then analyzed for mi-
crobial content. One common method of analysis is the cultivation of bacterial cells
on a culture medium, followed by counting of colonies. Because many bacteria are
not readily cultivated, this method results in serious undercounting and a large uncer-10

tainty. A more robust, but also more labor-intensive method, is the use of microscopy,
for instance optical microscopy combined with protein staining or the use of autofluo-
rescence to identify microorganisms. Burrows et al. (2009b) reviewed a large number
of published measurements of bacteria concentrations and recommended low, best
and high estimates of the mean boundary-layer number concentrations of bacteria-15

containing particles in each of ten ecosystems, which are reproduced here in Table 1.
The high uncertainty in these estimates arises from uncertainties inherent in the

observational methods discussed above, from the scarcity of observations, particu-
larly long-term observations, and also from the high spatial and temporal variability in
concentrations. The estimated uncertainty in the best-estimate mean concentrations20

derived from a review of the literature ranges from 81 % to 870 % of the mean for the
ten individual ecosystems (Burrows et al., 2009a). Contrast this with an atmospheric
component that can be measured far more precisely, such a CO2, which due to its long
atmospheric residence time has a much smaller degree of spatial and temporal vari-
ability, and the concentration of which can be measured with a high degree of precision,25

the relative uncertainty in each measurement being far less than 1 %.
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2.2 Emissions model

Following Burrows et al. (2009a), bacteria tracers are emitted homogeneously from the
ten lumped ecosystems presented in Table 1. The ecosystem classification is based
on the Olson World Ecosystems data set (Olson, 1992), with ecosystems lumped into
broader categories as described in Burrows et al. (2009a).5

3 Global atmospheric model description, key processes and impacts of
selected parameters

3.1 Description of global atmospheric model and simulations

All model simulations were conducted using a modified version of the global chemistry-
climate model ECHAM5/MESSy-Atmospheric Chemistry (EMAC), version 1.9. EMAC10

consists of a climate model that simulates the underlying meteorological parameters
such as winds, combined with a number of submodels representing various physical
and chemical processes in the atmosphere. The processes related to particulate emis-
sions and loss processes are encapsulated in the submodels ONLEM(online emissions,
Kerkweg et al., 2006b), DRYDEP(dry deposition onto land, water and plant surfaces,15

Kerkweg et al., 2006a), SEDI (sedimentation, Kerkweg et al., 2006a) and SCAV(pre-
cipitation scavenging, Tost et al., 2006). The submodel CVTRANScalculates particu-
late transport analogously to gas phase transport, as a sum of large-scale advection
and parameterized small-scale convective transport (Tost et al., 2010; Lawrence and
Rasch, 2005). The validity of the EMAC model for studies of large-scale aerosol trans-20

port and deposition has been established by comparison of simulated and observed
deposition patterns of radioactive particles following the Chernobyl nuclear meltdown
(Lelieveld et al., 2012).

Modifications to the model comprised updates to the SCAVsubmodel as described
in Tost et al. (2010). All simulations were conducted at T63 horizontal resolution25

4396

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/13/4391/2013/acpd-13-4391-2013-print.pdf
http://www.atmos-chem-phys-discuss.net/13/4391/2013/acpd-13-4391-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
13, 4391–4432, 2013

Impact of particle
characteristics on
inferred emissions

S. M. Burrows et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

(1.9◦ ×1.9◦ or about 140×210 km at mid-latitudes) with 31 vertical levels up to 10 hPa,
for five simulated yr (plus an additional year of spin-up). Initial meteorological fields
were derived from the ECMWF ERA-15 reanalysis for 1 January 1990, following which,
meteorology was simulated online. Monthly prescribed sea surface temperatures were
applied from the AMIP-II data set (available from http://www-pcmdi.llnl.gov/).5

Simulations were performed for monodisperse passive aerosol tracers, with aero-
dynamic diameters between 1 µm and 10 µm, with and without CCN activity (CCN-
ACTIVE: nearly all particles are activated as CCN in this size range; CCN-INACTIVE:
no particles are activated as CCN). The removal processes active for each of the two
particle types are summarized in Table 2. In the model setup used, cloud formation is10

independent of simulated aerosol concentrations, i.e. clouds affect aerosols (via wet re-
moval), but aerosols do not affect clouds. The derived sensitivities thus refer only to the
linear, one-directional effect of loss processes on concentrations, not to any potential
nonlinear aerosol-cloud feedbacks.

3.2 Aerosol loss processes and their dependence on particle characteristics15

Aerosols are removed from the atmosphere by both dry and wet deposition processes.
For small particles, the most efficient removal is by coagulation with hydrometeors and
dry surfaces associated with Brownian diffusion. For large particles, gravitational set-
tling becomes increasingly efficient, and particles are more likely to be collected by
hydrometeors via inertial impaction and interception, and subsequently removed via20

precipitation. For aerosol particles with aerodynamic diameters close to 1 µm, precip-
itation scavenging is the dominant atmospheric loss process, but particles of this size
fall into the so-called “scavenging gap” and thus have comparatively long atmospheric
residence times (Pruppacher and Klett, 1997).

Particle size influences the rate of dry removal, and both particle size and chemical25

composition influence the rate of wet removal. In particular, particle chemical composi-
tion influences the likelihood that particles will act as heterogeneous nuclei for the for-
mation of ice crystals and thus influences the likelihood of scavenging in mixed-phase
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clouds; however, this is presently not accounted for in EMAC or most other global atmo-
spheric models. Thus, uncertainties about particle characteristics also impact transport
and loss processes (Pruppacher and Klett, 1997; Seinfeld and Pandis, 2006).

3.3 Ice nucleation scavenging and sensitivity cases

Ice nucleation scavenging in EMAC is calculated using a constant scavenging ratio. The5

ice and liquid water contents of clouds are each represented in EMAC by a single bulk
variable. In the unmodified model (BASE case), ice nucleation is treated as follows.
For mixed-phase clouds warmer than −35 ◦C, the ice nucleation scavenging ratio is
set to 0.1; otherwise it is set to 0.05. This ratio describes the fraction of the aerosol
particles within the cloud that are incorporated into cloud ice crystals. The removal of10

these particles from a model grid box (by scavenging) further depends on the rate at
which frozen precipitation falls from the grid box, relative to the amount of cloud ice
within the grid box.

This parameterization is broadly consistent with field studies of aerosol partition-
ing in clouds at the Jungfraujoch (Swiss Alps; Henning et al., 2004; Verheggen et al.,15

2007), which show that the fraction of aerosol particles that are incorporated into the
cloud liquid water and cloud ice decreases very rapidly at low temperatures and high
ice mass fractions. This is likely due primarily to the Bergeron-Findeisen effect, which
leads to the growth of a small number of ice crystals at the expense of the evaporation
of a larger number of cloud droplets, which upon evaporation release the particles they20

contained back into the aerosol phase (Schwarzenböck et al., 2001). In those stud-
ies, the activated fraction ranges from 0.05 or less at temperatures below −15 ◦C to
about 0.7 at near-zero temperatures (Henning et al., 2004; Verheggen et al., 2007).
The activated aerosol represents an upper limit on the aerosol that may be removed
due to nucleation scavenging. Based on these results, we bound the ice nucleation25

scavenging parameter in the range 0.0–0.1 for “cold” clouds (T < −35 ◦C) and 0.1–0.7
for “mixed” clouds (−35 ◦C ≤ T ≤ 0 ◦C).
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Four sensitivity cases were tested, in addition to the BASE case (Table 3). In the
cases SENS COLD and SENS MIXED, small perturbations were made to test the
quasi-linear response of the model to a 1 % change in the respective parameter. The
SENS MIXED case resulted in an appreciable perturbation of aerosol concentrations
in the mid-latitude tropopause region and the surface atmosphere at high-latitudes (not5

shown). However, the effect on estimated emissions was too small to be detected within
the random noise of the Monte Carlo simulation. These cases will not be discussed in
further detail, but are included in some of the presented results.

In the cases LIM COLD and LIM MIXED, we used larger perturbations in order to
gauge the response of the Monte Carlo emissions estimate to a larger perturbation to10

the respective ice scavenging coefficients, respectively changing the coefficient for cold
clouds from 0.05 to 0.1, and the coefficient for warm clouds from 0.1 to 0.7.

3.4 Impact of size and emission region on particle residence times

The global mean atmospheric residence times of particles depend strongly on whether
they act as CCN, on the particle diameter, and on the region from which they are15

emitted (Fig. 1). Atmospheric residence times are longest for particles emitted from
deserts, where there is little scavenging and dry convection rapidly transports particles
to high altitudes. Residence times of 1 µm particles are shortest for particles emitted
from oceans, where scavenging is strongest. For larger particles and CCN-INACTIVE
particles, for which particle lifetime is more strongly driven by dry deposition processes,20

particle lifetimes are shortest in crops and forest regions, where plants increase friction
and provide large surfaces for deposition. The effect of particle size on residence time
is somewhat stronger for CCN-INACTIVE particles than for CCN-ACTIVE particles,
since the residence time for CCN-INACTIVE particles is more strongly determined by
dry deposition.25
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4 Source inversion by Monte Carlo methods

4.1 Overview

In this section, we invert the atmospheric transport problem and estimate sources from
information about concentrations. We describe the methods used in Sect. 4.2, and
a more detailed description can be found in Appendix A1 and standard texts (e.g.5

Tarantola, 2005). We present and discuss the results of the inversion in Sect. 4.3.

4.2 Inversion method

4.2.1 Forward model, model parameters and data vector

The forward model is described by the following elements:

1. The observable quantities d : a vector representing the mean concentration of10

bacteria in each ecosystem.

2. The model (parameters) m: a vector representing the surface fluxes in each
ecosystem.

3. The model function m 7→ g(m): The results from global atmospheric model simu-
lations (as described in Sect. 3) are used to derive a simplified statistical model15

of inter-ecosystem transport. The modelled concentrations are linear in source
strengths so the model can be represented by a 10×10 matrix describing the re-
lationship between homogeneous, constant emissions from each source ecosys-
tem and mean boundary-layer concentrations in each destination ecosystem. The
simulated concentrations are given by the product of the inter-ecosystem transfer20

matrix G and the flux vector m:

g(m) = Gm. (1)
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The linearity of g is guaranteed by design in the EMAC model setup used here
(neglecting small numerical errors), as all simulated removal rates are proportional to
aerosol mixing ratios, and there is no feedback of aerosol concentrations onto other
model variables such as cloud microphysics or meteorological variables.

4.2.2 Observable parameters5

For the observations we assume Gaussian uncertainty, with coefficients taken from Ta-
ble 1: the mean value is given by the best-estimate, and the standard deviation is given
by one-quarter of the range of concentration estimates for the respective ecosystem,
i.e. (high estimate− low estimate)/4. We assume no prior information about the value
of d .10

4.2.3 Model prior and model error

We tested the effects of a prior positivity constraint on the model, i.e. a constraint that
disallows negative emissions. Inversions with this constraint are designated PRIOR-
POS, and the model prior ρM(m) is given by:

ρM(m) =

{
µM(m), m ≥ 0

0, m < 0
. (2)15

where µM(m) represents the homogeneous probability distribution for model parame-
ters (Tarantola, 2005, Ch. 1). A positivity constraint can be justified by assuming that
the atmospheric model accurately represents the removal of aerosols from the atmo-
sphere, or at least does not underestimate removal. However, this constraint may not
be justified if the atmospheric model underestimates removal. For this reason, and to20

illustrate the effect of the prior positivity constraint, we also present some results from
inversions for which no prior constraint is applied, designated NO-PRIOR:

ρM(m) = µM(m) (3)
4401
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For the purposes of the inversion, we do not explicitly include the model error. (Taran-
tola, 2005, Eq. 1.74) shows that, for Gaussian error statistics one can add the variances
associated with model error and observational error. Given the very large observa-
tional errors we treat the model error as negligible. In other words, each realization of
the model function g(m) = Gm is taken to exactly describe the behavior of the global5

atmospheric model in the respective configuration.

4.2.4 Likelihood function

The likelihood function L(m) is a measure of how well the model m explains the obser-
vations:

L(m) =
∫
D

ddθ(d |m) =
N∏
i=1

1√
2πs2

D,i

exp
−(gi (m)−d i

obs)2

2s2
D,i

, (4)10

where gi (m) is the i -th component of g(m), d i
obs is the observed value of the i -th com-

ponent of d , and sD,i is the standard deviation of the i -th observation (measurement
uncertainty).

4.2.5 Calculation of the posterior probability distribution

The solution of the inverse problem is described by the posterior probability distribution15

σ(d ,m):

σ(d ,m) = kρM(m)L(m), (5)

where k is a normalization constant.
We solve Eq. (5) by Monte Carlo Markov Chain (MCMC) to estimate the posterior

probability distribution of a suite of model realizations. The MCMC method provides20

great flexibility at the cost of computational expense. For the current problem, the for-
ward model is small and cheap (multiplication of a vector with a 10×10 matrix), so
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the computational expense required to produce and analyze a large Monte Carlo en-
semble is acceptable. While a full EMAC model run in the setup used for this study
requires approximately 70 CPU hours of computation, the matrix multiplication can be
performed one million times in less than 0.01 s of CPU time.

We consider the five sensitivity cases described in Table 3, particle sizes in 1 µm in-5

crements from 1 to 10 µm, and CCN-ACTIVE vs CCN-INACTIVE particles. For each
combination of values of these parameters, we derive a separate inter-ecosystem
transport matrix G, for a total of 100 different cases. For each case, we performed a full
atmospheric model simulation to generate a realization of G, followed by an MCMC
inversion with one million trials. The lowest acceptance rate was ca. 15 %, producing10

an ensemble with more than one-hundred-fifty-thousand members.
The ensemble generated is interpreted as an estimate of σ(m). The center of the

ensemble is interpreted as an estimate of m, and the spread of the ensemble as
an estimate of the uncertainty in m. As a measure of the center, we use the mode
(from the half range mode estimator of Bickel, 2002), as testing revealed that the mode15

gave a more robust indication of the location of the ensemble peak, particularly in the
PRIOR-POS simulations (compare Fig. A3). As a measure of the ensemble spread,
we use the 5–95 %-ile range.

4.3 Results of Monte Carlo inversion and discussion

4.3.1 Posterior probability distributions (ensembles)20

The posterior distributions of the estimated fluxes for each particle size and source
ecosystem are shown as histograms in Fig. A3 and Fig. A4. In each case, the typical
posterior distribution of flux estimates for each ecosystem has an approximately Gaus-
sian shape, which results from the assumption that the observation uncertainty has
a Gaussian distribution.25

In NO-PRIOR, negative (deposition) fluxes are allowed, and in some regions the
most likely estimate of the flux is negative. Flux estimates in different regions are highly
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cross-correlated, as increases in emissions in one region are compensated by de-
creases in other regions (Fig. A1).

In PRIOR-POS, the typical posterior distribution has the shape of a Gaussian distri-
bution abruptly cut off at zero. This is because negative fluxes are disallowed, and the
correlations between flux estimates in the different regions become very small: the ad-5

ditional constraint has the effect of somewhat decoupling the emissions from different
regions (Fig. A2).

4.3.2 Global annual mass emissions and sensitivity to model parameters

Figure 2 shows the distribution of the global annual mass emitted for the MCMC en-
semble, for PRIOR-POS (with a positive constraint on the emissions). Some apparent10

features are:

1. a right-skewed distribution of the ensembles, with more high extreme values than
low extreme values: this results directly from the prior positive constraint on the
emissions;

2. an increase in estimated emissions with increasing particle size, as shorter parti-15

cle residence times require larger emissions to match the observed number con-
centrations;

3. higher estimated emissions for CCN-ACTIVE particles than for CCN-INACTIVE
particles; again, shorter particle lifetimes require larger emissions to match the
observed concentrations.20

The uncertainties in global mean emissions contributed from cold and mixed-phase
ice nucleation scavenging, CCN activity, particle size, observation uncertainty are
shown in Fig. 3.
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Sensitivity of global and regional emissions to particle size

As particle size increases, not only do estimated emissons increase globally, but es-
timated emissions for individual ecosystems typically increase as well. This can be
seen, for example, in the histograms of the ecosystem emission estimates, especially
when the emissions in each ecosystem are constrained to be positive (Fig. A3). When5

emissions are not constrained to be positive, this pattern is less clear (Fig. A4), es-
pecially for wetlands and coastal regions. These regions are poorly constrained by
the observations due to their relatively small contribution to simulated concentrations:
even large changes in the emissions in these regions have only a small influence on
the concentrations in other regions, or on global emissions.10

Comparison with previous work

The results of the MCMC estimation agree well with results from the constrained linear
optimization for the same problem, as presented in Burrows et al. (2009a). In particular,
the total uncertainty attributed to data uncertainty is reduced by nearly half. For 1 µm,
CCN-ACTIVE tracers, the 5-%ile to 95-%ile range is 400–1800 Gga−1 in Burrows et al.15

(2009a), compared with 470–1100 Gga−1 from the MCMC ensemble, a reduction in
the uncertainty range of 45 %. The narrower range of the uncertainty in the present
study may be due to the fact that we here treat the observation uncertainty as having
a Gaussian probability distribution, rather than a homogeneous probability distribution.
Also, the ecosystems shown in Burrows et al. (2009a) to be most poorly constrained20

by the observations, wetlands and coastal regions, were similarly poorly constrained
when using the Monte Carlo method. This is apparent in the broad spread and irregular
shapes of the distributions in those regions (Fig. 2).
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5 Normalized model uncertainties

5.1 Definition and calculation of normalized model uncertainty

Comparing the uncertainties in the inversion that arise from the observation uncertainty
with those that arise from model parameters (particle size, ice scavenging parameters
and CCN activity) can assist in developing understanding of the relative utility of invest-5

ing research efforts in various aspects of model development or in further observations.
To compare the effects of observation uncertainty and model parameter uncertainty,

we quantify each individually and introduce a measure of “normalized model uncer-
tainty” comparing the two. We quantify the effect of observation uncertainty on source
estimates as the middle 90 % of the posterior distribution (“spread”). We quantify the10

linear sensitivity to continuous parameters (size and ice scavenging parameters) as the
change in the center of the posterior distribution resulting from a small, finite change
in the value of the parameter. Using these two quantities, we define the “linear model
uncertainty” resulting from a given parameter, for continuous parameters (particle size
and ice nucleation scavenging efficiency):15

Linear model uncertainty =

Difference in center of posterior distribution×
Parameter uncertainty

Difference in parameter

(6)

and the “model uncertainty” for discontinuous parameters (CCN-ACTIVE vs. CCN-
INACTIVE):

Model uncertainty = Difference in center of posterior distribution. (7)

The parameter uncertainty ranges are listed in Table 4.20

We further define the “normalized model uncertainty” as the contribution of model
uncertainty to the uncertainty in the posterior distribution, normalized relative to the
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observation uncertainty, i.e.:

Normalized model uncertainty =
(Linear) model uncertainty

Mean spread in posterior distribution
, (8)

where the “spread” is given by the middle 90 % range in the respective posterior distri-
bution, and the denominator is the average of the spreads in the two sensitivity cases.
The values used for the parameter uncertainty ranges and the observation uncertainty5

are summarized in Table 4.
The normalized model uncertainty allows us to summarize the uncertainties resulting

from different model parameters and place them on a single, dimensionless scale.
A normalized uncertainty near unity means that the contributions of the uncertainty in
the model parameter and of the uncertainty in the observations are roughly equivalent.10

A normalized uncertainty much less than unity implies that the model uncertainty for
this parameter is much smaller than the observation uncertainty, while a normalized
uncertainty much greater than unity implies that the model uncertainty is much greater
than the observation uncertainty for this parameter.

To calculate the normalized CCN uncertainty, we calculate the difference between15

the centers of the posterior distributions for each pair of CCN-ACTIVE and CCN-
INACTIVE cases where all other factors are held constant (Eq. 7).

To calculate the normalized size uncertainty, we calculate the difference between the
centers of each neighboring pair of particle sizes (i.e. 1 µm and 2 µm; 2 µm and 3 µm,
and so on), where all other factors are held constant (Eq. 6).20

To calculate the cold and mixed ice scavenging uncertainties, we used the differ-
ences between the BASE case and the LIM COLD and LIM MIXED cases, respec-
tively, where the ice nucleation scavenging coefficient is perturbed and all other factors
are held constant (Eq. 6).

In each case, we then normalize the result by calculating the spread in each of the25

pair of distributions and then calculating the mean value of these spreads (Eq. 8).
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5.2 Partitioning of uncertainty in total global emissions

Overall, the estimated total global mass emissions increase with increasing particle
size. In parallel, the overall uncertainty in the global emissions increases in absolute
terms but remains near 150 % of the median global flux estimate. The magnitude and
sources of the estimated uncertainty are shown in Fig. 3. The uncertainty contribution5

from CCN activity seems to be fairly constant in absolute terms across the size range
of interest, but decreases in relative terms for larger particles.

This is compensated by a growth in the uncertainty contribution from particle size,
which increases both in relative and in absolute terms for larger particles. The contribu-
tions from ice scavenging parameters are comparatively small, although mixed-phase10

ice scavenging contributes more uncertainty than particle size for particle diameters
from 1–4 µm.

5.3 Normalized model uncertainty results

The normalized model uncertainties in the estimated global mean emissions are com-
pared in Fig. 4.15

On average, the normalized model uncertainty from CCN activity is the largest. The
additional effect of changing ice nucleation scavenging coefficients is minimal. The
exception is the LIM MIXED case, where normalized CCN uncertainty is reduced, at
least for smaller particle sizes (Fig. 5, top; Fig. 6, bottom).

The normalized model uncertainty from particle size is slightly smaller than that from20

CCN activity. However, if the uncertainty in the particle size were appreciably larger
than the ±1 µm assumed here, then the particle size would be the largest contributor to
the uncertainty in source estimation. Only a few measurements of the size of bacteria-
carrying particles are available, but these suggest that at the locations studied, particles
bearing culturable bacteria typically have diameters in the range of about 1–5 µm (e.g.25

Lighthart, 2000), so the uncertainty range in particle size could plausibly be as large
as ±2 µm, rather than the ±1 µm assumed in this study.
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Figure 4 shows that the normalized model uncertainty for CCN activity is about 20 %–
30 %. In Fig. 5, we show that the variability in this value is partly explained by the vari-
ation of CCN uncertainty with particle size. For 10 µm particles, the normalized model
uncertainty for CCN activity is significantly smaller (close to 20 %) than for 1 µm parti-
cles (close to 40 %). This is attributable to the increasing ensemble spread (observation5

uncertainty) at larger particle sizes (Fig. 2), since the absolute magnitude of the CCN
uncertainty remains roughly constant with varying particle size (Fig. 3).

Similarly, the normalized model uncertainty for particle size varies as a function of
particle size. Model sensitivity to particle size is greater for larger particles and for CCN-
INACTIVE particles. This is also seen in Fig. 1, where the steeper slopes of the lines10

indicates a higher sensitivity to particle size for larger particles, and for CCN-ACTIVE
particles.

The statistical significance of each of these interactions between model parameters
and the normalized model uncertainties is confirmed by a simple linear model, as illus-
trated in the linear effect diagrams shown in Fig. 6 (Fox, 1987, 2003).15

The sensitivity to the CCN activity of the particles is high for particles of 1 µm di-
ameter, decreasing to only moderate sensitivity for particles around 10 µm diameter
(Fig. 5). The sensitivity to particle size is small to moderate for particles around 1 µm
diameter, and increases to a large sensitivity for particles around 10 µm diameter. The
sensitivity to particle size is higher for CCN-INACTIVE particles than for CCN-ACTIVE20

particles, particularly at particle sizes closer to 1 µm (Fig. 5).

6 Discussion and conclusions

For this case study, the observations consist of estimated characteristic annual mean
concentrations of bacteria-containing particles for a set of ten ecosystems, as de-
scribed in Burrows et al. (2009b). However, the methods described here for uncertainty25

estimation can be applied or adapted to a broad range of similar problems.
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One aim of this study is to assess the extent to which the uncertainty in source
inversions for aerosol transport is due to model parameter uncertainty as compared
to observation uncertainty. The source inversion used as a case study here involves
estimation of fluxes from highly uncertain concentration observations, and our previous
work assumed that the model parameter uncertainties would be negligible relative to5

the observation uncertainties. However, our results suggest that even in this case study,
with relatively large observation errors in concentration, model errors in particle size
and scavenging characteristics can be significant. These sources of error should also
be quantified and taken into account in source estimation for aerosol particles, either by
estimating and including these modeling errors explicitly in the inversion, or by a post10

hoc analysis as presented here.
A Monte Carlo Markov Chain inversion was applied to estimate emissions of

bacteria-containing particles from different ecosystems given a set of mean concen-
trations, analogous to Burrows et al. (2009a). The inversion produces results compa-
rable to those obtained with a deterministic constrained linear optimization by Burrows15

et al. (2009a), with a reduction in the uncertainty range of 45 % for the global mean
emissions estimate.

Uncertainty in the estimation of global mean emissions arises from both observation
uncertainty and uncertainty in model parameters, including particle size, particle CCN
activity, and the rate of ice nucleation scavenging in cold and mixed-phase clouds.20

Relative to the observation uncertainty (5 %ile to 95 %ile of the Monte Carlo ensemble),
the normalized model uncertainty due to CCN activity or a change in particle size of
1 µm is typically between 10 % and 40 %. The model uncertainty from ice nucleation
scavenging in cold clouds was negligible, but the normalized model uncertainty from
ice nucleation scavenging in mixed-phase clouds was 10 %–20 %.25

The sensitivity to scavenging in mixed-phase clouds is perhaps surprisingly large,
a reflection of the large range of uncertainty in the process, for which it is difficult to
find constraints from observations. Other studies have shown that simulated particle
transport to high latitudes and the upper tropposphere in particular is highly sensitive
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to the scavenging rates in mixed-phase clouds, and moderately sensitive to scavenging
rates in ice clouds (Burrows, 2011; Bourgeois and Bey, 2011; Zhang et al., 2012). As
the relative contributions of different source regions to particulate air pollution in the
Arctic has been a matter of significant interest for scientific research and public policy
in recent years, this may deserve additional attention.5

The contribution of model uncertainties in particle size and CCN activity was un-
expectedly large compared to observation uncertainty for this case study, implying
that these parameters should be better constrained by observations and/or the as-
sociated uncertainty should be explicitly considered in the inversion of atmospheric
aerosol transport and uncertainty analyses in global atmospheric modelling studies in-10

volving aerosols. Ice nucleation scavenging in mixed-phase clouds in particular is rarely
considered, but may contribute significantly to overall model uncertainty for problems
involving aerosol transport. Even in cases with very large observation uncertainty, the
contribution of model parameter uncertainty can be substantial.

Appendix A15

Numerical approach

A1 Statistical model

Here we give a brief summary of the solution theory and method, closely following the
presentation of Tarantola (2005).

We begin by defining the inverse problem as a combination of experimental, prior,20

and theoretical information, each of which can be represented as a probability density.
We define several terms describing the problem:

1. the observable quantities d ,

2. the model (parameters) m,
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3. the model function m 7→ g(m). The model function is given by the product of the
inter-ecosystem transfer matrix G and the flux vector m:

g(m) = Gm. (A1)

4. The prior probability density ρ(d ,m) represents prior information constraining
both the observable quantities and the model parameters.5

If the data (observations of concentrations) are independent of the prior informa-
tion about model parameters, we can write:

ρ(d ,m) = ρD(d )ρM(m), (A2)

where ρD(d ) represents prior information about the observable quantities and
ρM(m) represents prior information about the model.10

Here we assume that no information is available about the values of the observ-
able parameters prior to the inversion, i.e. the measurements are the only source
of information about the observable parameters:

ρD(d ) = µD(d ). (A3)

For the prior information about the model, we treat two cases. In the case NO-15

PRIOR,

ρM(m) = µM(m) (A4)

while in the case PRIOR-POS,

ρM(m) =

{
µM(m), m ≥ 0

0, m < 0
. (A5)
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5. The conditional probability θ(d |m) is the probability that the result of the model
(the simulated data vector Gm) is correct, given the data.

In this study, we assume that the observations are independent and their uncer-
tainty is Gaussian-distributed. The discretized formulation of θ(d |m) is then equal
to the product of the normalized Gaussian probability density functions for each5

data point:

θ(d |m) =
N∏
i=1

1√
2πs2

D,i

exp
−(gi (m)−d

i
obs)2

2s2
D,i

, (A6)

where d
i
obs is the observed value of the i -th component of d , sD,i is the standard

deviation of the i -th observation (measurement uncertainty), and gi (m) is the i -th
component of g(m),10

gi (m) =
M∑
j=1

Gi jmj . (A7)

A2 Solution of the inverse problem

The solution of the inverse problem, the posterior probability distribution, σM(d ,m), is
given by:

σM(d ,m) = kρM(m)L(m), (A8)15

where k is a normalization constant and ρM(m) is the prior probability density in the
model space. The likelihood function L(m) is a measure of how well a candidate model
m explains the observations:

L(m) =
∫
D

dd
ρD(d )θ(d |m)

µD(d )
, (A9)
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where
∫
D is the integral over the data space D.

Using Eqs. (A3) and (A6), we can directly calculate the likelihood function:

L(m) =
∫
D

ddθ(d |m) =
N∏
i=1

1√
2πs2

D,i

exp
−(gi (m)−d

i
obs)2

2s2
D,i

, (A10)

A3 The Metropolis Algorithm

To solve the inversion problem, we apply a Monte Carlo Metropolis Chain algorithm5

(Metropolis et al., 1953), generating a large ensemble of solutions via a random walk
algorithm, and applying a probabilistic rule to preferentially select solutions that have
a higher likelihood.

1. Select initial guess for model parameters m0.

2. Add a small random vector ε to select next candidate solution,10

mi+1 =mi +ε. (A11)

3. Obtain a sample of the prior distribution: Apply the Metropolis rule to determine
whether to accept or reject the candidate solution based on the prior probability
density ρM(m):

(a) If ρmi+1
≥ ρmi

, accept the proposed transition to mi+1.15

(b) If ρmi+1
< ρmi

, then accept the proposed move with probability

Pi→i+1 =
ρmi+1

ρmi

. (A12)

For PRIOR-POS, all candidate solutions mi in which all elements (individual
model fluxes) are non-negative are retained, while all candidates with negative
elements are rejected (Eq. A5). The retained mi are a sample of the the prior20

ensemble.
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4. For each member of the prior ensemble, calculate the likelihood function and
apply the Metropolis rule to determine whether to accept or reject the candidate
solution:

(a) If L(mi+1) ≥ L(mi ), accept the proposed transition to mi+1.

(b) If L(mi+1) < L(mi ), then accept the proposed move with probability5

Pi→j =
L(mi+1)

L(mi )
. (A13)

5. Repeat steps 2.–4. for the desired number of trials.

Given a sufficiently large number of iterations, the ensemble of models (candidate so-
lutions) mi is a good approximation to a random sample of the posterior probability
distribution σ(d ,m), i.e. the solution to the inverse problem (Eq. A8; Metropolis et al.,10

1953; Mosegaard and Tarantola, 1995) The center and spread of the ensemble can be
used to derive estimates of the solution and uncertainty.

Note that because only the ratios of the likelihoods associated with each model are
of interest, there is no need to know the normalization parameter k, which remains
constant.15
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– Part 1: Review and synthesis of literature data for different ecosystems, Atmos. Chem.
Phys., 9, 9263–9280, doi:10.5194/acp-9-9263-2009, 2009b. 4395, 4409, 441915

Després, V. R., Huffman, J. A., Burrows, S. M., Hoose, C., Safatov, A. S., Buryak, G., Fröhlich-
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Note: An implementation of the dry removal processes DRY DEPosition and SEDImenta-
tion in the Modular Earth Submodel System (MESSy), Atmos. Chem. Phys., 6, 4617–4632,5

doi:10.5194/acp-6-4617-2006, 2006a. 4396
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Table 1. Estimates of total mean number concentration of bacteria-containing particles [m−3] in
near-surface air of various ecosystem types, reproduced with corrections from Burrows et al.
(2009b,a).

Ecosystem Low estimateb Best estimatea High estimate Percent uncertainty

coastalc 2.3×104 7.6×104 1.3×105 300
cropsc 4.1×104 1.1×105 1.7×105 81
desertsd,e 1.6×102 (1×104) 3.8×104 380
forestsf 3.3×104 5.6×104 8.8×104 100
grasslandsc,g 2.5×104 1.1×105 8.4×105 290
land iceh,i (1×101) (5 ×103) 1×104 200
seasc,g,j 1×101 1×104 8×104 800
shrubsf,g 1.2×104 3.5×105 8.4×105 240
tundrag,k (1×101) 1.2×104 5.6×104 470
wetlandsl 2×104 9×104 8×105 870

a Additional values have been assumed for fields left blank by Burrows et al. (2009a); these are denoted by
parentheses and italic font.
b Percent uncertainties are calculated as best = (high–low)×100.
c Harrison et al. (2005).
d Lighthart and Shaffer (1994).
e Assumed the same as best estimate for seas.
f Shaffer and Lighthart (1997)
g Tong and Lighthart (1999); Tilley et al. (2001).
h Bauer et al. (2002).
i Estimated low value for seas taken as lower bound, average of high and low values taken as best estimate.
j Griffin et al. (2006).
k Estimated low value for seas taken as lower bound.
l Assumed to be within bounds of estimates in coastal and grassland/crops regions.
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Table 2. Removal processes included for CCN-ACTIVE and CCN-INACTIVE particle types.
The “+” and “−” symbols indicate, respectively, that the process is turned on or turned off for
simulated removal of these particles. (Table adapted from Burrows et al., 2009a).

Sedimentation Dry deposition Impaction and Cloud droplet Uptake by Ice-phase scavenging
interception scavenging nucleation diffusion (impaction and nucleation)

CCN-ACTIVE + + + + + +
CCN-INACTIVE + + + − + +
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Table 3. Ice nucleation scavenging ratio in the three sensitivity setups.

T > −35◦ C T ≤ −35◦ C

BASE 0.1 0.05
SENS COLD 0.1 0.0505
SENS MIXED 0.101 0.05
LIM COLD 0.1 0.1
LIM MIXED 0.7 0.05
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Table 4. Uncertainty ranges (used for calculation of model uncertainty, observation uncertainty,
and normalized model uncertainty).

Source of uncertainty Uncertainty range

Observations 5-%ile–95-%ile of ensemble
Particle diameter ±1 µm
CCN activity yes/no
Mixed-phase ice scavenging 0.1–0.7
Cold ice scavenging 0.0–0.1
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Fig. 1. Particle residence time in BASE model setup, as a function of particle aerodynamic diameter, emission

ecosystem, and CCN activity. Left: CCN-ACTIVE, Middle: CCN-INACTIVE, Right: CCN-INACTIVE. The

color key is indicated in the left panel.

zero temperatures (Henning et al., 2004; Verheggen et al., 2007). The activated aerosol represents

an upper limit on the aerosol that may be removed due to nucleation scavenging. Based on these

results, we bound the ice nucleation scavenging parameter in the range 0.0 – 0.1 for “cold” clouds

(T<−35 °C) and 0.1 – 0.7 for “mixed” clouds (-35 °C ≤ T ≤ 0 °C).160

Four sensitivity cases were tested, in addition to the BASE case (Table 3). In the cases

SENS COLD and SENS MIXED, small perturbations were made to test the quasi-linear response

of the model to a 1% change in the respective parameter. The SENS MIXED case resulted in an

appreciable perturbation of aerosol concentrations in the mid-latitude tropopause region and the sur-

face atmosphere at high-latitudes (not shown). However, the effect on estimated emissions was too165

small to be detected within the random noise of the Monte Carlo simulation. These cases will not be

discussed in further detail, but are included in some of the presented results.

In the cases LIM COLD and LIM MIXED, we used larger perturbations in order to gauge the

response of the Monte Carlo emissions estimate to a larger perturbation to the respective ice scav-

enging coefficients, respectively changing the coefficient for cold clouds from 0.05 to 0.1, and the170

coefficient for warm clouds from 0.1 to 0.7.

3.4 Impact of size and emission region on particle residence times

The global mean atmospheric residence times of particles depend strongly on whether they act as

CCN, on the particle diameter, and on the region from which they are emitted (Figure 1). Atmo-

spheric residence times are longest for particles emitted from deserts, where there is little scavenging175

and dry convection rapidly transports particles to high altitudes. Residence times of 1 µm particles

are shortest for particles emitted from oceans, where scavenging is strongest. For larger particles

and CCN-INACTIVE particles, for which particle lifetime is more strongly driven by dry deposition

processes, particle lifetimes are shortest in crops and forest regions, where plants increase friction

and provide large surfaces for deposition. The effect of particle size on residence time is somewhat180

7

Fig. 1. Particle residence time in BASE model setup, as a function of particle aerodynamic
diameter, emission ecosystem, and CCN activity. Left: CCN-ACTIVE, Middle: CCN-INACTIVE,
Right: CCN-INACTIVE. The color key is indicated in the left panel.
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Fig. 2. Distributions of global annual mass emissions estimates [Gg per year] shown as boxplots (top) and

histograms (bottom). Results are shown from left to right for each particle diameter from 1µm to 10µm, and

for CCN-INACTIVE (red, on left for each size) and CCN-ACTIVE (blue, on right) particles. Lines in bottom

panel demarcate the minimum, 10-%ile, 25-%ile, 50-%ile, 75-%ile, 90-%ile, and maximum of the total sample

(CCN-ACTIVE and CCN-INACTIVE particles combined) for each particle size. Boxplots in top panel show

distributions: thick lines show the median; box extent shows the 25-%ile to 75-%ile; whiskers extend up to 1.5

times the length of the box, or to the most extreme point; and dots show outliers beyond the whiskers. Results

are for PRIOR-POS.

4.3.2 Global annual mass emissions and sensitivity to model parameters

Figure 2 shows the distribution of the global annual mass emitted for the MCMC ensemble, for

PRIOR-POS (with a positive constraint on the emissions). Some apparent features are:

1. a right-skewed distribution of the ensembles, with more high extreme values than low extreme250

values: this results directly from the prior positive constraint on the emissions;

11

Fig. 2. Distributions of global annual mass emissions estimates [Gg per year] shown as box-
plots (top) and histograms (bottom). Results are shown from left to right for each particle diam-
eter from 1 µm to 10 µm, and for CCN-INACTIVE (red, on left for each size) and CCN-ACTIVE
(blue, on right) particles. Lines in bottom panel demarcate the minimum, 10-%ile, 25-%ile, 50-
%ile, 75-%ile, 90-%ile, and maximum of the total sample (CCN-ACTIVE and CCN-INACTIVE
particles combined) for each particle size. Boxplots in top panel show distributions: thick lines
show the median; box extent shows the 25-%ile to 75-%ile; whiskers extend up to 1.5 times the
length of the box, or to the most extreme point; and dots show outliers beyond the whiskers.
Results are for PRIOR-POS.
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Table 4. Uncertainty ranges (used for calculation of model uncertainty, observation uncertainty, and normalized

model uncertainty)

Source of uncertainty Uncertainty range

Observations 5-%ile – 95-%ile of ensemble

Particle diameter ± 1µm

CCN activity yes / no

Mixed-phase ice scavenging 0.1 – 0.7

Cold ice scavenging 0.0 – 0.1

Fig. 3. Left: Model and observation uncertainty in the inferred mean global flux (median per uncertainty type

for various cases), expressed as absolute uncertainty. Right: Same, expressed as a relative uncertainty, i.e.,

(absolute uncertainty in global flux estimate) / (median global flux estimate) * 100. The sum of the individual

uncertainties exceeds the value of the median global flux estimate in each case, resulting in relative uncertainties

that exceed 100%. The color key is indicated in the left panel.

sist in developing understanding of the relative utility of investing research efforts in various aspects

of model development or in further observations.

To compare the effects of observation uncertainty and model parameter uncertainty, we quantify

each individually and introduce a measure of “normalized model uncertainty” comparing the two.

We quantify the effect of observation uncertainty on source estimates as the middle 90% of the

posterior distribution (“spread”). We quantify the linear sensitivity to continuous parameters (size

and ice scavenging parameters) as the change in the center of the posterior distribution resulting

from a small, finite change in the value of the parameter. Using these two quantities, we define the

“linear model uncertainty” resulting from a given parameter, for continuous parameters (particle size

13

Fig. 3. Left: model and observation uncertainty in the inferred mean global flux (median per
uncertainty type for various cases), expressed as absolute uncertainty. Right: Same, expressed
as a relative uncertainty, i.e. (absolute uncertainty in global flux estimate)/(median global flux
estimate) ·100. The sum of the individual uncertainties exceeds the value of the median global
flux estimate in each case, resulting in relative uncertainties that exceed 100 %. The color key
is indicated in the left panel.
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|Fig. 4. Boxplot of the distributions of normalized model uncertainties for particle size, CCN activity, and the

LIM MIXED and LIM COLD tests of the ice scavenging parameterization.

creasing to only moderate sensitivity for particles around 10µm diameter (Figure 5). The sensitivity

to particle size is small to moderate for particles around 1µm diameter, and increases to a large

sensitivity for particles around 10µm diameter. The sensitivity to particle size is higher for CCN-

INACTIVE particles than for CCN-ACTIVE particles, particularly at particle sizes closer to 1µm

(Figure 5).350

6 Discussion and conclusions

For this case study, the observations consist of estimated characteristic annual mean concentrations

of bacteria-containing particles for a set of ten ecosystems, as described in Burrows et al. (2009b).

However, the methods described here for uncertainty estimation can be applied or adapted to a broad

range of similar problems.355

One aim of this study is to assess the extent to which the uncertainty in source inversions for

aerosol transport is due to model parameter uncertainty as compared to observation uncertainty.

The source inversion used as a case study here involves estimation of fluxes from highly uncertain

concentration observations, and our previous work assumed that the model parameter uncertainties

would be negligible relative to the observation uncertainties. However, our results suggest that360

even in this case study, with relatively large observation errors in concentration, model errors in

particle size and scavenging characteristics can be significant. These sources of error should also be

quantified and taken into account in source estimation for aerosol particles, either by estimating and

including these modeling errors explicitly in the inversion, or by a post hoc analysis as presented

here.365

A Monte Carlo Markov Chain inversion was applied to estimate emissions of bacteria-containing

16

Fig. 4. Boxplot of the distributions of normalized model uncertainties for particle size, CCN
activity, and the LIM MIXED and LIM COLD tests of the ice scavenging parameterization.
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Fig. 5. Top: Normalized model uncertainty from CCN activity, as a function of particle diameter. Bottom:

Normalized model uncertainty due to particle size, as a function of particle size. Lines in both panels are local

polynomial regression fits to observations, and are provided as a guide to the eye. The color key is indicated in

the top panel.

particles from different ecosystems given a set of mean concentrations, analogous to Burrows et al.

(2009a). The inversion produces results comparable to those obtained with a deterministic con-

strained linear optimization by Burrows et al. (2009a), with a reduction in the uncertainty range of

45% for the global mean emissions estimate.370

Uncertainty in the estimation of global mean emissions arises from both observation uncertainty

and uncertainty in model parameters, including particle size, particle CCN activity, and the rate of

ice nucleation scavenging in cold and mixed-phase clouds. Relative to the observation uncertainty

(5%ile to 95%ile of the Monte Carlo ensemble), the normalized model uncertainty due to CCN ac-

tivity or a change in particle size of 1µm is typically between 10% and 40%. The model uncertainty375

from ice nucleation scavenging in cold clouds was negligible, but the normalized model uncertainty

17

Fig. 5. Top: normalized model uncertainty from CCN activity, as a function of particle diameter.
Bottom: normalized model uncertainty due to particle size, as a function of particle size. Lines
in both panels are local polynomial regression fits to observations, and are provided as a guide
to the eye. The color key is indicated in the top panel.
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Fig. 6. Top: Effect of particle size on CCN uncertainty. Middle: Effect of CCN activity on size uncertainty.

Bottom: Effect of sensitivity case on CCN uncertainty. Red dashed lines indicate the 95%-ile confidence

interval.

from ice nucleation scavenging in mixed-phase clouds was 10%-20%.

The sensitivity to scavenging in mixed-phase clouds is perhaps surprisingly large, a reflection

of the large range of uncertainty in the process, for which it is difficult to find constraints from

observations. Other studies have shown that simulated particle transport to high latitudes and the380

upper tropposphere in particular is highly sensitive to the scavenging rates in mixed-phase clouds,

and moderately sensitive to scavenging rates in ice clouds (Burrows, 2011; Bourgeois and Bey,

2011; Zhang et al., 2012). As the relative contributions of different source regions to particulate

air pollution in the Arctic has been a matter of significant interest for scientific research and public

policy in recent years, this may deserve additional attention.385

18

Fig. 6. Top: effect of particle size on CCN uncertainty. Middle: effect of CCN activity on size
uncertainty. Bottom: effect of sensitivity case on CCN uncertainty. Red dashed lines indicate
the 95 %-ile confidence interval.
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Fig. 7. Correlations between flux estimates for different ecosystems. Here for CCN-ACTIVE, 1µm particles,

in NO-PRIOR inversion (with no prior constraint on fluxes.

23

Fig. A1. Correlations between flux estimates for different ecosystems. Here for CCN-ACTIVE,
1 µm particles, in NO-PRIOR inversion (with no prior constraint on fluxes).
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Fig. 8. Correlations between flux estimates for different ecosystems. Here for CCN-ACTIVE, 1µm particles,

in NO-PRIOR inversion (with prior positivity constraint on fluxes.

24

Fig. A2. Correlations between flux estimates for different ecosystems. Here for CCN-ACTIVE,
1 µm particles, in NO-PRIOR inversion (with prior positivity constraint on fluxes).
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Fig. 9. Histograms of the Monte Carlo sample of flux estimates, for each ecosystem and particle sizes from 1µm

to 10µm in 1µm intervals. Here for CCN-ACTIVE particles in PRIOR-POS, with Gaussian data uncertainty

and a prior positivity constraint on fluxes.

25

Fig. A3. Histograms of the Monte Carlo sample of flux estimates, for each ecosystem and
particle sizes from 1 µm to 10 µm in 1 µm intervals. Here for CCN-ACTIVE particles in PRIOR-
POS, with Gaussian data uncertainty and a prior positivity constraint on fluxes.
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Fig. 10. Histograms of flux estimates, as in Figure 9. Here for CCN-ACTIVE particles in NO-PRIOR, with

Gaussian data uncertainty and no prior constraint on fluxes.
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Fig. A4. Histograms of flux estimates, as in Fig. A3. Here for CCN-ACTIVE particles in NO-
PRIOR, with Gaussian data uncertainty and no prior constraint on fluxes.
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