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Abstract

In this study, we adapt general statistical methods to compute the optimal error covari-
ance matrices in a regional inversion system inferring methane surface emissions from
atmospheric concentrations. We optimally estimate the error statistics with a minimal
set of physical hypotheses on the patterns of errors. With this very general approach5

applied within a real-data framework, we recover sources of errors in the observations
and in the prior state of the system that are consistent with expert knowledge. By not
assuming any specific error patterns, our results show the variability and the inter-
dependency of errors induced by complex factors such as the mis-representation of
the observations in the transport model or the inability of the model to reproduce well10

the situations of steep gradients of air mass composition in the atmosphere. By analyz-
ing the sensitivity of the inversion to each observation, ways to improve data selection
in regional inversions are also proposed. We applied our method to a recent significant
accidental methane release from an offshore platform in the North Sea.

1 Introduction15

Quantifying the methane (CH4) fluxes between the atmosphere and the surface, es-
tablishing their temporal variability and spatial distribution, and estimating the anthro-
pogenic and natural contributions to these fluxes is critical to close the present-day
methane budget. One of the approaches used for this purpose is the atmospheric in-
version that assimilates information on the atmospheric composition to infer surface20

fluxes. This type of top-down estimations relies on the assimilation of in-situ observa-
tions of atmospheric concentrations (Houweling et al., 1999, 2006; Hein et al., 1997;
Pison et al., 2009; Bousquet et al., 2011, 2006; Bergamaschi et al., 2005) and/or of
remote-sensing data from satellite-based instruments (e.g., Bergamaschi et al., 2009).
Using observations for inversions at the global scale reduces the uncertainties on the25

mean CH4 flux balances on large regions (typically a few millions of km2 large). At
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the regional and meso-scale, high-resolution inversions potentially provide the spatial
distribution of the fluxes, so that the characterization of the processes involved can
be improved (Bergamaschi et al., 2010). Inversions at any scale depend on simula-
tions of the atmospheric mixing and advection by Chemistry-Transport Models (CTMs)
to estimate the influence of emissions and sinks on the atmospheric concentrations5

where they are measured. Whether they are based on coarse (Chen and Prinn, 2006;
Hein et al., 1997), varying (Peylin et al., 2005) or high (Lauvaux et al., 2008; Sarrat
et al., 2007) resolutions, all the CTMs suffer to a certain extent from uncertainties in
reproducing the atmospheric concentrations. The uncertainties are due to the transport
errors (Baker et al., 2006; Geels et al., 2007; Peylin et al., 2002; Ahmadov et al., 2007;10

Prather et al., 2008), to the assumption that a point observation can be compared to
the mean simulated concentration on the corresponding grid box, i.e. the representa-
tion errors (Gerbig et al., 2003; Tolk et al., 2008), or to the errors from aggregating the
fluxes on large regions (Kaminski et al., 2001).

In the framework of Bayesian atmospheric inversion (Enting et al., 1993; Tarantola,15

1987), the implementation of a system requires obtaining an advanced understanding
on the statistics of the observational and instrumental errors, the transport errors, the
representation errors, and the errors on the prior distribution and magnitude of the
fluxes prescribed in the system. Most of the cited works empirically assigned these
error statistics. Objective methods of tuning the errors in the system also exist (Wahba20

et al., 1994; Dee, 1995; Desroziers and Ivanov, 2001) and have been applied to get
the general structure of the errors (Michalak et al., 2005; Winiarek et al., 2012). But
these methods rely on subjective prior knowledge on the error structure (e.g., isotropic
spatial correlation or temporal decay in the correlations) that can limit the generality of
the results.25

In this study, we apply methods based on the statistical and algebraic properties of
the errors but with a minimum of additional physical assumptions on the error patterns.
In inversion systems typically solving fluxes at the model resolution (e.g., 0.5◦ ×0.5◦

each week during a season or a year in regional scale studies), this approach would
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require the handling of matrices of error covariances which total size exceeds billions
or even trillions of components. To embrace memory limitations and reduce the compu-
tation costs, we chose a short window of inversion and aggregate the surface fluxes on
synoptic-scale regions. This simplification allows applying powerful generic methods,
but induces limitations (Kaminski et al., 2001; Bocquet et al., 2011) to be taken into5

account when moving to a full-resolution inversion system.
Our study takes benefit of a recent unexpected release of CH4 in the North Sea in

spring 2012 to apply this statistical approach and test the ability of a European net-
work of atmospheric observations to detect the leak. On 25 March 2012, an offshore
oil platform on the Elgin field, located 200 km east of Scotland shores (57◦ N, 1.53◦ E),10

was evacuated due to a gas leak. The company operating the platform gave a rough
evaluation of the flux reaching 200 000 m3 d−1 or 140 metric tons per day (t d−1) for
CH4, which accounts for less than 1 % of the daily regional emissions (within a radius
of ∼ 750 km around the leak point) according to the Emission Database for Global At-
mospheric Research (EDGAR v4.2; http://edgar.jrc.ec.europa.eu) for the year 2008.15

The leak was stopped two months after. The methane plume emitted by this punc-
tual source is difficult to extract from the observation noise and from the variability of
the other sources, which makes the assignment of error statistics particularly critical
(Winiarek et al., 2012). We develop and apply a regional inversion framework based on
CHIMERE CTM runs on a domain covering the European continent (Fig. 1). We opti-20

mize the covariance matrices of the errors on the observations and on the prescribed
state vector (surface fluxes, initial and lateral boundary conditions) for two independent
windows of inversion: the 2 weeks before the beginning of the leak and the 2 weeks
after. The three methods of optimization are implemented with acceptable computation
times and manage to produce optimum error covariance matrices, that are specifically25

suited to the inversion window and the system. Complex error structures are retrieved
and the best use of the information provided by the observations and the prescribed
fluxes is achieved. We use the optimal matrices to inverse the European fluxes before
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and after the leak start and test whether or not the atmospheric network detected this
methane plume.

In Sect. 2, we describe the inversion methods and the dataset used in the study.
We also present the algorithms that we implemented following the literature to specify
the inversion system configuration. In Sect. 3, the results of these tuning methods are5

presented. The inversion results from these sets are analysed in Sect. 4 and their
limitations and possible adaptation on larger systems are commented in Sect. 5.

2 Methods

2.1 Inversion system

2.1.1 Theory: analytical framework10

We apply classical data assimilation methods based on the Bayesian formalism
(Courtier et al., 1994; Enting et al., 1993, 1995; Tarantola, 1987). In the following we
use the unified notation by Ide et al. (1997). Assuming a Gaussian nature for all the
errors, the method basically relies on the minimization of the cost function:

J(x) = 1
2 (y0 −H(x))TR−1(y0 −H(x))
+1

2 (x−x
b)TB−1(x−x

b)
= Jo(x)+ Jb(x)

(1)15

Jo (resp. Jb) is the contribution of the observations (resp. the background) to the to-
tal cost function. y0 accounts for the observation vector (dim y

0 ∼5000; description
in Sect. 2.1.4); x is the state vector (i.e. the series of the variables to optimize), xb

the background vector including the prior knowledge on the state of the system (dim
x ∼100; description in Sect. 2.1.2).20

H is the observation operator converting the informations in the state vector to the
observation space. The atmosphere advects and mixes the emissions and the initial
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and lateral boundary conditions. Since the time of residence of each air mass within
our domain is of typically two weeks, to be compared to the mean CH4 life time in
the atmosphere of about nine years (e.g., Dentener et al., 2003), the chemistry along
the transport is neglected in all the following. For each observation (y0)i at a spec-
ified place and time, an equivalent H(x)i is induced from the state vector x with a5

Chemistry-Transport Model (CTM, description in Sect. 2.1.3). In all the study, H is sup-
posed linear; the operator is represented by its Jacobian matrix H and H(x) is identified
to Hx. With our relatively low-dimensional system, it is possible to explicitly estimate the
observation operator with so-called ”response functions”. Response functions (Bous-
quet et al., 1999) are calculated for each component of the state vector by running the10

CTM in forward mode and extracting the simulated concentration at each point where
a corresponding observation is available.

The covariance matrix R describes the errors ε = y
0 −Hx between the observations

and their reconstruction from the state vector with the model. We assume that the errors
are unbiased, i.e. ε ∼N (0,R). R then encompasses the errors directly related to the15

measurement process, but also to the transport model (Ahmadov et al., 2007; Peylin
et al., 2002), to the model representation, i.e. its inability to represent the local variability
within the grid cells (Tolk et al., 2008; Geels et al., 2007) and to the aggregation process
(Kaminski et al., 2001; Bocquet et al., 2011). B is the covariance matrix of the errors
on the background vector xb (details in Sect. 2.1.2).20

For this linear problem, the cost function J admits a global minimum reached for the
optimum state vector xa such that:

xa = xb +K(y0 −Hxb) (2)

where K = BHT (R+HBHT )−1 is the Kalman gain matrix.
The associated covariance matrix of errors, representing the a posteriori uncertain-25

ties in Gaussian assumptions, is given by:

Pa = B−KHB (3)
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2.1.2 The state vector

In Eq. (1), x stands for the state vector which is optimized by the inversion and x
b fig-

ures the assumed state (called the ”background”) before the assimilation of additional
observations. The vector x contains all the information on all the degrees of freedom
of the system, e.g., on the emissions (spatial and temporal distribution), boundary con-5

ditions (all CH4 concentration fields at the edges of the domain) and initial conditions
(3-dimensional distribution of the CH4 concentrations at the first step of the period of
interest). In most realistic systems, dealing with the complete state vector implies pro-
hibitive computation costs with memory limitations. Solving a high dimension system
needs the implementation of variational algorithms (Chevallier et al., 2005). An alter-10

native is to reduce the size of the inverse problem.
We drastically simplify the state and background vectors in order to allow the ma-

nipulation of the matrix B. For each of the two windows of inversion (the two weeks
before and the two after the leak start), computed independently, the simplified vec-
tor has a dimension of 99 and contains coefficients of linear corrections on: (1) the15

aggregated emissions on 12 regions (see Fig. 1); the spatial and temporal distribu-
tion of the emissions in each region are interpolated from the EDGARv4.2 database
(http://edgar.jrc.ec.europa.eu); (2) the concentrations on the boundaries of the domain;
boundaries are divided into 17 sub-parts: one for the top side, 16 for the lateral sides
(2 per side vertically ×2 per side horizontally ×4 sides; the vertical partition is situated20

at the half of the domain in pressure coordinates, i.e. at ∼700 hPa; spatial horizontal
distribution in Fig. 1); one coefficient is attributed per sub-part per period of 3 days;
for each sub-part, boundary concentrations are supposed constant and uniform; the
lateral boundary conditions (LBC) are then fixed by 85 coefficients; (3) the initial condi-
tions (IC); the model is first vented with background boundary concentrations (extracted25

from global simulations with the CTM LMDz; Bousquet et al., 2011) and EDGAR emis-
sions during 10 days before the period of inversion; and (4) an offset, constant and
uniform along the whole domain; the prior offset was calculated from the available ob-
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servations as an estimation of the background concentrations during the window of
inversion; the initial and boundary concentrations are expressed as perturbations from
this offset.

This simplification implicitly implies the hypothesis of pure correlation of the informa-
tion within each aggregated region of the state vector (see Sect. 5.1). We chose an5

extended domain compared to the network coverage in order to cope with the spatial
and temporal ill-representation of the LBC (Lauvaux et al., 2012).

2.1.3 Atmospheric transport model

We use the Eulerian meso-scale non hydrostatic chemistry transport model CHIMERE
for this study (Vautard et al., 2001). This model was developed in a framework of10

pollution simulations (Schmidt et al., 2001; Pison et al., 2007), but is also used for
greenhouse gas studies (Broquet et al., 2011). We use here a regular horizontal grid
of 50 km-side cells with 25 layers geometrically spaced from the surface to 450 hPa
(∼6000 m). The model time step varies dynamically from 4 to 6 min depending on max-
imum wind speeds in the domain. The model is an off-line model which needs meteoro-15

logical fields as forcing. The forcing fields are deduced from interpolated meteorological
fields from the European Centre for Medium-range Weather Forecast (ECMWF) with
a horizontal resolution of 0.5◦ ×0.5◦ each 3 h. The model is operated in a domain of
limited area spanning over the whole continental Europe (roughly 24×106 km2; see
Fig. 1).20

2.1.4 Observations

The study is based on the assimilation of measurements of the atmospheric compo-
sition. Concentrations of CH4 are measured in-situ in 13 European sites (see Fig. 1;
details in Table 1) at altitudes from sea level up to 3580 m a.s.l. and with different in-
strumentation and time resolution. Some stations are equipped with CRDS analysers25

(frequency of up to 1 Hz magnitude), whereas others are Gas Chromatographs. Hourly
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aggregates were used as input in y
0 for the inversion. The observation sites can be

split into three categories: (1) mountain sites which observe almost all the time the free
troposphere; they are scarcely influenced by the local emissions and are representa-
tive of the continental and global budget; (2) coastal sites with primary influence from
the ocean when the air flows towards lands; as mountain sites, they are representative5

of global patterns; and (3) rural sites, inland but remote from anthropogenic emissions
hot spots. All instruments are calibrated by tanks traceable to the NOAA 2004 CH4
scale (Dlugokencky et al., 2005) with a calibration precision of ±2 ppb.

2.2 Error configuration: description of the algorithms

In the Bayesian inversion framework, the theory is based on a perfect knowledge of the10

background and observation error statistics. The tuple of covariance matrices (R, B)
must then be established. Tuning and calculating optimal covariance matrices has long
been of interest in data assimilation (Talagrand, 1998; Desroziers and Ivanov, 2001;
Chapnik et al., 2004). Statistical studies on large sets of data are required to reach a
sufficient threshold of information to get a reliable approximation of R and B. In most15

cases, the sets of data are not available and the covariance matrices are built relying
on physical considerations and an expertise on the observation and model behaviours
(Bergamaschi et al., 2010). In this section, we describe different objective methods to
infer the best tuple of R and B matrices: first, the Desroziers’ scheme, second, the
maximization of the likelihood, third, observation space diagnostics. The Desroziers’20

scheme and the maximization of the likelihood are computed on the sub-space of the
diagonal matrices for both R and B, while the observation space diagnostics allow the
recovery of full matrices.

Before further discussion in Sect. 3 and 4, the relevance of the 3 proposed methods
is validated by a χ2 test (see Sect. 2.2.1), used in many studies (e.g., Lauvaux et al.,25

2012; Winiarek et al., 2012; Peylin et al., 2002; Rayner et al., 1999).
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2.2.1 Validation test: χ2 distribution

It can be shown, within Gaussian assumptions, that for the state vector xa maximizing
the cost function J , J(xa) = Jo(xa)+ Ja(xa) has the statistics of a χ2 distribution with
a mean equal to d/2, d being the total number of available observations. We then

define a χ2 index 2J(xa)
d that shall be close to 1. Though insufficient, this test provides a5

low-cost insurance of a well-defined tuple of covariance matrices. The three methods
presented below are tested and validated in regard of this test. A deeper analysis of
the algorithms’ results is presented in Sect. 3.

2.2.2 Desroziers’ scheme: subsets application

We describe here a method to roughly infer the shapes of R and B covariance ma-10

trices with a very low computation cost. It has been shown by Talagrand (1998) and
Desroziers and Ivanov (2001) that for a given (xb, y0), for any subspace j independent
of the complementary space in the observation or state space, the optimal tuple of
matrices (R, B) follows the expression below:

E [Jo
j ] = 1

2

[
pj − tr(Pj (HK)PT

j )
]

E [Jb
j ] = 1

2

[
nj − tr(Pj (In −KH)PT

j )
] (4)15

where tr(.) stands for the trace operator, E [Jo
j ] (resp. E [Jb

j ]) is the expectancy of the

contribution at the maximum x
a to the cost function J of the independent subspace j of

the observation (resp. state) space, Pj is a projector from the whole observation (resp.
state) space to the subspace j and pj (resp. nj ) the dimension of the subspace j .

One cannot ascertain statistical independence between subspaces of the observa-20

tion or of the state space prior to the algorithm. To apply the method, we then make
the following assumptions to divide the observation and the state spaces into 41 in-
dependent subspaces: (1) each measurement site is independent from all others, (2)
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at each site, all the observations during the afternoon (12:00–05:00 p.m.) are gathered
in one subspace (named “day” period in the following) and all the remaining obser-
vations during the morning and the night in a second subspace (named “night”); the
planetary boundary layer (PBL) during the night is ill-represented by models; ensuing
erroneous vertical mixing is expected to deteriorate the ability of the CTM to simu-5

late realistic concentrations during the night; the shared cause of the enhanced errors
justifies the assumed dependancy of night-time observations; for similar reason, we
group the remaining observations during the afternoon with well-mixed PBL. (3) the
LBC are independent from other state dimensions, (4) same with the IC, (5) same with
the offset, (6) every aggregated region of emissions is independent from the others.10

Doing so, we have 26 independent subspaces within the observation space (13 sites
x day/night) and 15 for the state space (12 regions + LBC + IC + offset). Desroziers
and Ivanov (2001) proposed an iterative tuning procedure that converges to Eq. (4); we
refer to this procedure as Desroziers’ scheme (DS). Let us rewrite the cost function:

Jk(x) =
∑
j

1

(sb
j ,k)2

Jb
j ,k(x)+

1

(so
j ,k)2

Jo
j ,k(x) (5)15

where sb
j ,k and so

j ,k denote the adapted weights for the subspace j at step k of the
iterative procedure to balance the observations and the background in the cost function.

Desroziers’ scheme is described by the following system of equations for every step
k:

(sb
j ,k+1)2 =

2Jb
j ,k (x)

nj−tr(Pj (In−KkH)PT
j )

(so
j ,k+1)2 =

2Jo
j ,k (x)

pj−tr(Pj (HKk )PT
j )

Bj ,k+1 = sb
j ,k+1Bj ,0

Rj ,k+1 = so
j ,k+1Rj ,0

(6)20
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Bj and Rj stand for the diagonal sub-matrices associated to the subset j . Kk is the
Kalman gain matrix calculated with (Rk ,Bk) (see Eq. 2).

We start this algorithm from a tuple (R0,B0) with no physical assumption, i.e. R0 = Id
and B0 = Ip.

We stop the iterative scheme when every subset contribution to the cost function5

E [Jo
j ] or E [Jb

j ] is less than 1 % away from its theoretical expected value (right member

of Eq. 4); this is equivalent to get a χ2 test greater than 99 %. The algorithm converges
in no more than 15 steps (i.e. a couple of minutes on a standard office computer).

2.2.3 Maximum of likelihood

Desroziers’ scheme (DS) relies on coarse approximations and, for example, cannot10

extract the variability of the observational errors day-by-day and hour-by-hour. The
following method allows the computation of R and B which are tuned not by block but by
component individually. This improvement implies drastically higher computation cost
than for DS method. In Gaussian assumptions, the likelihood of the observations y

0 for
given R and B can be written as follows (Michalak et al., 2005):15

p(y0|R,B) =
e− 1

2 (y0−Hx
b)T (R+HBHT )−1(y0−Hx

b)√
(2π)d |R+HBHT |

A proper (R,B) tuple necessarily maximizes this function (Dee, 1995). For memory
limitation reasons, we do not maximize the function itself, but equivalently its logarithm:

ln p(y0|R,B) = −1
2
tr(S−1

R,BS)− 1
2

ln |SR,B|+C

with SR,B = R+HBHT , S = (y0−Hx
b)(y0−Hx

b)T and C a constant not relevant for com-20

puting the maximum of the function. |.| stands for the determinant operator and tr(.) for
the trace operator.
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The function maximum cannot be easily computed analytically in general. Hence,
as in Sect. 2.2.2, we reduce the problem to diagonal covariance matrices (R and B)
and we use an ascending pseudo-Newtonian method based on the calculation of the
gradient of the log-likelihood. The algorithm converges to a local maximum (Chapnik
et al., 2004), but we have no insurance of converging to the global maximum. The5

result of the algorithm can be very dependent from the (R,B) tuple chosen as a starting
point. To ensure the robustness of the result, we test this method with 2 different starting
tuples: (1) one constructed on physical considerations, (2) the other with uniform errors
of 50 ppb for observations, the LBC and the offset and 10 % for the emissions. The
results are very similar: the difference between the two errors related to an observation10

j does not exceed 5 % and is less than 1 % in average.
Additionally, to accelerate the convergence of the algorithm, one can notice that the

log-likelihood is maximum only if (R,B) satisfies:

α =
tr(S−1

R,BS)

2d
= 1

Consequently, we force α to stay close to 1 at each step of the algorithm by rescaling15

(R,B) by α. This normalization is equivalent to the χ2 test; hence the ML algorithm
necessarily fulfills the χ2 test.

2.2.4 Observation space diagnostics

With the two previous methods, R and B are confined to the sub-space of diagonal
matrices. But the errors on the observations are known to be correlated through the H20

operator errors amongst others. Errors on the background are also correlated, mainly
because of shared errors in the inventory methods and in flux process modelling. We
carry out in this section an algorithm to produce a setup of non-diagonal matrices R
and B.
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Design on R:

Following Desroziers et al. (2005), a procedure is available to tune the observation
error covariance matrix R. Still assuming the linearity of the problem, the innovation
vector follows the relation below:

E [do
a(do

b)T ] = R (7)5

with the innovation vectors d
o
a = y

0 −Hx
a and d

o
b = y

0 −Hx
b

We test an iterative algorithm similar to Desroziers’ scheme using the instruction for
every k:

R′
k+1 = E [do

a(do
b)T ]

Rk = χ2(R′
k+1,Bk) ·R′

k+1

Bk = χ2(R′
k+1,Bk) ·Bk

(8)

The expectancy is calculated with a Monte Carlo estimation with 50 000 perturbations10

of y0 and x
b with Gaussian distribution of covariances Rk and Bk . χ2(R,B) stands for

the χ2 criterium associated to the tuple (R,B).
The calculated expectancy matrix R′

k+1 is not necessarily symmetric semi-definite
positive. But a simple diagnostic on the spectrum shows that after 50 000 perturbations,
only less than 0.1 % of the eigen values are negative. We then rebuild a symmetric15

semi-definite positive matrix by correcting the R′
k+1 spectrum. We start the algorithm

from two different tuples of matrices: the one which maximizes the log-likelihood, and
another with the same B but with R = Id . The convergence is slower with the second
starting tuple but the two optimum tuples are similar. At each step, R′

k+1 and Bk are
normalized to ensure the χ2 criterium.20

Calculating a matrix expectancy of dimension 5000×5000 with only 50 000 Monte-
Carlo perturbations is very unstable. Additionally, the perturbations on the observations
are generated from y

0, whereas it should be computed from the unknown perfect un-
perturbed observation vector ỹ. Hence, the closer Rk gets to the optimal value, the
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weaker is the approximation with y
0. For this reason, after a few steps of improvement

of the log-likelihood value, the algorithm quickly diverges. We then keep the last step
before divergence as an approximation for the true covariance matrices tuple.

We control the relevance of this algorithm by testing the tuple (R,B) into the log-
likelihood function valid for both diagonal and non-diagonal matrices. The calculated5

value (−480) is significantly higher than with the diagonal tuple calculated in Sect. 2.2.3
(∼ −15 000). The non-diagonal tuple is then closer to the global maximum of the log-
likelihood function compared with the diagonal one.

Design on B:

A similar approach exists that constraints the B covariance matrix.10

E [da
b(do

b)T ] = HBHT (9)

The expectancy is still based on a Monte-Carlo estimation. We use the non-diagonal
covariance matrix R calculated above as a starting point, with the associated B con-
strained by the χ2 criterium. This algorithm does not give a direct estimation of B. The
instability is then even sharper than for the computation of R. We then do a unique itera-15

tion of the algorithm to get an evaluation of the potential optimal correlation coefficients
in B.

3 Results

We run the three algorithms described in Sect. 2.2 to infer a best guess for the tuple
(R, B) of the error covariance matrices. In the following section, we describe the shape20

of the calculated matrices in regard to known physical patterns of errors. We will re-
fer to the diagonal tuple computed from the Desroziers’ Scheme (resp. the Maximum
of log-Likelihood) as (RDS, BDS) (resp. (RML, BML)); the Non-Diagonal tuple from the
observation space algorithm will be referred as (RND, BND)
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3.1 Patterns in the error variances for the 3 methods

In Fig. 2, the variances of the observation errors in the 3 methods are compared for the
period after the leak start. For the ML and ND algorithms, the variances of the observa-
tion errors are averaged along the same subspaces as in DS method (see Sect. 2.2.2)
to be comparable. Most of the observation errors remain within the same interval (5–5

20 ppb) with the 3 methods. Their magnitudes are comparable with other studies which
built the errors from physical considerations (e.g., Bergamaschi et al., 2010). At most
sites (GIF, JFJ and KAS excepted), the 3 methods attribute averaged observation er-
rors that follow the same order: DS>ML>ND. The errors from RML are in average 34 %
smaller than the errors in RDS. The error variances in RND are calculated to be even10

smaller (54 % less than in RDS in average). In the Bayesian unbiased framework, the
inversion with non-diagonal results is then expected to be more constrained by the ob-
servations than the others. The 3 methods share the same day/night patterns at all sites
apart from the 3 mountain sites (JFJ, KAS and PUY) and the two sites BIS and BIK:
compared to the errors during the “night” (5:00–0:00 a.m. plus 0:00 a.m.–12:00 p.m.),15

the errors during the “day” (12:00–5:00 p.m.) are 25 % (resp. 23 % and 31 %) smaller for
the DS (resp. ML and ND) method. The errors are consistently smaller when the PBL
is well developed, i.e. when the local emissions are quickly mixed in the atmosphere,
and hence when the CTM more realistically simulates the atmospheric concentrations.
At the mountain sites (JFJ, KAS and PUY; see Table 1), the rough DS method does not20

calculate the same patterns than the two others; this primarily suggests that, for the
sites mostly located in the free troposphere in spring (characterized by synoptic vari-
ability), the averaging on “day” and “night” intervals is less relevant than for the sites
influenced by the PBL. Additionally, in mountain sites, the low-precision DS method
disagrees with the two others because this method cannot compute the errors that oc-25

cur when the PBL height is close to the site altitude and when polluted air masses can
be locally uplifted to the site. On the opposite, the two other methods which handle
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individually each observation can detect this phenomenon and take it into account in
the error modelling, giving averaged errors that are consistent with each other.

Concerning the background, the attributed errors partly balance the confidence at-
tributed to the observations. For the two comparable diagonal algorithms (ML and DS),
the ML method better optimizes the use of the observations than DS does on large5

subspaces. To avoid corrections dominated by the observations, background errors
7 times smaller than for the DS algorithm are then computed by the ML algorithm.
On the other hand, no clear behaviour appears with the tuple (RND, BND), compared
with the two others. While the errors on the observations are on average smaller than
the ones calculated with the ML method, the background errors with the ND method10

are of the same magnitude as the DS ones, i.e. higher than the ML ones. With non-
diagonal covariance matrices, the variances by themselves are insufficient to identify
all the properties of the errors. The non diagonal elements in RND and BND, character-
izing correlations of errors, must be taken into account to understand the error patterns.
Strong negative (resp. positive) correlations are expected to increase (resp. decrease)15

the average confidence in the background. We analyse the effects of these correlations
more precisely in Sect. 3.3.

3.2 Temporal variability and diurnal cycle of the observation errors

We here focus on the hour-by-hour variability of the observation errors; by way of con-
sequence, the DS method is not commented in this section. The variability in the vari-20

ances is comparable in RML and RND (r = 0.89; linear regression coefficient: λ = 0.97).
While no physical assumptions have been added to the algorithms, we notice that the
observation errors follow known physical patterns for both algorithms. One of these is
the source of errors related to the PBL height mis-estimation and the vertical mixing
parametrization in CTMs. In Table 2, we compute for each station the linear correla-25

tions between the modelled PBL heights and the calculated error variances for ML
method. We also compute a logarithm transformation that shows that some PBL errors
follow an exponential decay: exp(−hPBL/h0), with hPBL the modelled PBL height and
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h0 a reference height. The magnitude of these calculated reference heights is 1000 m
for the sites with significant correlations; above this reference threshold, the PBL can
be approximately considered as well mixed. Logarithmic correlations are of the same
magnitude in ND method at the sites with small p-values (p < 10−2; e.g., logarithm
correlation: at CRP r = −0.64, at GIF r = −0.57, at MHD r = −0.37). The logarithm5

correlations are stronger than the linear ones in the sites where the p-value is small
(< 10−2), except at RGL where the linear fit is better. For these sites (including RGL),
we approximate the errors by the exponential fit and estimate the relative contribution
of the PBL error as the ratio between the fit error and the total error. The PBL error
then seems to account for about half of the total error. The strong correlation between10

the PBL height and the errors on the observations can also be partly related to sys-
tematic errors (especially during the night) in the CTM, which are difficult to distinguish
from random ones. The systematicity of some errors can conflict with the hypothesis
of random unbiased errors in the inversion framework: ε = y

0 −Hx ∼N (0,R) in the
unbiased framework would become ε ∼N (η,R′) with a systematic bias η. They have15

to be taken into account and our method can provide an efficient tool to detect them in
order to potentially fix them before the inversion.

In Fig. 3, the statistics (median and interquartile gap) of the errors are displayed by
layers of 250 m for hPBL for the sites with significant correlations as calculated in Ta-
ble 2 on the one side and for the mountain sites on the other side. The anti-correlation20

between hPBL and the errors is confirmed and more complex behaviour appears for
mountain sites. For example, the relation to the PBL is inverted for the Kasprowy moun-
tain site (KAS; see Fig. 3): the site is set on the summit of a mountain ridge in vicinity
of a region with high CH4 emissions due to coal mining. The resolution of the model
makes the simulation of the upward winds from the valley impossible. Then, an ob-25

servation can be noticeably influenced by polluted air masses from the PBL while the
model considers the observation to be in the free troposphere, and inversely; that ex-
plains the peak in errors when the modelled hPBL is close to the altitude of the site in the
CHIMERE model: ∼ 1400 m above the local pixel orography level. The mountain site
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at Puy-de-Dôme (PUY) appears to pose the same problem in other studies (Broquet
et al., 2011); but in the particular meteorological situation of our window of inversion (2
weeks in spring), the issue does not clearly appear.

Another identified source of errors (not shown in the figures) is the temporal and
spatial mismatches which can occur in situations of steep gradients of concentrations5

when the air masses are changing, like in frontal systems. Air mass changes occur 0
to 3 times during each inversion window of two weeks at the sites. The quantification
of these errors is uncertain during night-time since it is difficult to separate the errors
related to the PBL and the errors due to the gradients (e.g., mismatches or numerical
diffusion). So, we focus on air mass changes occurring during daytime. In these cases,10

the computed errors exceed 4 times the mean error during daytime; the increased er-
rors are then directly attributable to the inability of the model to simulate high-resolution
phenomena. The relationship between the observation errors and the temporal evolu-
tion of the 3-D meteorological fields can be complex; our method allows a relevant
estimation of the errors specifical to the meteorological conditions at each site.15

3.3 Correlations in the observation errors

If we focus on the non-diagonal terms of RND, a large part (64 %) of the correlation
coefficients are very large (|r | > 0.9 with even positive and negative repartition). Strong
positive and negative correlations mark a redundancy of the information provided by
the observations. We then group the available observations into classes of redundant20

information. Amongst each class, we chose |ri ,j | > 0.9 between every tuple (i , j ) of ob-
servations. Following this criterium, we divide the set of observations into 625 balanced
classes, figuring 625 independent pieces of information given by the observations. This
figure can be compared to other studies which filter part of the data before the assim-
ilation. For example, Bergamaschi et al. (2010) proposed to keep one observation per25

day and per site only, to avoid an over-constraining due to spatial and temporal correla-
tions; in our case, it would have meant keeping 195 observations (i.e. 3 times less than
the result of ND algorithm). Our method suggests keeping more independent pieces
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of information but the amount remains low compared to the total set of observations
(∼15 % of the ∼5000 observations). Then, in our system with drastically reduced state
space dimension, the network over-constrains the fluxes; but this result is very depen-
dent of the analytical framework with aggregated regions and should be subdued in
full-resolution configurations.5

The temporal structure of the error correlations is shown in Fig. 4. At each site, the
mean time auto-correlations of the errors with themselves at lags 0 to 48 h are calcu-
lated. The average auto-correlations are computed with starting hours from 12 p.m. to
19 p.m. only; the patterns for the other hours of the day are the same but with mean
correlations that are closer to 0. It appears that the absolute correlations quickly de-10

crease below |r | < 0.25 in about 5 hours at each site. In Fig. 4, we display the sites with
a day-to-day significant correlation. For these sites, we observe a maximum of corre-
lation at 24 h, related to processes with a diurnal cycle. But this is not necessarily the
PBL diurnal cycle since every site with strong correlations between the PBL height and
the errors does not exhibit the 24-h peak. The 24-hour periodic correlation could be15

related to the surface temperature diurnal cycle for instance or any other diurnal cycle
in the atmospheric state.

A spatial structure of the observation covariances could also have been expected
(Lauvaux et al., 2009) at sites close to each other such as GIF and TRN, which are
about 100 km distant. But the calculated RND covariance matrix does not exhibit any20

global spatial patterns. Distant observations can be strongly correlated, but the domi-
nant underlying process is likely related to the PBL height issue.

3.4 Correlations in the background errors

3.4.1 The lateral boundary conditions (LBC)

In BND, the components related to the LBC are found to be independent (|r | < 0.1)25

from the ones of the aggregated fluxes. Amongst the LBC, two independent groups of
regions appear. Within each group, the components are very strongly correlated or anti-

3755

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/13/3735/2013/acpd-13-3735-2013-print.pdf
http://www.atmos-chem-phys-discuss.net/13/3735/2013/acpd-13-3735-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
13, 3735–3782, 2013

Error statistics for
atmospheric

inversion

A. Berchet et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

correlated (|r | > 0.9) with the other components of the group and are independent from
the ones not in the group. About 10 % of the LBC cannot be attributed to any of the two
groups. In Fig. 5, the boundary regions have been sorted accordingly to these groups.
The colours in the figure denotes this classification: blue and red for the two groups and
green for the few remaining boundaries with mild correlations with other regions. The5

boundaries have also been sorted according to the influence of the assimilation of the
observations on them. We quantified this influence by using the diagonal elements of
the matrix KH (see Eq. 2 and 3 in Sect. 2.1.1) which are necessarily in the interval [0,1].
We highlight the regions strongly influenced (KHi ,i > 0.9; “+” sign) against the others
(“o” sign). Then it comes that the regions unseen (resp. constrained) by the inversion10

are strongly correlated with each other and not correlated with the constrained (resp.
unseen) regions.

Drawing conclusions about the signs of the correlations between the boundary com-
ponents is more difficult. Within the ”unseen” group, none of the three algorithms can
retrieve information about these components of the state vector since the correspond-15

ing elements in H are negligible compared to the others. Thus, the positive and negative
correlations are likely to be numerical artifacts in the algorithms. For the constrained
group, a large negative correlation between two regions means that the prior mean
contribution of the two regions is well constrained. Equivalently, the two LBC compo-
nents are well known on average but the two individual contributions are not separated20

from each other; this may indicate that the contributions are similar in magnitude with
simultaneous transitions observed at the sites, hence not discernible. On the oppo-
site, a positive correlation reveals a constraint on the difference of the contributions,
hence on the spatial and/or temporal gradients in the LBC. For example, for two LBC
regions positively correlated and upwind the observations, if a clear transition between25

the contribution of one region and the other is observable from the network, the gra-
dient between the two will be well fixed, whereas the total balance will be unclear and
biased by all the other components of the state vector. The sign of the correlation then
mainly depends on the meteorological conditions at the site and of the air mass history
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when it is observed. It can be very variable and virtually unpredictible with a general
formula. Our method gives an unbiased estimation of the issue.

3.4.2 The aggregated emissions

The error correlations for the aggregated regions of emissions are displayed in Fig. 6.
Negative correlations occur only between regions that are not upwind any sites (i.e. in5

Fig. 6, for the period after the leak start: “ATL”, “SCA”, “SE”, and “SOU”; see Fig. 1;
e.g., r = −0.36 between “SOU” and “SE”). As for LBC, interpreting the correlations
between unconstrained regions is hazardous. On the opposite, the positive error corre-
lations between the regions close and upwind the sites (for example, r = 0.45 between
the neighbouring regions NSS and MGP) denote the confidence in the background flux10

gradients amongst these regions but not necessarily in the total flux balance. The confi-
dence in the prescribed gradients in emissions is consistent with the methodology used
to build the inventory maps. Activity maps by sectors are convolved with emission fac-
tors. In Europe, the declared activity is considered reliable. Then, the emission factors,
hence the overall magnitude of the emission, is a more critical source of uncertainties15

than the spatial distribution.

4 Flux inversion: the Elgin leak case

From here, we use the optimized tuples of matrices to actually compute the inversion
with Eqs. (2) and (3).

4.1 Physical relevance of the inverted fluxes20

In this study we have selected a domain for the simulations which spans over a region
much bigger than the network coverage area. This choice is expected to decrease the
errors due to the coarse approximations made on the LBC. But, in return, we do not
expect the results to be accurate on the outer regions because of the inability of the
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inversion to either constrain unobserved regions, or distinguish the contributions from
these regions and from the LBC when they are all upwind the observations.

The three methods rely on the assumption of the Gaussianity of all the errors. In
particular, this assumption theoretically allows surface fluxes to be negative. With the

optimized state vector xa calculated with (RDS, BDS), increments (defined as
(xa)j−(xb)j

(xb)j
)5

of −150 % and below appear on the emissions in regions close to the sides of the
domain. Hence the inversion generates strongly negative surface fluxes, due to inac-
curate separations between emissions and boundary condition signals. Net surface
uptake is physically not acceptable for CH4 in Europe where anthropogenic emissions
are largely prevailing (Bergamaschi et al., 2010) compared to soil uptake. Then, de-10

spite its very low-computation cost, a simple DS can not be applied unless one uses it
on a larger number of subsets and with additional physical constraints.

In regard of the LBC issue, the two others algorithms (ML and ND) seem reliable.
The ML algorithm does not compute increments over 35 % for these regions and keeps
posterior uncertainties compatible with a 0 % increment (i.e. no change from the prior15

flux). The non-diagonal tuple (RND, BND) leads to increments incompatible with the
positivity of the fluxes in some of the outer regions but in an acceptable range (> −10 %)
considering the posterior errors in the matrix Pa for these regions.

Moreover, the diagonal algorithm DS and ML do not compute any significant pos-
terior correlation (r2 < 0.1) between outer regions and the LBC; inversely, the ND tu-20

ple explicitly estimates strong posterior correlations for these components (numerous
correlation coefficients r2 > 0.5). Hence, ND method can account for the erroneous
separation from the outer emissions and the LBC.

4.2 Using the optimized tuples (RND, BND) for flux inversion

The non-diagonal tuple reliably takes the LBC ill-separation into account. We then use25

the inversion carried out with this tuple to analyse the posterior fluxes on the regions
close to the network that are better constrained than the outer ones. The increments
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for the two periods (15-day long each) before and after the leak start are shown in
Fig. 7. The posterior errors are not displayed because they do not exceed 1 % for most
regions (maximum of 1.1 % for “NSN” region before the leak start). Before the leak
start, the total emissions from these inner regions (“NSS”, “NSN”, “MGB”, “FRA” and
“CTR”) are corrected from 52 455±16 838 t d−1 to 51262±1999 t d−1, that is to say an5

increment of −2.3±3.9 %. After the leak start, the correction to the inner budget is from
52 455±12 431 t d−1 to 48 062±48 t d−1, i.e. an increment of −8.4±0.1 %.

The inversion of the CH4 emissions over the inner regions suggests an over-
estimation in the inventories which actually were not designed for year 2012 but for
2008. The decrease in the emissions by 3200±2000 t d−1 (i.e. −6.1±3.8 % reported10

to the prior total balance) between the two inversion windows remains consistent with
the uncertainties of the inventories and can be explained by the typical variability of
the emissions. But one should recall that the results are averaged on aggregated re-
gions, whereas the areas of influence of the sites do not necessary overlay the whole
region (see Sect. 5.1). The inversion corrects simulated concentrations, not consider-15

ing the implications in regards to absolute emissions. The increments can be amplified
and suffer to aggregation errors and sampling heterogeneity (Kaminski et al., 2001).
More critically, the aggregation errors cannot be recovered from our methods since the
operator H and the covariance matrix B are aggregated before the algorithms.

Focusing on the estimation of the CH4 release from the Elgin platform, the inversion20

suggests an increase in the regional emission where the leak occurred (“NSS” region)
of +1472±30 t/d (the errors on the difference is calculated assuming that the two
inversion windows are independent). But the two parts of the North Sea are expected
to be ill-distinguished by the system, as confirmed by a posterior correlation coefficient
r of −0.78 between the errors in the two regions after the leak start. Then the flux that25

can be attributed to the leak is defined as the difference of the emissions after and
before the leak start over the whole North Sea area. Our inversion computes a flux of
+406±33 t d−1. The inversion detects an increase of emissions from the direction of
the leak, but fails to unambiguously affect the increased flux to the proper region. The
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figure we compute is of the same magnitude (3 times higher) than the estimation given
by the operator and does not exceed 18 % of the background emissions related to oil
and gas extraction in the North Sea.

Our results also reveal a high dependency to the meteorological situation during
an inversion window. The ratio between the increment and the posterior errors on the5

emission budget in the inner regions is very different for the two periods (∼ 1 before and
� 1 after the leak start). The reconstructed error on the total budget largely depends on
the correlation coefficients in Pa. For the period before the leak start, most posterior cor-
relations are large and positive (r > 0.9). The gradients are then well constrained while
the total stays uncertain. On the opposite, after the leak start, neighbouring regions10

exhibit negative correlations by pair (e.g., “NSN”–“NSS”, “MGP”–“GBT”). The assimi-
lation of the observations cannot separate the contribution from these close regions,
but it leads to a good reduction of the error on the total balance. These two different
behaviours may be related to different synoptic regimes during each inversion window:
before the leak start, an anticyclone was laying on central and western Europe; after15

the leak start, air masses coming from North Europe vented the domain. The difference
in the results between the two periods and the large corrections on the error matrix of
the state vector confirms that our algorithms do not redundantly assimilate data (during
the inversion and before when optimizing the covariance matrices).

5 Discussion20

5.1 Limitations and hypothesis probation

All the results depend on strong statistical and physical hypotheses that may not all be
robust. First, we show in Sect. 3.1 that the assumed Gaussian errors of the background
can produce physically inconsistent inverted fluxes. Adding Lagrangian correcting fac-
tors (e.g., Göckede et al., 2010) to the cost function (Eq. 1) can ensure physically con-25

sistent fluxes. But that would alter the algebraic properties of the problem and make the
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implementation of our methods more complex. With regions that act as buffers against
the uncertainties on the LBC, the ND methods proved to acceptably deal with the issue.

Second, any CTM suffers to weaknesses and errors in its parameterizations and nu-
merical scheme. The induced errors can be systematic and not only random, as sug-
gested in Sect. 3.2. They should then be considered as a bias η in the observational5

errors ε = y
0 −Hx ∼N (η,R′). Further investigations on the effects of the parameteri-

zations, the resolution and the inputs to the CTM shall be carried out to quantify and
fix as much as possible the bias η.

Third, aggregating fluxes within bigger regions implicitly implies full correlations of
the errors on the background in each region. Kaminski et al. (2001) studied the issue10

and found potential errors of the same magnitude as the fluxes themselves. A better
choice of the resolution and of aggregated regions considering the prior fluxes and
the transport patterns (e.g., Wu et al., 2011) during the window of inversion should
significantly improve the results of the methods.

Despite these weaknesses in our methods, the optimal tuple of covariance matrices15

gives better results than with a tuple built on expert considerations: these expert-built
tuples which are most of the time diagonal are either similar to (RDS,BDS) that causes
inconsistent negative CH4 fluxes, or the observation errors are enhanced to reduce
their impact on the inversion; but in this latter configuration applied to our inversion
windows, the corresponding inverted fluxes remain close to the prior ones and the20

flux uncertainties are not noticeably reduced. Our objectively calculated tuple gives
better inversion results, with reduced posterior uncertainties. Moreover, some of the
computed error patterns are generic and are transferable to other larger systems. In
this study, we chose a particular representation of the complete full-resolution state
vector. Most errors represented by the covariance matrix R are independent of this25

representation (Bocquet et al., 2011). As a consequence most results on R will remain
valid in the framework of a full-resolution state vector. The recovery of the errors of the
non-aggregated background vector are more ambiguous and only large patterns could
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be inferred for finer resolutions. Additional hypotheses must be done on the shape of
the full-resolution background errors to deduce their values from the aggregated matrix.

5.2 Implications for data selection

The framework we chose allows the explicit computation of the sensitivity of the inver-
sion to each observation. We follow Cardinali et al. (2004) and calculate the influence5

matrix, which gives the effect of a small change of y0 on Hx
a: S = (R+HBHT )−1HBHT .

For every observation y
0
j , high observation errors reduce the contribution of the obser-

vation j to the total inversion. On the opposite, high local contributions tend to enhance
the amount of information the inversion can extract from a single observation. The sen-
sitivity matrix S encompasses both these compensating effects. In Fig. 8, each site is10

colored according to its contribution to the inversion, calculated by adding all the di-
agonal terms of S associated to the site. KAS and JFJ have contributions 2.5 times
higher than the average contribution, related to their situations in the free troposphere
and the constraints they give to the LBC. As a site filling a gap in the observations, PUJ
also has a strong contribution (1.5 times the average). On the other hand, GIF, TTA15

and PUY are very close to the core of the network. The algorithm attributes negligible
contributions to these sites in favour of the other sites. Totalizing the influence of the
whole set of observations, we get the figure of about 50 % of the posterior state vector
fixed by the observation; the other half comes from the background.

Usually, inversion systems assimilate only a few hours of observations per day, while20

efforts are made to monitor the atmospheric composition continuously. For example,
Bergamaschi et al. (2010) chose to average 3 hours of observation per day and per
site (bands in Fig. 9a). This choice is justified by the confidence given to the model
during the afternoon when the vertical mixing in the PBL is strong. Flagging out the
other data may be acceptable when inquiring into patterns at the continental scale, but25

one needs more information at the local and regional scales. In Sect. 3.1, we show that
the observation errors during the day are only 30 % lower than during the night. This
small difference suggests that night observations can still reasonably be assimilated.
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In Fig. 9a, the sensitivity by site of each hour of the day is computed. Apart from
MHD, the usual intervals of selected data (green band for the plain site, blue for the
mountain ones) do not exhibit significantly higher sensitivity in the inversion system
than the other hours of the day. This selection then leads to a global loss of more than
85 % of information: the sum of the diagonal elements of the sensitivity matrix S related5

to the observations in the selection band reaches 15 % of the total trace. The mountain
stations are known to suffer the issue of ascendant polluted streams from the PBL as
developed in Sect. 3.2. Our method implicitly automatically filters out these air masses.
Then, the usable observations are not confined to the middle of the night. Moreover,
concerning the plain sites (see Fig. 9b), the selected band corresponds to the minimum10

of sensitivity, that is to say the data that least constrain the local and regional fluxes we
inquire into. The most influential observations are situated just before the beginning of
the day, when the high errors of the night start decreasing and the local contributions
are still significant. The end of the afternoon (at about 6 p.m.) is also more influent
that the middle of the day, but less than early morning. One should expect a better15

confidence in late afternoon results from the CTM, when the vertical mixing is still
active (though reduced), than early morning.

We emphasized in Sect. 3.2 the diurnal patterns of the errors on the observations.
Further efforts have to be made on the modelling of the PBL height and the vertical
mixing to ensure better quality of simulations at the end of the night. The results of20

our method would then allow a better use of the observations for local and regional
inversions.

6 Conclusions

We inquired into the possibility of estimating precisely the covariance matrices of
the errors on the observations and the background (R and B). Optimal matrices are25

needed in the Bayesian inversion framework, especially for regional studies. We used
algorithms developed in a theoretical framework but too complex to be tested in full-
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resolution systems. The translation to a regional configuration was carried out by sim-
plifying the system and reducing the total size of the covariance matrices to allow an
algorithmic tuning of R and B.

We tested 3 algorithms of growing complexity (and computation costs) to estimate
the optimal tuple (R, B). Unlike other studies, which make strong physical assumptions,5

such as isotropic spatial correlations in the observation errors or temporal decay of the
correlations, we minimized the number of assumptions to keep a better objectivity in
our results. All the patterns of errors were then recovered specifically to the window of
the inversion and to the system we focused on.

Amongst other noteworthy patterns, our algorithms retrieved the errors due to the10

mis-estimation of the planetary boundary layer height in weather models, i.e. large
errors during the night and lower during the day when the CTM reproduces the atmo-
spheric transport better. This source of errors contribute in a large part (50 % in most
plain sites) to the diurnal variability of the observation errors and also causes significant
temporal correlations within a 24-h period.15

Additionally, our approach does not require a prior filtering of the observations we
could consider as ill-simulated by the model. All the available observations can then
be assimilated in the inversion system and not only the ones during early afternoon.
Our study points at necessary efforts to better simulate the atmospheric behaviour
during the late night when the observations seem to have the biggest impact on the20

inversion results. Late afternoon observations were also calculated to have a significant
influence on the inversion results. A cautious implementation of these observations into
an inversion system is expected to enhance the efficiency of the system.

The prospects from this work will be to mitigate the uncertainties in our methods
and reduce the computation costs. In the framework of an inversion system with full25

temporal and spatial resolution, when variational algorithms are necessary to compute
the optimal fluxes, our general method may overburden the computer and memory
capacity. Indeed, the limiting factor in our algorithms comes from the diagonal maxi-
mization of the log-likelihood needed to compute the non-diagonal optimal tuple. The
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maximizing algorithm induces computation costs proportional to the dimension of the
state space while full-resolution state space dimension is of several orders of magni-
tude larger than our reduced state space. But the method could be tested in systems
of intermediate complexity to infer additional knowledge on the statistics of the errors.
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Table 1. Sites characteristics. The altitudes of the sites are given as m above sea level (asl) and
the inlet height is in m above ground level (a.g.l.). The sites are grouped into three categories
relatively to the topography and their close environment: rural (R), mountain (M), coastal (C).
(*) These sites are recent and still do not have related publications. (1) Observatoire Pérenne
de l’Environnement.

Station ID Location Inlet Site Reference
Lon Lat Alt height type
(◦E) (◦ N) (m) (m)

Bialystok BIK 23.0 53.2 183 300 R Popa et al. (2010)
Biscarosse BIS -1.2 44.4 120 47 C Ahmadov et al. (2009)
Carnsore
Point

CRP -6.4 52.2 9 4 C (*)

Gif-sur-
Yvette

GIF 2.2 48.7 160 7 R Lopez et al. (2012)

Junfraujoch JFJ 8.0 46.6 3580 5 M Reimann et al. (2008)
Kasprowy KAS 19.6 49.1 1989 0 M Necki et al. (2003)
Mace
Head

MHD -9.9 53.3 25 15 C Ramonet et al. (2010)

Obs.
Pér.
Environ.(1)

OPE 5.5 48.6 390
10
50
120

R Ramonet et al.

Puijo PUJ 27.0 62.0 232 84 R Ramonet et al.
Puy-de-
Dôme

PUY 3.0 45.8 1465 10 M Lopez (2012)

Ridge
Hill

RGL -2.5 52.0 199
45
90

R (*)

Trainou TRN 2.11 48.0 131

5
50
100
180

R Lopez et al. (2012)

Angus TTA -3.0 56.6 254 222 R Vermeulen et al. (2005)
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Table 2. Linear and logarithmic correlations (r) between calculated error standard deviation
and the simulated PBL height (given by ECMWF). At each site, the calculation of r and the
p-value are carried out with R from ML method. Error contribution (µ) for log-regression is the
mean ratio between the fit and the computed errors, when the correlation is significant.

Stat
Linear regression Log-regression

r p r p µ

BIK 0.10 0.06 0.8 0.16 –
BIS 0.13 0.01 0.11 0.04 –
CRP −0.33 2.6×10−10 −0.60 1.7×10−35 60 %
GIF −0.34 1.3×10−8 −0.50 4.3×10−18 50 %
JFJ −0.04 0.5 −0.05 0.36 –
KAS −0.01 0.8 −0.10 0.08 –
MHD −0.41 2.9×10−15 −0.47 2.1×10−19 52 %
OPE −0.31 5.6×10−22 −0.36 1.5×10−28 54 %
PUJ −0.04 0.5 0.05 0.33 –
PUY 0.06 0.5 0.01 0.84 –
RGL −0.17 9.1×10−6 −0.12 0.002 58 %
TRN 0.21 7.9×10−11 0.02 0.59 –
TTA −0.64 2.1×10−22 −0.72 2.3×10−29 41 %
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Fig. 1. Spatial extension of the simulations with the CTM CHIMERE: observation sites marked
by yellow diamonds and white legends; the leak position in the northern part of the North Sea is
pointed by the green pentagon. The fluxes, the spatial distribution of which is interpolated from
EDGAR v4.2 inventory, are aggregated by regions figured by the coloured area. The red edges
of the domain denote the spatial distribution of the lateral boundary condition components.
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Fig. 2. Comparison of the observation errors calculated by the 3 methods presented in Sect. 2.2
for the inversion window after the leak start (25/03/2012). The errors are averaged on two
periods each day: “day” (12:00 to 5:00 p.m.) and “night” (the remaining hours of the day) for
comparison to DS method. Values out of the graph window are printed on the matching bar.
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Fig. 3. Statistics of the errors projected along ECMWF-simulated PBL height for ML method:
median and inter-quartile gap per 250m-high layer. (Left) sites with strong correlations as cal-
culated in Table 2; not displayed site RGL exhibits the same patterns but with higher errors.
(Right) Mountain sites with influence from the PBL less prevailing. Dashed lines refer to the
station altitude in the model; JFJ is above the maximum simulated PBL height.
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Fig. 4. Mean temporal auto-correlation. For each site, are figured the average correlations of
all the observations from 12:00 to 7:00 p.m. with the following 48 h. Only the sites with a local
maximum at 24h are figured: the 6 sites with strong correlation with the PBL (in Table 2) and
KAS mountain site. Solid lines for rural sites; dashed (resp. dotted) lines for coastal (resp.
mountain) sites.
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Fig. 5. Correlations between the errors on the LBC elements of the background vector for the
two weeks after the leak start, calculated from BND. Dates are the starting dates of every 3-day
window of uniform constant boundary concentrations. The bottom boundaries span from the
surface to ∼700 hPa; up is the remaining part of the vertical direction. Red and blue highlight 2
classes of boundaries very strongly correlated (|r | > 0.9). Green boundaries are not significantly
correlated to any other regions. “+” (resp. “o”) signs corresponds to boundaries strongly (resp.
lightly) influenced by the inversion (criterium of selection described in Sect. 3.4.1).
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Fig. 6. Correlations between the errors of the background aggregated regions for the non-
diagonal matrix BND for the two weeks after the leak start. Refer to Fig. 1 for the region names,
location and extension.
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Fig. 7. Increments on the emissions for the regions not contiguous to the boundaries in t d−1

(large bars) and in % (thin bars) of the initial total with the non-diagonal tuple (RND, BND). The
two temporal windows of inversion are the two weeks before (blue) the leak start and the two
weeks after (red). Acronyms in Fig. 6.
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Fig. 8. Sensitivity of the inversion to each site as the sum of the diagonal elements of the
sensitivity matrix S (details in Sect. 5.2) associated to the site. The figures are normalized by
the total influence of the observations, i.e. the trace of S.
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(a) Diurnal cycle of sensitivity for all sites.

(b) The same as Fig. 9a for 5 plain sites.

Fig. 9. Total sensitivity per site computed for each hour of the day (time UTC). Details on the
sensitivity computation are described in Sect. 5.2. A sensitivity of 1 roughly corresponds to the
constraint on 1 degree of freedom of the system. The green (resp. red) band highlights the
interval of data selection generally used in most global inversion systems for the plain (resp.
mountain) observation sites. Solid lines for rural sites; dashed (resp. dotted) lines for coastal
(resp. mountain) sites.
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