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Abstract 18 

High-ozone events, approaching or exceeding the National Ambient Air Quality Standard 19 
(NAAQS), are frequently observed in the US Intermountain West in association with subsiding 20 
air from the free troposphere. Monitoring and attribution of these events is problematic because 21 
of the sparsity of the current network of surface measurements and lack of vertical information. 22 
We present an Observing System Simulation Experiment (OSSE) to evaluate the ability of the 23 
future geostationary satellite instrument Tropospheric Emissions: Monitoring of Pollution 24 
(TEMPO), scheduled for launch in 2018-2019, to monitor and attribute high-ozone events in the 25 
Intermountain West through data assimilation. TEMPO will observe ozone in the ultraviolet 26 
(UV) and visible (Vis) to provide sensitivity in the lower troposphere. Our OSSE uses ozone data 27 
from the GFDL AM3 chemistry-climate model (CCM) as the “true” atmosphere and samples it 28 
for April-June 2010 with the current surface network (CASTNet sites), a configuration designed 29 
to represent TEMPO, and a low Earth orbit (LEO) IR satellite instrument. These synthetic data 30 
are then assimilated into the GEOS-Chem chemical transport model (CTM) using a Kalman 31 
filter. Error correlation length scales (500 km in horizontal, 1.7 km in vertical) extend the range 32 
of influence of observations. We show that assimilation of surface data alone does not 33 
adequately detect high-ozone events in the Intermountain West.  Assimilation of TEMPO data 34 
greatly improves the monitoring capability, with little information added from the LEO 35 
instrument. The vertical information from TEMPO further enables the attribution of NAAQS 36 
exceedances to background ozone. This is illustrated with the case of a stratospheric intrusion.  37 

 38 

1. Introduction 39 

 Harmful impacts of surface level ozone on both humans and vegetation is of increasing 40 
concern in areas formerly considered remote. The US Environmental Protection Agency (EPA) is 41 
considering lowering the current National Ambient Air Quality Standard (NAAQS) of 75 ppbv (parts 42 
per billion by volume, fourth highest maximum daily 8-hour average per year) to a value in the range of 43 
60-70 ppbv (EPA, 2012).  Ozone concentrations in this range are frequently observed at high-elevation 44 
sites in the western US with minimal local pollution influence (Lefohn et al., 2001). Although ozone 45 
levels have been decreasing over the eastern US for the past two decades due to emissions controls, 46 
there has been no such decrease in the West except for California (Cooper et al., 2012). Free 47 
tropospheric ozone at 3-8 km altitude over the western US has been increasing by  0.41 ppbv 48 
year-1 during the past two decades (Cooper et al., 2012), which could affect background surface 49 
concentrations in the West (Zhang et al., 2008).  There has been great interest in using satellite 50 
observations of ozone and related species to monitor and attribute background surface ozone 51 
(Lin et al., 2012a; Fu et al., 2013). This capability has been limited so far by the temporal 52 
sparseness of satellite data and low sensitivity to the surface. All satellite measurements so far 53 
have been from low Earth orbit (LEO). Here we show that multispectral measurements from a 54 
configuration designed to represent the best current estimate of the NASA Tropospheric 55 
Emissions: Monitoring of Pollution (TEMPO) geostationary satellite mission over North America, 56 
scheduled for launch in 2018-2019, can provide a powerful ozone monitoring resource to 57 
complement surface sites, and can help to identify NAAQS exceedances caused by elevated 58 
background.  59 
 The North American background is defined by the EPA as the surface ozone concentration 60 
that would be present over the US in the absence of North American anthropogenic emissions. It 61 



includes natural sources and intercontinental pollution, and represents a floor for the achievable 62 
benefits from domestic emissions control policies (including agreements with Canada and 63 
Mexico). The North American background is particularly high in the Intermountain West, a 64 
region extending between the Sierra Nevada/Cascades on the west and the Rocky Mountains on 65 
the east, due to high elevation and arid terrain (Zhang et al., 2011). Subsidence of high-ozone air 66 
from the free troposphere can cause surface ozone concentrations in that region to approach or exceed 67 
the NAAQS (Reid et al., 2008). This is not an issue in the eastern US because of lower elevation, 68 
forest cover, and high moisture (Fiore et al., 2002). 69 

Background effects on surface ozone air quality are important to diagnose, as NAAQS 70 
exceedances can be dismissed as exceptional events if shown to be not reasonably controllable 71 
by local governances (EPA 2013). Monitoring of ozone in the Intermountain West is mostly 72 
performed at urban stations designed to observe local pollution and not background influences. 73 
There is a limited network of Clean Air Status and Trends Network (CASTNet; 74 
www.epa.gov/castnet) sites located at national parks and other remote locations, and these have 75 
been used extensively to estimate background ozone and evaluate models (Fiore et al., 2002; 76 
Zhang et al., 2011; Lin et al., 2012b; Cooper et al., 2012). Langford et al. (2009) demonstrated 77 
that transport of stratospheric air contributed to surface one-minute average ozone concentrations 78 
in excess of 100 ppbv in Colorado in 1999. Analysis of ozonesonde and lidar measurements by 79 
Lin et al [2012b] indicates thirteen stratospheric intrusions in spring 2010 leading to observed 80 
maximum daily 8-hour average (MDA8) ozone of 70-86 ppbv at surface sites. Yates et al. (2013) 81 
similarly demonstrated a stratospheric origin for a NAAQS exceedance in Wyoming in June 82 
2012 by using a combination of 3-D modeling, aircraft observations, LEO satellite data, and 83 
geostationary weather satellites.  But the current air quality observing system is very limited in 84 
its ability to (1) monitor ozone at sites prone to high background, and (2) diagnose the origin of 85 
high-ozone events at these sites. 86 

Several chemical transport models (CTMs) and one chemistry-climate model (CCM) 87 
have been used to estimate the North American background including GEOS-Chem (Fiore et al., 88 
2003; Zhang et al., 2011), GFDL AM3 CCM (Lin et al., 2012a,b), CMAQ (Mueller and Mallard 89 
2011), and CAMx (Emery et al., 2012). Values average 30-50 ppbv in spring and summer over 90 
the Intermountain West with events exceeding 60 ppbv. There are large differences between 91 
models reflecting variable contributions from the stratosphere (Lin et al. 2012b), lightning 92 
(Kaynak et al. 2008, Zhang et al. 2011), and wildfires (Mueller and Mallard, 2011; Zhang et al., 93 
2011; Jaffe and Wigder, 2012; Singh et al., 2012). 94 

Geostationary satellites are a promising tool to address the limitations of the current observing 95 
system (Fishman et al., 2012; Lahoz et al., 2012). These satellites orbit the Earth with a 24-h period in 96 
an equatorial plane, thus continuously staring at the same scenes.  Depending on the observing strategy, 97 
they may provide hourly ozone data over a continental domain, while a LEO satellite may offer at best 98 
a 1-day return time. A global constellation of geostationary satellite missions targeted at air quality is 99 
planned to launch in 2018-2019 including TEMPO over North America (Chance et al. 2012), 100 
SENTINEL-4 over Europe (Ingmann et al., 2012), and GEMS over East Asia (Kim 2012; Bak et al., 101 
2013).  102 

TEMPO will measure backscattered solar radiation in the 290-740 nm range, including 103 
the ultraviolet (UV) and visible Chappuis (Vis) ozone bands (Chance et al., 1997; Liu et al., 104 
2005). Sentinel-4 and GEMS will only measure ozone in the UV. Observation in the weak 105 
Chappuis band takes advantage of the relative transparency of the atmosphere in the Vis to 106 



achieve sensitivity to near-surface ozone (Natraj et al., 2011; Selitto et al., 2012a). An observing 107 
system simulation experiment (OSSE) by Zoogman et al. (2011) shows that a UV+Vis instrument in 108 
geostationary orbit could provide useful constraints on surface ozone through data assimilation. 109 

Here we conduct an OSSE to quantify the potential of geostationary ozone measurements 110 
from TEMPO to improve monitoring of ozone NAAQS exceedances in the Intermountain West 111 
and the role of background ozone in causing these exceedances. Our goal is to inform the TEMPO 112 
observing strategy and develop methods for exploitation of TEMPO data. OSSEs have previously 113 
informed mission planning for geostationary observations of atmospheric composition (Edwards et al., 114 
2009; Timmermans et al., 2009; Claeyman et al., 2011;  Zoogman et al., 2011, 2014; Selitto et al., 115 
2014). An important feature of our work here is the inclusion of surface network and LEO 116 
satellite observations in the data assimilation system to properly quantify the added benefit of 117 
TEMPO observations. 118 

Section 2 outlines the OSSE framework including a description and comparison of the 119 
simulation models used, the present and future observing systems considered, the data 120 
assimilation system, and the quantification of the error correlation length scales. Section 3 121 
describes the OSSE results showing improved monitoring of surface ozone across the 122 
Intermountain West from TEMPO observations and improved detection of high-ozone events in 123 
the Intermountain West by data assimilation. Section 4 presents a case study of a stratospheric 124 
intrusion demonstrating the detection of an exceptional ozone event by TEMPO its attribution to 125 
the North American background. Section 5 summarizes the results and discusses future research 126 
directions. 127 

2. Observing System Simulation Experiment (OSSE) 128 

OSSEs are a standard technique for assessing the information to be gained by data assimilation 129 
from adding a new instrument to an existing observing system (Lord et al., 1997). The OSSE 130 
framework involves the use of a model to generate synthetic time-varying 3-D fields of concentrations 131 
(taken as the “true” atmosphere), and the virtual sampling of this “true” atmosphere by the different 132 
instruments composing the observing system for data assimilation. This virtual sampling follows the 133 
observing schedules and error characteristics of each instrument. The virtual observations are then 134 
assimilated in a second, preferably independent model, and the results of the assimilation (with and 135 
without the new instrument) are compared to the “true” atmosphere to assess the value of the new 136 
instrument (Edwards et al., 2009). 137 

We conduct our OSSE for April-June 2010, corresponding to the seasonal maximum in 138 
background ozone over the Intermountain West (Brodin et al., 2010). The observing system includes 139 
the CASTNet surface network, a LEO instrument, and TEMPO. The LEO and TEMPO instruments in 140 
this study represent the best current estimate of future instrument characteristics. The “true” 141 
atmosphere is provided by the GFDL AM3 CCM (Lin et al., 2012a,b). The model used for data 142 
assimilation (“forward model”) is the GEOS-Chem CTM (Zhang et al, 2011); it generates a priori 143 
concentrations at successive time steps to be corrected to the “true” atmosphere by the observing 144 
system through data assimilation. The information provided by the observing system is quantified by 145 
the correction of the mismatch between the “true” state and the a priori. We describe below our OSSE 146 
framework including the simulation models (GFDL AM3 and GEOS-Chem), the observing system, 147 
and the data assimilation system.  148 



2.1 Simulation Models 149 

We use for our “true” atmosphere the GFDL AM3 global chemistry-climate model with 150 
horizontal resolution of 1/2ox5/8o (latitude x longitude) nudged to reanalysis winds (Lin et al., 151 
2012a,b). This CCM was successful in reproducing background ozone variability and exceptional 152 
events in the Western US during the CalNex field campaign in April-June 2010 (Lin et al., 2012b). 153 
This is important because the “true” model should reproduce the characteristics of the 154 
observations relevant to the OSSE. Lin et al. (2012a,b) used GFDL AM3 to investigate the effect of 155 
Asian transport and stratospheric intrusions on surface ozone in the Intermountain West during April-156 
June 2010, and they quantified the ozone background through a sensitivity simulation with  North 157 
American anthropogenic sources shut off. Here we use 3-hourly concentrations archived from 158 
their standard simulation to provide the global 3-D ozone fields of the “true” atmosphere. 159 

Our forward model for data assimilation is  the GEOS-Chem CTM (Bey et al., 2001; 160 
http://www.geos-chem.org) driven by GEOS assimilated meteorological data from the NASA Global 161 
Modeling and Assimilation Office (GMAO). The GEOS-Chem version used here (v8-02-03) was 162 
previously described by Zhang et al. (2011) in a study of background ozone influence on the 163 
Intermountain West during 2006-2008. It covers the North America domain with 1/2ox2/3o 164 
horizontal resolution (10oN – 60oN, 140oW – 40oW), nested within a global domain with 2ox2.5o 165 
horizontal resolution. GEOS-Chem and GFDL AM3 have completely separate development heritages 166 
and use different driving meteorological fields, chemical mechanisms, and emission inventories. This 167 
independence between the two models used in the OSSE is important for a rigorous assessment 168 
(Arnold and Dey 1986). The horizontal resolution of both models (~50 km) is adequate for 169 
characterization of background ozone. 170 

Figure 1 shows the maximum daily average 8-hour (MDA8) ozone concentrations in surface 171 
air for each model, averaged over April-June 2010. GFDL AM3 has higher ozone concentrations than 172 
GEOS-Chem over the US as a whole and over the Intermountain West (bordered region) in particular. 173 
Zhang et al. (2011) previously showed that GEOS-Chem can reproduce ozone concentrations in 174 
the Intermountain West up to 70 ppbv with relatively little error, but cannot reproduce 175 
exceptional events of higher concentrations. GFDL AM3 has a high mean bias but better 176 
simulates high-ozone events than GEOS-Chem (Lin et al., 2012b).  177 

 178 

2.2 Observing System and Synthetic Observations 179 

 Our OSSE simulates the anticipated ozone observing system over the Intermountain West 180 
during operation of TEMPO. This will consist of surface measurements, LEO satellite 181 
measurements, and TEMPO geostationary satellite measurements. As the LEO and TEMPO 182 
instruments are still in mission planning, assumptions must be made for their final 183 
characteristics. For the LEO satellite measurements we assume a future version of the Infrared 184 
Atmospheric Sounding Interferometer (IASI) instrument, IASI-3, that will be launched in 2016 on the 185 
MetOp-C satellite (Clerbaux, 2009). IASI retrieves ozone in the thermal infrared (TIR). We also expect 186 
to have in that time frame UV ozone observations from the TROPOspheric Monitoring Instrument 187 
(TROPOMI), scheduled for LEO launch in 2015 (http://www.tropomi.eu). TIR and UV ozone 188 
instruments have similar vertical sensitivities (Zhang et al., 2010). TIR has the advantage of providing 189 
observations at night that will be complementary to the TEMPO mission. 190 

http://www.geos-chem.org/


 CASTNet provides hourly data for 12 surface sites in the Intermountain West (Figure 1) 191 
that are used for background monitoring (EPA, 2013). Although these sites are sparse, they are 192 
intended to be regionally representative and exhibit significant spatial correlation (Jaffe, 2011). 193 
CASTNet stations outside of the Intermountain West are not used; we assumed they do not 194 
provide useful constraints for the region but it is possible certain California sites might be 195 
exceptions. CASTNet ozone measurements have 2% instrument error (EPA, 2010). There is 196 
additional representation error when assimilating CASTNet data into a model due to the spatial 197 
mismatch between the point where the measurement is taken and the model gridsquare mean to 198 
which it is compared. We find a representation error of 5% for the ~50x50 km2 gridsquare size of 199 
GEOS-Chem, based on the model error correlation length scale (see Section 2.4). During 200 
nighttime the representation error could be much larger due to surface air stratification. Thus we 201 
only assimilate CASTNet data during daytime.     202 

TEMPO and IASI-3 will both be nadir viewing satellite instruments, with retrieval of 203 
vertical concentration profiles to be made by optimal estimation (Rodgers, 2000). If xp is the true 204 
profile, i.e. the vector of true concentrations in an observation column, then the retrieved profile 205 
xp' is related to xp by the instrument averaging kernel matrix A which defines the sensitivity of 206 
xp' to xp (A = 𝜕xp'/𝜕xp ):    207 

xp'=xs+A(xp - xs) + 𝛆    (1) 208 

where ε  is the instrument noise  vector and Sx  is an independent a priori ozone profile used to 209 
regularize the retrieval. 210 

Figure 2 shows typical clear-sky averaging kernel matrices for UV+Vis and TIR retrievals of 211 
tropospheric ozone taken from the Natraj et al. (2011) theoretical study. Also shown are the degrees 212 
of freedom for signal (DOFS) below given pressure levels. The DOFS are the number of independent 213 
pieces of information in the vertical provided by the retrieval, as determined from the corresponding 214 
trace of the averaging kernel matrix. The profile (index 5 from Natraj et al. 2011) used to generate 215 
these averaging kernels has moderate ozone (58 ppbv), moderate temperature contrast, and an 216 
intermediate viewing geometry, making it consistent with conditions in the Intermountain West. 217 
The assumed Vis surface albedo may be lower than the actual albedo which would result in an 218 
underestimation of TEMPO sensitivity to near-surface ozone. The UV+Vis spectral ranges (290-219 
340 nm, 560-620 nm) and spectral resolution (0.4 nm) assumed by Natraj et al. (2011) are 220 
comparable to the spectral ranges (290-490 nm, 540-740 nm) and spectral resolution (0.6 nm) 221 
planned for TEMPO. The TEMPO instrument is still under development and thus does not have 222 
its characteristics fully finalized; Natraj et al. (2011) gives the published best estimate of 223 
TEMPO ozone sensitivities. We expect TEMPO ozone sensitivities to be similar to UV+Vis 224 
sensitivities from Natraj et al. (2011). The additional near-surface information provided by the 225 
UV+Vis combination is consistent with previous work using SCIAMACHY data (Selitto et al., 226 
2012b). 227 

We generate synthetic geostationary observations from the GFDL AM3 “true” 228 
atmosphere by sampling daytime vertical profiles over land in the North American domain with 229 
the averaging kernel matrix given in Figure 2. Acknowledging that the actual configuration of 230 
TEMPO is still under development, we henceforth refer to these synthetic geostationary 231 
observations as TEMPO. TEMPO observations over the ocean are not included as the planned field 232 
of regard for the mission includes very little ocean and because the clear ocean surface is too dark for 233 



Vis retrievals. We similarly generate synthetic LEO IASI-3 (henceforth LEO) observations over the 234 
North American domain twice a day (local noon and midnight) with the averaging kernel matrix given 235 
in Figure 2. These TIR measurements are intended as representative of ozone observations from 236 
LEO instruments operational during the TEMPO lifetime. We omit scenes with cloud fraction > 0.3 237 
(as given by the GEOS meteorological data). We assume fixed averaging kernel matrices, 238 
acknowledging that in practice there is significant variability (Worden et al., 2013). Gaussian 239 
noise is added to the synthetic observations following Natraj et al. (2011) to simulate the random error 240 
associated with the spectral measurement. The noise from the TEMPO instrument (footprint of 4x8 241 
km2) is reduced by the square root of the number of observations averaged over each GEOS-Chem grid 242 
square (~50x50 km2)  in the data assimilation process. Since the TEMPO measurements are spatially 243 
dense we assume zero representation error during assimilation. Current IASI measurements have 244 
footprint diameters of 12-40 km with centers spaced 25-80 km apart (August et al., 2012); no reduction 245 
of the random error is applied to the LEO observations. 246 

2.3 Assimilation of surface and satellite measurements 247 

The goal of our data assimilation system is to optimize an n-element state vector (x) of 3-248 
D tropospheric ozone concentrations over the North American domain of GEOS-Chem, using 249 
surface and satellite observations to correct the GEOS-Chem simulation at successive time steps. 250 
CASTNet and TEMPO data are assimilated at discrete 3-h time steps, and LEO data are 251 
assimilated at 12-h time steps. We use a Kalman filter, as previously applied to ozone data 252 
assimilation by Khattatov et al (2000), Parrington et al. (2008), and Zoogman et al. (2011). At 253 
each time step, we calculate an optimal estimate x̂  of the true ozone concentrations x as a weighted 254 
average of the model forecast ax  (with corresponding error vector εa relative to the true concentrations) 255 
and the observations x' (with observational error ε' and with x' set to ax  where there are no 256 
observations). The observational error includes both the instrument noise ε and (for surface sites) the 257 
previously defined representation error. The errors are characterized by error covariance matrices Sa = 258 
E[εaεa

T] and  Sε = E[ε'ε'T], where E[ ] is the expected-value operator. Assuming Gaussian error 259 
distributions for εa and ε we obtain (Rodgers, 2000): 260 

)'(ˆ aa KxxGxx −+=         (2) 261 

where K is the observation operator that maps the model forecast to the observations. For satellite 262 
measurements Kxa = xs + A(xa – xs) (equation (1) with no noise term), while for surface measurements 263 
Kxa = xa. The gain matrix G is given by 264 

( ) 1−
+= εSKKSKSG T

a
T

a    (3) 265 

and determines the relative weight given to the observations and the model. The instrument error 266 
covariance matrix Sε is assumed diagonal and set to an arbitrarily large number in locations 267 
where there are no observations. For surface measurements we include the 5% representation 268 
error in quadrature with the 2% instrument error so that the corresponding error variances are 269 
additive. The optimal estimate x̂  has error ε̂  with error covariance ]ˆˆ[ˆ TE εεS = : 270 

     ( ) an SGKIS −=ˆ     (4) 271 



Where nI  is the identity matrix of dimension n. 272 

 The model error covariance matrix Sa expresses the error in the forward model at each 273 
assimilation time step and is given by: 274 

𝐒𝑎 = �
var(𝜺𝑎,1) ⋯ cov(𝜺𝑎,1, 𝜺𝑎,𝑛)

⋮ ⋱ ⋮
cov(𝜺𝑎,𝑛, 𝜺𝑎,1) ⋯ var(𝜺𝑎,𝑛)

� (5) 275 

where εa = (εa,1,…,εa,n)T  , with εa,i  representing the error for GEOS-Chem gridbox i . Following 276 
Zoogman et al. (2011), we initialize Sa  at the beginning of the simulation as a diagonal matrix 277 
with a priori errors of 29% (quantified by comparison of GEOS-Chem to ozonesonde 278 
measurements), and update it at each assimilation time step on the basis of the computed  a 279 
posteriori error covariance matrix Ŝ  (equation (4)). The diagonal terms of Ŝ  are transported as 280 
tracers in GEOS-Chem to the next assimilation time step and are augmented by a model error variance 281 
reflecting the time-dependent divergence of the model from the true state (Zoogman et al., 2011). This 282 
yields the diagonal terms var(εa,i) of Sa for the next assimilation time step. The off-diagonal 283 
terms (error covariances) describe the propagation of information from each observation over a 284 
spatial domain of influence. We compute cov(εa,i , εa,j) for each pair of gridboxes (i,j) as a 285 
function of the horizontal and vertical distance between the two gridboxes using the error 286 
correlation length scales from section 2.4. 287 

In practice the dimension of the matrices used in the assimilation must be limited to make 288 
the computation tractable. This is done by solving Eq. (2) column by column and including only 289 
measurements at a horizontal distance less than 510 km (the horizontal error correlation length 290 
scale, see below) in the model error covariance matrix. 291 

 292 

2.4 Error Correlation Length Scales 293 

The spatial extent of information provided by an observation to correct the GEOS-Chem 294 
model simulation through data assimilation can be quantified by correlating the GEOS-Chem 295 
errors relative to in situ observations at different sites in the Intermountain West (for the 296 
horizontal scale) and ozonesonde profiles (for the vertical scale). To define a horizontal error 297 
correlation length scale we used actual CASTNet surface measurements from our period of study 298 
(April-June 2010), downloaded from http://epa.gov/castnet/. We compute the time series of 299 
model error during daytime (0900 – 1700 LT) at each surface site, and from there derive the 300 
model error correlation between each pair of surface sites. Figure 3 (left) shows the correlation 301 
coefficients plotted against the distance d between sites (binned every 100km). We find R=exp(-302 
d/510 km). We also show the error correlation length scale calculated when comparing GEOS-303 
Chem and GFDL AM3 (in red) sampled over the Intermountain West region. The model-model 304 
error correlation length scale is similar to the model-observation length scale, providing support 305 
for the realism of error patterns in our OSSE. We assume that the horizontal error correlation 306 
length scale is invariant with altitude.   307 

To estimate the vertical correlation length scale we compare GEOS-Chem ozone 308 
concentrations to in situ vertical profiles from May-June 2010 ozonesondes at six locations in 309 



California (Cooper et al. 2011). Figure 3 (right) shows the correlation coefficients plotted 310 
against the vertical distance z (binned every 500 m) for the time series of model errors at each 311 
ozonesonde station from the surface to 8 km altitude. We find R=exp(-z/1.7 km). Again, the 312 
model-model length scale (red) is not significantly different from the model-observation length 313 
scale.  314 

 315 

3. TEMPO observation of high-ozone events in the Intermountain West 316 

 We now apply our OSSE system to evaluate the benefit of TEMPO observations to 317 
monitor and attribute ozone exceedances in the Intermountain West. We compare the “true” 318 
concentrations in surface air over the Intermountain West to GEOS-Chem CTM ozone 319 
concentrations without data assimilation (a priori) and with assimilation of synthetic CASTNet, 320 
TEMPO, and IASI-3 LEO observations. We also performed an assimilation of CASTNet and 321 
TEMPO observations without a LEO instrument and found no significant difference in results. 322 
Thus the LEO instrument does not add significant information beyond TEMPO for constraining 323 
surface ozone concentrations in the Intermountain West. Its value for tracking exceptional events 324 
will be discussed in section 4. 325 
 Figure 4 examines the ability of the data assimilation system to monitor daily MDA8 326 
ozone over the Intermountain West at the 1/2ox2/3o (~50x50 km2) GEOS-Chem grid resolution. 327 
The top panel shows a scatterplot of a priori GEOS-Chem MDA8 ozone concentrations in April-328 
June 2010, for individual grid squares over the Intermountain West domain of Figure 1 and 329 
individual days, vs. the “true” concentrations from the GFDL AM3 model. The GEOS-Chem a 330 
priori is biased low and performs poorly in reproducing the “true” variability (R2=0.12, bias = -331 
9.0 ppbv). Assimilation of synthetic CASTNet surface measurements reduces the low bias from 332 
9.0 to 2.8 ppbv, but still does not capture much of the variability (R2=0.34). Adding the synthetic 333 
TEMPO geostationary observations eliminates the low bias and captures over half of the 334 
variability (R2=0.58).   335 
 The ability of TEMPO observations to capture high-ozone events is of particular interest. 336 
Figure 5 shows a map of the number of days in April-June 2010 with MDA8 ozone in excess of 337 
70 ppbv for individual GEOS-Chem gridsquares in the Intermountain West. Values are shown 338 
for the “true” atmosphere, the GEOS-Chem a priori without data assimilation, and the data 339 
assimilation results including only the CASTNet observations and with the addition of TEMPO 340 
observations. The “truth” shows an average of 5.7 high-ozone events per gridsquare in the 341 
Intermountain West over the April-June 2010 period. The a priori model has only 0.8 event-days 342 
per gridsquare and the spatial pattern is very different (spatial correlation R2=0.09 for the 343 
ensemble of Intermountain West gridsquares). Assimilation of surface measurements improves 344 
both the average number of high-ozone events (3.6 event-days) and the spatial pattern (R2=0.62). 345 
The inability to fully correct the bias is due in part to the large impact of free tropospheric air in 346 
driving high-ozone events, and in part to the limited coverage from the sparse surface network. 347 
Adding TEMPO satellite observations almost fully corrects the bias (mean of 5.4 event-days) 348 
and captures most of the spatial distribution of high-ozone events (R2=0.82).  349 
 350 
4. Attribution of exceptional events using TEMPO observations 351 

TEMPO will provide continuous daytime observation in the free troposphere as well as in 352 
the boundary layer, with separation between the two (Figure 2). Thus it could be particularly 353 



powerful in quantifying free tropospheric background contributions to NAAQS exceedances. 354 
This would assist in the designation of exceptional events where an exceedance of the NAAQS is 355 
considered to be outside local control.  356 
 We examine a case study of a stratospheric intrusion on June 13 in the GFDL AM3 357 
model taken as the “truth”. Figure 6 shows a time series for June 2010 of MDA8 ozone 358 
concentrations at a location in northern New Mexico (107oW, 36oN).  We choose this event as it 359 
was diagnosed by ozonesonde observations and meteorological tracers as a deep stratospheric 360 
intrusion event (Lin et al., 2012a). Actual observations at nearby CASTNet locations indicate 361 
ozone in excess of 75 ppbv during this modeled intrusion. 362 

Evidence of free tropospheric origin for the June 13 event is critical to achieving an 363 
“exceptional event” designation.  Figure 7 (top left) shows a longitude-altitude cross section of 364 
ozone concentrations in the GFDL AM3 model taken as the “truth”. The stratospheric intrusion 365 
is manifest at 103-109oW. The a priori GEOS-Chem model (top right) also shows a stratospheric 366 
ozone enhancement extending to the surface but of much smaller magnitude. Assimilation of 367 
surface measurements (not shown) makes little correction in the free troposphere. Synthetic 368 
satellite measurement imagery from TEMPO without assimilation (bottom left) shows elevated 369 
values in the free troposphere but does not properly represent surface gradients due to instrument 370 
smoothing. Assimilating TEMPO observations into the GEOS-Chem CTM together with LEO 371 
measurements (bottom right) captures the magnitude and spatial structure of the stratospheric 372 
intrusion, and this would make a strong case for diagnosis of an exceptional event. We see here 373 
that the use of data assimilation efficiently enhances the information from TEMPO to constrain 374 
surface air concentrations. Information from the LEO instrument does not add significantly in 375 
this case to observations from TEMPO, although it does correct ozone fields over the ocean 376 
where TEMPO does not observe in this OSSE. The LEO instrument will thus be valuable for 377 
tracking transpacific transport of ozone plumes even when TEMPO is operational. 378 
 379 
5. Summary 380 
 We demonstrated the potential of future TEMPO UV+Vis geostationary observations to 381 
monitor ozone exceedances in the Intermountain West and identify those exceedances caused by 382 
the North American background. Our goal was to inform the TEMPO observing strategy and 383 
develop methods for exploitation of its data. To accomplish this we performed an observation system 384 
simulation experiment (OSSE) for assimilation of synthetic TEMPO data designed to best represent 385 
future observations based on current estimates of TEMPO instrument characteristics. We used 386 
two global 3-D ozone models with ~50 km horizontal resolution, one as the “true” atmosphere and one 387 
as the forward model for data assimilation. We also included in our OSSE surface measurements from 388 
the current CASTNet monitoring network sites in the Intermountain West  (12 sites) and satellite 389 
measurements from a thermal infrared (TIR) low Earth orbit (LEO) instrument projected to be in orbit 390 
concurrently with TEMPO.  391 

An important factor in data assimilation is the scales over which observed information 392 
can be propagated with the forward model. We quantified this using model error correlation 393 
length scales for the Intermountain West based on actual CASTNet and ozonesonde data. We 394 
find length scales of 500 km (horizontal) and 1.7 km (vertical). These are in close agreement 395 
with error correlation length scales between the two models used in our OSSE. 396 

We find that the CASTNet surface observations are too sparse to adequately monitor 397 
high-ozone events in the Intermountain West even after data assimilation. We show that the 398 
TEMPO geostationary observations will provide a greatly improved observing system for 399 



monitoring such events, eliminating the a priori model bias, capturing 58% of surface MDA8 400 
ozone variability, and capturing 82% of the distribution of high-ozone days. In addition, because 401 
of the information they provide on the vertical distribution of ozone, they can effectively 402 
diagnose NAAQS exceedances caused by background ozone. Our evidence indicates that a LEO 403 
satellite instrument flying concurrently with TEMPO provides no significant added value for 404 
monitoring the ozone background over the US but could be useful for tracking transpacific 405 
plumes. 406 

The use of invariant averaging kernel matrices is a limitation of this study. Preparation 407 
for TEMPO must include improved constraints on physical parameters, such as surface albedo, 408 
that can vary greatly over the North American domain and that affect the sensitivity of UV+Vis 409 
retrievals of near-surface ozone. Also, if the differences between the two models used in our 410 
OSSE are larger than future errors in modeled ozone, this study may overestimate the 411 
information TEMPO will provide. However, our OSSE demonstrates the large relative 412 
improvement of information provided by TEMPO over the current observing system. 413 

 Use of the complete observing system described here (surface, geostationary, and LEO) 414 
will provide a powerful tool for future air quality policy. Planning is underway to combine this 415 
system with regional air quality models to supply the public with near real time pollution reports 416 
and forecasts. These reports and forecasts would be much the same as currently available 417 
weather information, also provided in large part from geostationary satellite observations.  418 
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Figure 1: Mean values of the daily maximum 8-hour average (MDA8) ozone concentrations for 425 
April-June 2010 in surface air. Left panel shows values from the GFDL AM3 CCM used as the 426 



“true” atmosphere in our OSSE. Right panel shows the a priori values from the GEOS-Chem 427 
CTM used for data assimilation. Red/blue coloring denotes relatively high/low ozone values 428 
respectively. The black lines delineate the Intermountain West and black crosses show CASTNet 429 
surface measurement sites in the region. 430 

 431 

Figure 2: Normalized averaging kernel matrices assumed in this study (from Natraj et al. [2011]) 432 
for clear-sky retrievals of tropospheric ozone from space in the UV+Vis (left) and the TIR 433 
(right). UV+Vis in our study corresponds to TEMPO, while TIR corresponds to a future LEO 434 
instrument flying concurrently with TEMPO. Lines are matrix rows for individual vertical levels, 435 
with the  color gradient from red to blue corresponding to vertical levels ranging from surface air (red) 436 
to 200 hPa (blue). Inset are the degrees of freedom for signal (DOFS) for the atmospheric columns 437 
below 200, 800, and 900 hPa. 438 

 439 



Figure 3: Error correlation length scales for the GEOS-Chem model simulation of tropospheric 440 
ozone in the US Intermountain West. The error correlations are relative to actual CASTNet and 441 
ozonesonde observations (in black) and relative to the GFDL AM3 model sampled in the 442 
Intermountain West region (in red). Statistics are computed for April-June 2010. The left panel 443 
shows the correlation coefficient (R) of the model error between pairs of CASTNet sites, plotted 444 
against the distance between sites. Values are for the 12 CASTNet sites in the Intermountain 445 
West (Figure 1). The right panel shows the correlation coefficient of the model error between 446 
pairs of vertical levels (up to 8 km altitude) for ozonesonde measurements from the IONS-2010 447 
campaign in California [Cooper et al. 2011], plotted against distance between levels.  448 
Exponential fits to the data are shown inset, where d and z are horizontal and vertical distances in 449 
km. 450 



 451 

Figure 4: Improved monitoring of surface ozone across the Intermountain West from 452 
assimilation of synthetic CASTNet (surface) and TEMPO (geostationary satellite) observations.  453 
The figure shows scatterplots of simulated (GEOS-Chem) vs. “truth” (GFDL AM3) daily 454 
maximum 8-h (MDA8) surface ozone for April-June 2010 for all 1/2ox2/3o grid squares in the 455 
region (Figure 1) and for individual days. Results are for GEOS-Chem without data assimilation 456 
(top), with assimilation of CASTnet synthetic surface data (middle), and with additional 457 
assimilation of TEMPO and LEO synthetic satellite data (bottom).  Comparison statistics are 458 
inset. Also shown are the reduced-major-axis (RMA) regression line and the 1:1 line. 459 



 460 

Figure 5: Improved detection of high-ozone events in the Intermountain West by data 461 
assimilation. The figure shows the number of events (daily maximum 8-h ozone > 70 ppbv) in 462 
April-June 2010 on the GEOS-Chem grid. The “truth” defined by the GFDL AM3 model (top 463 
left panel) is compared to GEOS-Chem simulations without data assimilation (top right), with 464 
assimilation of synthetic CASTNet surface data (bottom left), and with additional assimilation of 465 
synthetic TEMPO and LEO satellite data (bottom right). Locations of CASTNet surface sites 466 
used for assimilation with their “true” values are overlain in the bottom panels. 467 



 468 
Figure 6: Detection of an exceptional ozone event by TEMPO. The Figure shows the June 2010 469 
time series of daily maximum 8-h (MDA8) ozone concentrations at a location in northern New 470 
Mexico (107oW, 36oN) featuring a major stratospheric intrusion on June 13 in the GFDL AM3 471 
model taken as the “truth” (black line). The ability to capture this event is examined for the 472 
GEOS-Chem model without data assimilation (a priori, red line) and with assimilation of surface 473 
measurements only (green line) and satellite measurements added (blue line). 474 



 475 
Figure 7: Longitude-altitude cross-section of ozone concentrations (36oN, 2100 MT on June 13, 476 
2010) associated with the stratospheric intrusion of Figure 6. The “true” state from the GFDL 477 
AM3 model (top left) is compared to the GEOS-Chem model without data assimilation (top 478 
right) and with assimilation of surface and satellite data (bottom right). The bottom left panel 479 
shows synthetic TEMPO observations of the “true” state (gray regions indicate cloudy scenes) 480 
without data assimilation. Orange and red values indicate ozone levels that would lead to 481 
exceedances of the current National Ambient Air Quality Standard (NAAQS) of 75 ppbv. Local 482 
topography is shown in white. 483 
 484 
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