
ACPD
13, 33403–33431, 2013

Uncertainty
quantification in

trace gas inversions

A. L. Ganesan et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Atmos. Chem. Phys. Discuss., 13, 33403–33431, 2013
www.atmos-chem-phys-discuss.net/13/33403/2013/
doi:10.5194/acpd-13-33403-2013
© Author(s) 2013. CC Attribution 3.0 License.

Atmospheric 
Chemistry

and Physics

O
pen A

ccess

Discussions

This discussion paper is/has been under review for the journal Atmospheric Chemistry
and Physics (ACP). Please refer to the corresponding final paper in ACP if available.

Characterization of uncertainties in
atmospheric trace gas inversions using
hierarchical Bayesian methods

A. L. Ganesan1,*, M. Rigby2, A. Zammit-Mangion3, A. J. Manning4, R. G. Prinn1,
P. J. Fraser5, C. M. Harth6, K.-R. Kim7, P. B. Krummel5, S. Li8, J. Mühle6,
S. J. O’Doherty2, S. Park9, P. K. Salameh6, L. P. Steele5, and R. F. Weiss6

1Center for Global Change Science, Massachusetts Institute of Technology, Cambridge,
Massachusetts, USA
2School of Chemistry, University of Bristol, Bristol, UK
3School of Geographical Sciences, University of Bristol, Bristol, UK
4Hadley Centre, Met Office, Exeter, UK
5Centre for Australian Weather and Climate Research, CSIRO Marine and Atmospheric
Research, Aspendale, Victoria, Australia
6Scripps Institution of Oceanography, University of California San Diego, La Jolla, California,
USA
7GIST College, Gwangju Institute of Science and Technology, Kwangju, South Korea
8Research Institute of Oceanography, Seoul National University, Seoul, South Korea
9Department of Oceanography, Kyungpook National University, Sangju, South Korea

33403

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/13/33403/2013/acpd-13-33403-2013-print.pdf
http://www.atmos-chem-phys-discuss.net/13/33403/2013/acpd-13-33403-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
13, 33403–33431, 2013

Uncertainty
quantification in

trace gas inversions

A. L. Ganesan et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

*now at: School of Chemistry, University of Bristol, Bristol, UK

Received: 22 November 2013 – Accepted: 11 December 2013
– Published: 19 December 2013

Correspondence to: A. L. Ganesan (anita.ganesan@bristol.ac.uk)

Published by Copernicus Publications on behalf of the European Geosciences Union.

33404

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/13/33403/2013/acpd-13-33403-2013-print.pdf
http://www.atmos-chem-phys-discuss.net/13/33403/2013/acpd-13-33403-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
13, 33403–33431, 2013

Uncertainty
quantification in

trace gas inversions

A. L. Ganesan et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Abstract

We present a hierarchical Bayesian method for atmospheric trace gas inversions. This
method is used to estimate emissions of trace gases as well as “hyper-parameters”
that characterize the probability density functions (PDF) of the a priori emissions and
model-measurement covariances. By exploring the space of “uncertainties in uncer-5

tainties”, we show that the hierarchical method results in a more complete estimation
of emissions and their uncertainties than traditional Bayesian inversions, which rely
heavily on expert judgement. We present an analysis that shows the effect of includ-
ing hyper-parameters, which are themselves informed by the data, and show that this
method can serve to reduce the effect of errors in assumptions made about the a pri-10

ori emissions and model-measurement uncertainties. We then apply this method to the
estimation of sulfur hexafluoride (SF6) emissions over 2012 for the regions surrounding
four Advanced Global Atmospheric Gases Experiment (AGAGE) stations. We find that
improper accounting of model representation uncertainties, in particular, can lead to
the derivation of emissions and associated uncertainties that are unrealistic and show15

that those derived using the hierarchical method are likely to be more representative of
the true uncertainties in the system. We demonstrate through this SF6 case study that
this method is less sensitive to outliers in the data and to subjective assumptions about
a priori emissions and model-measurement uncertainties, than traditional methods.

1 Introduction20

Inverse modeling is widely used to estimate sources and sinks of trace gas fluxes
and their distributions using measurements of atmospheric mole fractions and chem-
ical transport models (CTM). The estimation of surface fluxes has been performed at
a variety of spatial and temporal scales, ranging from regional (e.g., Stohl et al., 2009;
Manning et al., 2011; Rigby et al., 2011) to global (e.g., Chen and Prinn, 2006; Mühle25

et al., 2010; Bousquet et al., 2011) and for timescales of hours to years.
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Most inversions utilize a Bayesian framework and incorporate a priori information to
condition the system, as shown by Eq. (1) (normalizing factors are not shown through-
out this text for brevity) (Enting et al., 1995).

ρ(x|y) ∝ ρ(y|x)ρ(x) (1)

The Bayesian framework with Gaussian probability density functions (PDF) and lin-5

ear models used in most trace gas inversions gives rise to the cost function shown in
Eq. (2). The deviations between measurements, y, and model-simulated mole frac-
tions, Hx, where H is a matrix that contains the sensitivities of atmospheric mole
fractions to changes in emissions sources and x is a vector containing the emis-
sion sources, are weighted by uncertainty covariance, R. Similarly, deviations between10

emissions and their a priori values, xprior, are weighted by uncertainty covariance, P.
This cost function is minimized with respect to x to find the “optimal” point that mini-
mizes the total mismatch of the two terms (Enting, 2002; Tarantola, 2005).

J =
1
2

[
(y −Hx)TR−1(y −Hx)+ (x−xprior)TP−1(x−xprior)

]
(2)

This framework has generally been used because of its simplicity to solve and low15

computational expense. Several limitations are however present. Bayesian methods
rely on knowledge of model-measurement (R) and a priori emissions (P) uncertainties
and the derived fluxes and associated uncertainties strongly depend on these param-
eters. Model-measurement uncertainties describe uncertainties in the instruments as
well as uncertainties associated with the model’s simulation of a measurement. The20

model error can be split into several components: structural errors within the CTM or
meteorological model (Peylin et al., 2002; Thompson et al., 2011); model represen-
tation error, which describe errors in the representation of a point measurement in
representing a grid volume (Chen and Prinn, 2006); aggregation errors, which result
from averaging parameters over space and time and assuming fixed distributions within25

those domains (Kaminski et al., 2001; Thompson et al., 2011). Knowledge of these
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uncertainties is critical for robustly estimating posterior fluxes and their uncertainties,
however, they are largely elicited through “expert judgement”. The lack of objective
methodology in ascertaining these uncertainties has been identified in many studies
as a major limitation of traditional inverse methods (Rayner et al., 1999; Peylin et al.,
2002; Law et al., 2002; Kaminski et al., 1999).5

Some studies have used atmospheric data to “tune” covariances and then used
these optimized parameters to derive fluxes (Michalak et al., 2005; Berchet et al.,
2013). Several issues exist in these methods: (1) the uncertainties derived in the tuned
R and P cannot be propagated through to estimating fluxes and their uncertainties; (2)
the Bayesian statistics used to derive fluxes assume that each term of the cost function10

in Eq. (2) is independent. Because both the a priori emissions and observations were
used to derive the tuned R and P, independence between the two terms can no longer
be assumed and correlations between the two will exist that are not fully accounted for;
(3) these methods typically use Gaussian PDFs in setting up the cost function.

We present a hierarchical Bayesian method to estimate trace gas emissions and15

additional parameters, which we call “hyper-parameters”, that describe the a priori
emissions PDF and the model-measurement uncertainty PDF. Compared to traditional
methods, the a priori information in the system is extended to include a set of hyper-
parameters equipped with their own prior distributions, which we call “hyper-priors”.
Throughout the text, we refer to the emissions PDF that is characterized by these20

hyper-parameters as the “a priori emissions PDF”.
We first describe the development of a hierarchical framework. Beginning with Bayes’

theorem in Eq. (1), we seek to estimate the joint distribution of two parameters, x and
θ using data y (Eq. 3).

ρ(x,θ |y) ∝ ρ(y|x,θ )ρ(x,θ ) (3)25

A joint distribution can be decomposed using the “probability chain rule” (Eq. 4).

ρ(x,θ ) = ρ(x|θ )ρ(θ ) (4)
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Substitution of Eq. (4) into Eq. (3) leads to a hierarchical Bayesian model, in which both
x and θ are informed by the data.

ρ(x,θ |y) ∝ ρ(y|x,θ )ρ(x|θ )ρ(θ ) (5)

Hierarchical methods have been successfully applied in other fields (Riccio et al., 2006;
Gelman and Hill, 2002; Lehuger et al., 2009). A general summary and the application5

to uncertainty analysis can be found in Cressie et al. (2009).
In this application, in which we estimate hyper-parameters in addition to fluxes, a hi-

erarchical approach allows us to explore the additional space of “uncertainties in un-
certainties.” The framework ensures that estimated parameters and their uncertainties
and covariances are passed systematically through the inversion. The entire set of10

fluxes and hyper-parameters are updated in one step, therefore using measurements
only once.

Because there often does not exist an analytical solution to maximize the posterior
PDF represented in Eq. (5), Markov chain Monte Carlo (MCMC) is used (Tarantola,
2005). MCMC samples the PDFs of a set of parameters by constructing a Markov15

chain that represents the posterior PDF after a large number of steps. MCMC has the
additional advantage that it may be used on a broad class of models, which need not
be Gaussian. For example, positive fluxes can be constrained through the use of an
a priori emissions PDF with support only on the positive real axis (Rigby et al., 2011).

We show that the hierarchical method results in a more complete uncertainty char-20

acterization than traditional inverse methods in which a priori emissions and model-
measurement covariances are based largely on expert judgement. We present an ap-
plication of this method for inversions of trace gas emissions and explore the ways in
which the method can be used to quantify uncertainties in these inversions. Finally,
we utilize this method to estimate regional sulfur hexafluoride (SF6) emissions using25

measurements from the Advanced Global Atmospheric Gases Experiment (AGAGE)
network and the UK Met Office Numerical Atmospheric dispersion Modelling Environ-
ment v3 (NAME) transport model (Jones et al., 2007; Ryall and Maryon, 1998).
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2 Application of hierarchical Bayesian modeling to emissions estimation

2.1 Theoretical framework

We are interested in estimating fluxes of trace gases and their uncertainties using mea-
surements of atmospheric mole fractions. Fluxes and hyper-parameters could vary in
space and time and are shown in this framework as vectors that could be estimated5

with spatial and temporal resolution. We apply the hierarchical Bayesian model to use
data, y, to estimate x, the posterior PDFs of emissions and boundary conditions to
the inversion domain, as well as a set of hyper-parameters that govern the a priori
emissions and model-measurement uncertainty PDFs. The hyper-parameters include
µx and σx, which describe the log mean and log standard deviation of a lognormal10

a priori emissions PDF, σy , which describes the standard deviation of a Gaussian
model-measurement uncertainty PDF and τ, which is a model-measurement autocor-
relation timescale. The model-measurement covariance matrix, R, is formed with diag-
onal terms comprised by the squares of σy . Off-diagonal terms are computed through
Eq. (6), where ri j is the covariance between measurements i and j , ri i and rjj are the15

variances of each measurement, ∆ti ,j is the time between measurements and τ is the
autocorrelation timescale.

ri j =
√
ri i ·
√
rjj ·exp

(
−∆ti ,j

τ

)
(6)

The joint distribution of x,µx,σx,σy and τ is expressed through Eq. (7), following the
framework developed above.20

ρ(x,µx,σx,σy ,τ|y) ∝ ρ(y|x,σy ,τ) ·ρ(x|µx,σx) ·ρ(µx) ·ρ(σx) ·ρ(σy) ·ρ(τ) (7)

It is shown in Eq. (7) that each hyper-parameter requires a hyper-prior PDF to be
specified. We have chosen to represent the PDF of each parameter by Eqs. (8)–(13).
The lognormal distribution (LN) was used for emissions and PDF parameters because
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the distribution is skewed so that negative values are not defined but large values
have small nonzero densities. An exponential PDF (EXP) was used for τ because the
mode is zero and in most inversions it is generally assumed that there is no model-
measurement autocorrelation. Model-measurement uncertainties were assumed to be
Gaussian (N) because we assume random errors in the instrument and model to be5

symmetric.

ρ(µx) = LN(µx,prior,σµ,x,prior) (8)

ρ(σx) = LN(σx,prior,σσ ,x,prior) (9)

ρ(σy) = LN(σy,prior,σσ ,y,prior) (10)

ρ(τ) = EXP
(

1
τprior

)
(11)10

ρ(x|µx,σx) = LN(µx,σx) (12)

ρ(y|x,R) = N(Hx,R) (13)

The posterior joint distribution, ρ(x,µx,σx,σy ,τ|y) is estimated using MCMC with
a Metropolis–Hastings algorithm (Rigby et al., 2011; Tarantola, 2005). The Metropolis–15

Hastings algorithm generates states from a proposal distribution and selectively ac-
cepts transitions so that the stationary distribution of the resulting chain represents the
posterior distribution. A “burn-in” period of 25 000 iterations were discarded to remove
any memory of the initial state, followed by 25 000 iterations to form the posterior PDFs.
Convergence can be assessed using metrics such as Geweke’s diagnostic (Geweke,20

1992). One of the main advantages of this algorithm is that the normalization factor
implied in Eq. (7) does not need to be computed. The chain is constructed such that
each parameter has “knowledge” of the state of the other parameters and therefore,
uncertainties and correlations between parameters are built into the chain. Using this
hierarchical approach, posterior emissions and associated uncertainties, which are of25

primary interest, fully account for uncertainties in hyper-parameters.
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The set of parameters being estimated (x,µx,σx,σy ,τ) is denoted as X. The criteria
for acceptance at iteration n for the proposed set of parameters, X′ is:

Xn =

{
X′, with probability a
Xn−1, with probability 1−a

(14)

a = min
[

1,
ρ(X′|y)

ρ(X|y)

]
(15)

5

The sizes of the proposal distributions were adjusted so that the resulting acceptance
ratio for each parameter was between 0.25 and 0.5 to achieve optimal mixing (Roberts
et al., 1997).

2.2 Pseudo-data experiment

We are interested in investigating the effect of the hierarchical method on posterior10

emissions uncertainties and use a pseudo-data simulation to demonstrate the concept.
In this simulation, 1000 ensemble members were randomly generated from a known
emissions distribution, ρ(x|µ∗

x,σ∗
x), where µ∗

x and σ∗
x were known and fixed.

Each emissions ensemble member was used to simulate mole fraction pseudo-data,
which were then applied in both a hierarchical Bayesian inversion (HB) and a non-15

hierarchical Bayesian inversion (NHB) to infer emissions for cases in which the a priori
emissions uncertainties were incorrectly specified. In this work we adopt the stance
that uncertainty quantification is correct if, on average, a given realization, x∗, sam-
pled from ρ(x|µ∗,σ∗), is consistent with the true marginal distribution ρ(x|y). If uncer-
tainty is correctly captured, then 5 % of the time, x∗ should lie in the 5th percentile of20

the posterior distribution, 10 % within the 10th percentile and so on. We can thus plot
a quantile–quantile (Q–Q) plot to compare the theoretical with the empirical quantile. If
the empirical and true quantiles lie on the 1 : 1 line, we can conclude that the inversion
is correctly capturing system uncertainties. If the uncertainties used in the inversion are
too tightly constrained, ensemble members will tend to consistently lie in the tails of the25
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estimated posterior distribution so that the Q–Q plot resembles an inverted “S-curve”
around the diagonal. If the uncertainties are too lax, then the posterior judgments are
under-confident and the Q–Q plot follows a S-curve around the diagonal.

Gaussian distributions were chosen for this pseudo-experiment for their simplicity
and symmetry but these results can be extrapolated to any distribution. Pseudo-data5

were generated from each realization, x∗, using the NAME model for one month at
Mace Head, Ireland, and include random Gaussian noise with standard deviation, σ∗

y .
For each inversion, shown through Eq. (16), we fixed the mean of the a priori emis-
sions distribution to be µ∗

x and tested the effect of making incorrect assumptions in the
inversion about the a priori emissions uncertainty. Two cases were investigated: one in10

which the a priori emissions uncertainty, σx,prior was one-half and one in which it was
twice σ∗

x , respectively. This is equivalent to an inversion where we incorrectly assumed
the a priori emissions uncertainty to be smaller or larger than the “truth.” In the NHB
case, these values were fixed (i.e., there is no uncertainty in σx,prior) and in the HB case,
some flexibility was allowed for the inversion to adjust these values. The uncertainty in15

the uncertainty, σσ ,x was assumed to be 100 % of σx,prior and model-measurement un-
certainty was specified exactly as σ∗

y . To generate the estimated quantiles, we tracked
the quantile of x∗ in the posterior distribution of each inversion and determined how
often each quantile was being sampled (a perfectly characterized system would result
in uniform sampling of all quantiles, as explained above).20

ρ(x|σx) = N(µ∗
x,σx)

ρ(σx) = N(σx,prior,σσ ,x)
(16)

Figure 1 shows Q–Q plots for the HB and NHB cases. When the assumed a pri-
ori emissions uncertainty was too constrained and not allowed to adjust in the in-
version, the result was a greater sampling of the tails of the distribution. When the25

hyper-parameter was included, the estimated distribution shifted towards the 1 : 1 line,
indicating a better representation of the true distribution. A similar situation was ob-
served when the assumed uncertainty was too large, reflecting a posterior distribution
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that sampled the middle of the distribution more frequently than expected. Inclusion of
the hyper-parameter again resulted in a shift toward the 1 : 1 line and a better charac-
terization of the true distribution. The results of this pseudo-data experiment illustrate
the ways in which the hierarchical method can reduce the effect of errors in our as-
sumptions about the uncertainties governing the system. Similar results were found5

in experiments testing the effect of incorrect assumptions about model-measurement
uncertainty.

3 Case study: regional SF6 emissions

3.1 Inversion setup

We use the above methodology to derive monthly regional SF6 emissions and bound-10

ary conditions for the regions around four AGAGE stations, monthly diurnal model-
measurement uncertainties, monthly means and standard deviations of the a priori
emissions PDFs and monthly autocorrelation timescale. Model-measurement uncer-
tainties were calculated for two time periods each month: daytime (approx. 06:00–18:00
local time of each station) and nighttime (approx. 18:00–06:00), in order to investigate15

the common assumption that uncertainties at night are larger than those during the
day. We have chosen a monthly estimation timescale but in principle, any resolution
can be used.

High-frequency measurements used in this study are dry air SF6 mole fractions from
the AGAGE stations at Mace Head, Ireland, Trinidad Head, USA, Cape Grim, Australia,20

and Gosan, South Korea for the period of January–December 2012 (Prinn et al., 2000;
Rigby et al., 2010). Gosan measurements from the summer period were excluded due
the complexities induced by frequently shifting sampling of both northern and southern
hemispheric background air. All measurements were made on the “Medusa” GC-MS
system and were calibrated on the Scripps Institution of Oceanography (SIO) – 200525
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scale (Miller et al., 2008). Measurements were three hourly averages, which is the
temporal resolution of the model sensitivity output.

The UK Met Office’s Lagrangian Particle Dispersion Model (LPDM), NAME, simu-
lates atmospheric transport by following particles backwards in time from the mea-
surement station. NAME has been used in previous studies for modeling trace gas5

transport at various sites (O’Doherty et al., 2004; Manning et al., 2011; Ganesan et al.,
2013). NAME directly outputs the sensitivity of measurements to surface emissions by
tracking the mass of particles and time spent in the lower 100 m of the model over
the duration of the simulation. These model-derived sensitvities are referred to as “air
histories”. For each site modeled here, the Met Office’s Unified Model (UM) was used10

at 0.352◦×0.234◦ horizontal resolution and at three-hour temporal resolution. Particles
were followed backwards in time for 20 days. Computational domains were chosen to
be large enough to model the transport of pollutants from important source regions to
each site as well as to allow for the assumption that boundary conditions to the LPDM
domain do not vary significantly over the 20 day period. All air histories were gener-15

ated with the release of particles from a 100 m column over the model surface. Grid
cells were aggregated into approximately twenty regions over each domain following
the methodology of Rigby et al. (2011). Regions were aggregated from grid cells as
a function of a priori emissions and average sensitivity, so that grid cells with high a pri-
ori emissions and/or high sensitivity would be estimated at higher resolution than those20

with low a priori emissions and/or low sensitivity.
Various methods have been used to determine boundary conditions to LPDM do-

mains (Stohl et al., 2009; Manning et al., 2011; Rigby et al., 2011). In this application,
boundary conditions were assumed to be constant over each month and were solved
in the inversion as the part of the simulated mole fractions that were not accounted for25

by the 20 day air histories (i.e., emissions from farther back in time).
We follow the hierarchical system outlined by Eqs. (7)–(13). In this setup, µx,prior was

chosen to be the natural logarithm of 2008 values from the EDGAR v4.2 (henceforth
referred to as EDGAR) database extrapolated to 2012 based on the linear trend for the
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inversion domain from 2004–2008 (JRC/PBL, 2011). These trends were assumed to
be 2.8 % per year growth in Europe, 0.6 % per year growth in North America, 3.4 % per
year growth in Oceania and 11 % per year growth in East Asia. Prior a priori emissions
uncertainty, σx,prior, was chosen as the value that resulted in 68 % of the lognormal
PDF contained between 50 and 150 % of µx,prior (similar to regional uncertainties used5

in Rigby et al., 2010). Prior model-measurement uncertainty, σy,prior, was chosen to be
the natural logarithm of the sum of the instrument uncertainty and the uncertainty as-
sociated with propagating the calibration scale, each assumed to be 0.05 pmolmol−1.
We did not include a prior estimate of the model representation error in the hierarchi-
cal inversions and allowed the inversion the flexibility to deduce this uncertainty. In the10

comparable inversions performed without the hierarchical method, we investigated the
effect of including or not including a model representation error equal to the standard
deviation of daily measurements. The mean a priori autocorrelation timescale, τprior,
was assumed to be 7 days, which is an approximate timescale of synoptic scale me-
teorological events. Prior baseline values were assumed to be the minimum measured15

value during the month with an uncertainty of 3 %.
Uncertainties on these hyper-parameters, σµ,x,prior, σσ ,x,prior and σσ ,y,prior were cal-

culated as the values that resulted in 68 % of the PDF contained between 50 and
150 % of µx,prior, σx,prior and σy,prior, respectively. An important feature of the framework
is that the posterior emissions PDF is less sensitive to assumptions about the hyper-20

parameters than to direct assumptions about the a priori emissions PDF because these
hyper-parameters are one step “removed” from the observations.

3.2 Results and discussion

We present median 2012 SF6 emissions for the regions around four AGAGE stations,
monthly boundary conditions, diurnal model-measurement uncertainty and autocorre-25

lation timescales. Median posterior emissions are shown in Fig. 2 and are tabulated
in Table 1. Deviations of these emissions from the prior are presented in Fig. 3. The
domain for which emissions are presented is smaller than the inversion domain but
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represents the region that the measurement station is most sensitive toward. Figure 4
presents national emissions derived from the HB inversion along with emissions de-
rived from two NHB inversions that use the same PDFs and either include or exclude
a model representation error. Uncertainties reflect the 16th to 84th percentiles of the
posterior emissions PDFs to show consistency with previous studies citing 1-σ uncer-5

tainties of Gaussian distributions. The results of the HB inversion show that: (1) SF6
emissions from the UK, France and Germany have deceased from the scaled EDGAR
emissions and are also smaller than 2008 EDGAR emissions; (2) East Asian SF6 emis-
sions have decreased from scaled EDGAR values but have increased compared to
2008 EDGAR emissions; (3) emissions from the western coast of North America have10

largely decreased from 2008 EDGAR emissions; (4) Australian emissions have ap-
proximately remained the same as the scaled EDGAR emissions. In comparison to the
2007–2009 estimates made in Rigby et al. (2011), there are some statistically signif-
icant differences. In particular, the emissions from South Korea derived in this study
are lower, however, emissions from Asia were shown through the sensitivity studies15

performed in Rigby et al. (2011) to be highly sensitive to inversion parameters, such as
measurement averaging period.

To compare derived emissions and uncertainties between the HB and NHB meth-
ods, two NHB inversions were run for each site: one in which a model representa-
tion error was included and assumed to be the standard deviation of measurements20

each day and one in which no model representation error was used. Without including
a model representation error, emissions become unrealistically large for East Asian
countries due to the significantly elevated measurements that are not captured by the
model and prior. Uncertainties on these emissions are likely too small, owing to the un-
derestimated model-measurement uncertainty. In previous studies, methods such as25

statistical filtering have been used to remove measurements that cannot be resolved
by the model prior to the inversion to prevent unrealistic emissions from being derived
(Manning et al., 2011). When a model representation error was included in the NHB
inversion, emissions substantially decreased in East Asia and became more consistent
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with those derived in previous East Asian studies, stressing the importance of properly
accounting for the model-measurement uncertainty (Vollmer et al., 2009; Kim et al.,
2010; Li et al., 2011; Rigby et al., 2011; Fang et al., 2013).

In the HB inversion, emissions uncertainties are generally larger than those derived
in the NHB inversions. These results suggest that the HB method is able to account for5

a larger space of uncertainties in the inversion and derive emissions uncertainties that
are likely more representative of the true uncertainties in the system. To investigate
this claim, we examine Chinese emissions and uncertainties derived in five previous
studies between 2006–2012. These studies derived 0.8 (0.5–1.1) Ggyr−1 in Vollmer
et al. (2009), 1.3 (0.9–1.7) Ggyr−1 in Kim et al. (2010) and 1.2 (0.9–1.7) Ggyr−1 in Li10

et al. (2011) for 2006–2008, 2.3 (2.1–2.5) in Rigby et al. (2011) for 2007–2009 and 2.8
(2.3–3.3) Ggyr−1 in Fang et al. (2013) for 2012. For the results obtained for the period
2006–2009, these studies produced statistically different emissions, likely indicating
that the uncertainty analyses are not robust. These five studies used various meth-
ods by which they assessed uncertainties in emissions, making it difficult to compare15

uncertainties between each study. Vollmer et al. (2009), Kim et al. (2010) and Fang
et al. (2013) derived emissions uncertainties by examining an ensemble of inversions
with varying a priori emissions and a priori emissions uncertainties. These sensitivity
tests were used to quantify the effect of incorrect assumptions about a priori emissions
and a priori emissions uncertainties, as our study aims to do, however each of these20

inversion ensemble members cannot be considered independent and the resulting un-
certainties may not be statistically robust or fully propagated through to emissions.
Rigby et al. (2011) presented uncertainties derived solely from the Bayesian inversion,
which is the likely cause for the much smaller uncertainties than the other studies. The
results of the HB inversion presented in this study show 2012 Chinese emissions to25

be 2.1 (1.7–2.8) Ggyr−1 (derived value scaled by country fraction), which is statistically
consistent with the recent results of Fang et al. (2013). While our derived uncertainties
are similar to some of these studies, we propose that the uncertainty quantification
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outlined in this work is more statistically justifiable, complete and traceable than those
presented elsewhere.

Derived model-measurement uncertainties for all stations are shown in Fig. 5 and
simulated mole fractions and boundary conditions in Fig. 6. Uncertainties at Mace Head
are generally lower than the a priori value used, suggesting that the model does well at5

representing this site. During July, a large pollution event is observed but is not captured
by the model. The result is that measurements during this month have larger derived
uncertainties and are therefore weighted less prominently in the inversion. Though
a monthly timescale was used in this case study for deriving model-measurement un-
certainties, solving for weekly or daily values would result in fewer observations being10

strongly de-weighted in the inversion. While some previous studies have filtered out-
lier measurements prior to the inversion through various methods, the HB method is
less sensitive to these outliers. At Trinidad Head there is less consistency between the
model and measurements than at Mace Head, leading to model-measurement uncer-
tainties that are almost twice as large as those derived for Mace Head. These uncer-15

tainties are significantly higher in the latter part of the year (August–December), when
more regional pollution is intercepted. At this time, the nighttime uncertainties are con-
siderably larger than the daytime uncertainties and one possible cause could be from
errors in the model that have diurnal characteristics (e.g., sea breezes that are not cap-
tured). Uncertainties at Gosan are an order of magnitude larger than those derived at20

any other site. While the model captures the timing of many of the pollution events at
this site, the size of the pollution events are considerably larger than predicted by the
model and prior. This suggests that there could be emissions in close proximity to the
station that are not captured by the model at the resolution used or that the model is
under-representing the sensitivity to surface emissions. Uncertainties at Cape Grim are25

the smallest of all of the stations modeled here, owing to the measurement of mostly
baseline air and very small pollution events. Notably, the derived model-measurement
uncertainties at Cape Grim have decreased in the second half of the year when im-
proved instrumentation was installed that resulted in better instrumental precision. For
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most of the sites, we have found that there was not a clear advantage to using day-
time observations only. Derived autocorrelation timescales (not shown) were between
6 h and 1 day for each month and station and are similar to those presented in other
studies (Berchet et al., 2013).

4 Conclusions5

We present an application of a hierarchical Bayesian method for trace gas inversions.
We show that the inclusion of “hyper-parameters” to represent the a priori emissions
PDF, model-measurement uncertainty and measurement autocorrelation timescale, re-
sults in a more complete quantification of emissions uncertainties over traditional in-
verse methods that rely heavily on expert judgment.10

Using the hierarchical method, we have estimated emissions of SF6 for regions
around four AGAGE stations and hyper-parameters for each site. The emissions un-
certainties derived using the hierarchical method are generally larger than those de-
rived in traditional inversions as they account for a broader space of uncertainties in
the system, including random aggregation, representation and structural errors. We15

show that model error is a significant contribution to model-measurement uncertain-
ties at some sites, for example Gosan, without which, unrealistically large emissions
would be derived with small uncertainties. The large discrepancy between the model
and observations at this site results in the derivation of large model-measurement un-
certainties and accordingly larger emissions uncertainties than result from a standard20

Bayesian inversion. Similarly at Trinidad Head, derived uncertainties are larger than
expected, owing to poor model fit, which results in larger emissions uncertainties than
the comparable non-hierarchical inversion. In contrast, the generally good agreement
between observations and model at Mace Head and Cape Grim results in a model-
measurement uncertainty being derived that is smaller than the initial a priori value.25

Each of these findings is consistent with our expectations about the uncertainty char-
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acteristics of model performance at these sites but have been derived using minimal
expert judgement.
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Table 1. National SF6 emissions for 2012 derived using the hierarchical Bayesian method for
the regions surrounding four AGAGE stations. The fraction of the country for which emissions
are derived (i.e., fraction of EDGAR emissions contained within the domains shown in Fig. 1) is
tabulated along with 50th (median), 16th and 84th percentiles of the posterior emissions PDF.

Country Country Fraction (%) Emissions (Mgyr−1)

Q50 Q16 Q84

China 75 1576 1259 2107
Germany 100 348 264 455
South Korea 100 278 195 418
United States 21 269 193 407
Japan 96 242 154 416
France 100 61 40 90
UK 100 21 13 32
Australia 80 14 8 23

33425

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/13/33403/2013/acpd-13-33403-2013-print.pdf
http://www.atmos-chem-phys-discuss.net/13/33403/2013/acpd-13-33403-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
13, 33403–33431, 2013

Uncertainty
quantification in

trace gas inversions

A. L. Ganesan et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Theoretical Quantiles

Es
tim

at
ed

 Q
ua

nt
ile

s (b)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Theoretical Quantiles

Es
tim

at
ed

 Q
ua

nt
ile

s

(a)

Fig. 1. Quantile-quantile (Q-Q) plots of a hierarchical Bayesian inversion (red) and a non-hierarchical
Bayesian inversion (blue) in which a priori emissions uncertainties used in the inversion were (a) smaller
than the true uncertainty (over-confident) and (b) larger than the true uncertainty (under-confident).
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Fig. 1. Quantile–quantile (Q–Q) plots of a hierarchical Bayesian inversion (red) and a non-
hierarchical Bayesian inversion (blue) in which a priori emissions uncertainties used in the
inversion were (a) smaller than the true uncertainty (over-confident) and (b) larger than the true
uncertainty (under-confident).
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Fig. 2. Median 2012 SF6 emissions for regions around (a) Mace Head, Ireland (b) Trinidad Head, USA
(c) Gosan, South Korea and (d) Cape Grim, Australia. Derived emissions were re-distributed from the
aggregated regions solved for in the inversion by assuming the distribution of EDGAR emissions.
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Fig. 2. Median 2012 SF6 emissions for regions around (a) Mace Head, Ireland (b) Trinidad
Head, USA (c) Gosan, South Korea and (d) Cape Grim, Australia. Derived emissions were re-
distributed from the aggregated regions solved for in the inversion by assuming the distribution
of EDGAR emissions.
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Fig. 3. Difference between derived 2012 SF6 emissions and the scaled EDGAR emissions for regions
around (a) Mace Head, Ireland (b) Trinidad Head, USA (c) Gosan, South Korea and (d) Cape Grim,
Australia. Positive differences are shown by the red logarithmic colormap and negative differences by
the blue logarithmic colormap.
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Fig. 3. Difference between derived 2012 SF6 emissions and the scaled EDGAR emissions for
regions around (a) Mace Head, Ireland (b) Trinidad Head, USA (c) Gosan, South Korea and
(d) Cape Grim, Australia. Positive differences are shown by the red logarithmic colormap and
negative differences by the blue logarithmic colormap.
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Fig. 4. National emissions derived using three methods: (1) Hierarchical Bayesian (HB) inversion (blue);
(2) Non-hierarchical Bayesian inversion (NHB) with model-measurement uncertainties that include a
model error (red); (3) Non-hierarchical Bayesian inversion in which no model error was included (green).
A priori emissions are shown as black bars and uncertainties reflect the 16th to 84th percentiles of the
posterior national emissions. The asterisk (*) refers to countries in which emissions were derived for
only a fraction of the country.
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Fig. 4. National emissions derived using three methods: (1) Hierarchical Bayesian (HB) inver-
sion (blue); (2) Non-hierarchical Bayesian inversion (NHB) with model-measurement uncertain-
ties that include a model error (red); (3) Non-hierarchical Bayesian inversion in which no model
error was included (green). A priori emissions are shown as black bars and uncertainties re-
flect the 16th to 84th percentiles of the posterior national emissions. The asterisk (*) refers to
countries in which emissions were derived for only a fraction of the country.
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Fig. 5. Monthly 2012 SF6 model-measurement uncertainties derived for daytime observations (blue)
and nighttime observations (red) with errorbars corresponding to 16th to 84th percentiles of the posterior
distributions. The a priori value is shown by the black line.
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Fig. 5. Monthly 2012 SF6 model-measurement uncertainties derived for daytime observations
(blue) and nighttime observations (red) with errorbars corresponding to 16th to 84th percentiles
of the posterior distributions. The a priori value is shown by the black line.
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Fig. 6. Simulated 2012 SF6 mole fractions (red line) and observations (blue dot) at each AGAGE station.
Note that each station is plotted with a different y-axis range. Shading represents the 16th to 84th
percentiles of the posterior model-measurement uncertainty distributions derived in the inversion. Black
circles indicate the baseline values derived at each month.
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Fig. 6. Simulated 2012 SF6 mole fractions (red line) and observations (blue dot) at each AGAGE
station. Note that each station is plotted with a different y-axis range. Shading represents the
16th to 84th percentiles of the posterior model-measurement uncertainty distributions derived
in the inversion. Black circles indicate the baseline values derived at each month.
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