

1 **Hydroxymethanesulfonic acid in size-segregated aerosol particles at**
2 **nine sites in Germany**

3
4 Sebastian Scheinhardt, Dominik van Pinxteren, Konrad Müller, Gerald Spindler, Hartmut
5 Herrmann*
6 Leibniz-Institut für Troposphärenforschung (TROPOS),
7 Permoserstraße 15, 04318 Leipzig, Germany

8
9 scheinhardt@tropos.de, dominik@tropos.de, konrad@tropos.de, spindler@tropos.de,
10 herrmann@tropos.de

11
12 Keywords: hydroxymethanesulfonic acid, HMSA, size-segregated particles, Berner impactor,
13 Germany

14
15
16
17
18
19
20
21
22
23
24
25 Revised version submitted to
26 Atmospheric Chemistry and Physics

27 March 2013

28
29
30
31 *Corresponding author, Phone: +49 341 2717 7024; Fax: +49 2717 99 7024
32 E-mail address: herrmann@tropos.de (H. Herrmann)

1 **Abstract**

2 In the course of two field campaigns, size-segregated particle samples were collected at nine sites in
3 Germany, including traffic, urban, rural, marine, and mountain sites. During the chemical
4 characterisation of the samples some of them were found to contain an unknown substance that was
5 later on identified as hydroxymethanesulfonic acid (HMSA). HMSA is known to be formed during the
6 reaction of S(IV) (HSO_3^- or SO_3^{2-}) with formaldehyde in the aqueous phase. Due to its stability, HMSA
7 can act as a reservoir species for S(IV) in the atmosphere and is therefore of interest for the
8 understanding of atmospheric sulphur chemistry. However, no HMSA data are available for
9 atmospheric particles from Central Europe and even on a worldwide scale, data are scarce. Thus, the
10 present study now provides a representative dataset with detailed information on HMSA
11 concentrations in size-segregated Central European aerosol particles. HMSA mass concentrations in
12 this dataset were highly variable: HMSA was found in 224 out of 738 samples (30%), sometimes in
13 high mass concentrations exceeding those of oxalic acid. In average over all 154 impactor runs,
14 31.5 ng/m^3 HMSA were found in PM_{10} , contributing 0.21% to the total mass. The results show that
15 the particle diameter, the sampling location, the sampling season and the air mass origin impact the
16 HMSA mass concentration. Highest concentrations were found in the particle fraction 0.42 – 1.2 μm ,
17 at urban sites, in winter and with eastern (continental) air masses, respectively. The results suggest
18 that HMSA is formed during aging of pollution plumes. A positive correlation of HMSA with sulphate,
19 oxalate and PM is found ($R^2 > 0.4$). The results furthermore suggest that the fraction of HMSA in PM
20 slightly decreases with increasing pH.

21

22 **Abbreviations**

23 HMSA hydroxymethanesulfonic acid
24 HASA hydroxyalkanesulfonic acid
25 Su summer
26 Wi winter
27 W west
28 N north
29 E east
30 ME Melpitz
31 DD Dresden
32 OB Oberbärenburg
33 AU Augsburg
34 LT Leipzig-TROPOS
35 LE Leipzig-Eisenbahnstraße
36 HP Hohenpeißenberg
37 SI Schauinsland
38 BÖ Bösel

1 **1. Introduction**

2 In the course of two field campaigns (REGKLAM and GUAN, cf. Scheinhardt et al., 2013a, and
3 Birmili et al., 2009), numerous size-segregated particle samples were collected at nine sites in
4 Germany. During the chemical characterisation of the samples a fraction of the samples were found
5 to contain hydroxymethanesulfonic acid (HMSA, HO-CH₂-SO₃H).

6 HMSA and other hydroxyalkanesulfonic acids (HASA; HO-CHR-SO₃H with R = -(CH₂)_nH) were
7 suggested to be involved in atmospheric sulphur chemistry, notably regarding sulphate formation.
8 Sulphate is one of the main constituents of atmospheric aerosol particles. It is mainly formed from
9 the oxidation of S(IV) by H₂O₂ in the atmospheric aqueous phase and especially in cloud droplets.
10 Dissolved S(IV) originates from gaseous SO₂, which, in Central Europe, is mainly emitted by human
11 activities, e.g. coal burning. SO₂ dissolution is described by a Henry's law equilibrium, followed by the
12 formation of hydrogen sulphite (HSO₃⁻) or sulphite (SO₃²⁻). However, in various field studies, it has
13 been observed that S(IV) concentrations in the atmospheric aqueous phase were often higher than
14 expected from Henry's law (Richards et al., 1983; Munger et al., 1984). Rapidly, the reaction of
15 dissolved SO₂/HSO₃⁻/SO₃²⁻ with dissolved aldehydes, yielding hydroxyalkanesulfonic acids, was
16 identified as an explanation for this observation (Munger et al., 1984). Hydroxymethanesulfonic acid
17 turned out to be the most important HASA since formaldehyde, its organic precursor, is the most
18 common aldehyde in the atmospheric aqueous phase (Olson and Hoffmann, 1989; Takeuchi et al.,
19 2001).

20 An overview of the HMSA formation mechanism is given in Figure 1. HMSA formation is most
21 rapid at pH > 5, but HMSA decomposition as well is enhanced at higher pH. The highest stability is
22 thus observed at acidic pH (Sorensen and Andersen, 1970; Munger et al., 1986). HMSA is comparably
23 stable and not readily oxidised (Hoigné et al., 1985; Martin et al., 1989; Ojo et al., 2004). It therefore
24 accumulates in the atmosphere and can be found in high concentrations. Katagiri et al. (1996) found
25 hydroxymethanesulfonate to be the third most important anion in dew samples collected in Japan. It
26 has been suggested that the high HMSA concentrations may act as a reservoir species for
27 atmospheric S(IV) (Richards et al., 1983; Munger et al., 1984 and 1986; Voisin et al., 2000) and might
28 thus impact S(IV) oxidation kinetics (McArdle and Hoffmann, 1983) by shielding S(IV) from the direct
29 oxidation by non-radical oxidants such as H₂O₂.

30 The HMSA dataset obtained here was evaluated because HMSA, on the one hand, is of great
31 interest for the understanding of S(IV) oxidation processes but, on the other hand, has only rarely
32 been quantified in atmospheric particles (Suzuki et al., 2001). The aim of the present study is thus to
33 investigate HMSA concentrations in size-segregated atmospheric aerosol particles at selected sites in
34 Central Europe in order to identify the main factors determining HMSA mass concentrations. To this

1 end, the influences of particle diameter, sampling location, sampling season and air mass origin are
2 studied.

3

4 **2. Material and Methods**

5 2.1 Particle sampling

6 Size-segregated aerosol particle samples were collected in two field campaigns in Germany in
7 2009 and 2010 as described by Scheinhardt et al. (2013b). Sampling was performed on ring-like
8 aluminium foils using five stage Berner impactors. Inside the impactors, particles are separated
9 depending on their aerodynamic diameter, the 50% cut-offs being 0.05 – 0.14 – 0.42 – 1.2 – 3.5 –
10 10 µm for impactor stages 1–5, respectively. Sampling was performed at nine sites in Germany
11 (Figure 2, cf. Birmili et al., 2009):

12 (1) Leipzig-Eisenbahnstraße (LE; 51.34°N, 12.37°E, 119 m a.s.l.) is a traffic site located about half-way
13 between Leipzig city centre and Leipzig-TROPOS (LT) in a street canyon arranged in west-east
14 direction. The air inlet is installed about 6 m above the ground level at the northern side of the
15 canyon.

16 (2) Leipzig-TROPOS (LT; 51.35°N, 12.43°E, 125 m a.s.l.) is an urban site located at the roof of TROPOS
17 building, 4 km northeast of the city centre of Leipzig (530,000 residents). The air inlet is installed
18 16 m above the ground level. The site is not directly affected by local particle sources like traffic.

19 (3) Dresden-Winckelmannstraße (DD; 51.04°N, 13.73°E, 112 m a.s.l.) is an urban site in the city of
20 Dresden (530,000 residents). The site is not directly affected by local particle sources like traffic.

21 (4) Augsburg (AU; 48.36°N, 10.91°E, 484 m a.s.l.) is an urban site located about 1 km south-east of
22 the city centre of Augsburg (270,000 residents). There are no local particle sources nearby.

23 (5) Melpitz (ME; 51.54°N, 12.93°E, 86 m a.s.l.) is a well characterised rural site in the German
24 lowlands (Spindler et al., 2010, 2012, 2013). It is surrounded by meadows.

25 (6) Oberbärenburg (OB; 50.78°N, 13.72°E, 735 m a.s.l.) is a rural site 30 km south of Dresden. It is
26 located in a low mountain range and is surrounded by forests.

27 (7) Bösel (BÖ; 53.00°N, 7.96°E, 16 m a.s.l.) is a rural site located 30 km southwest of Oldenburg
28 (160,000 residents), 80 km south of the North sea coast.

29 (8) Schauinsland (SI; 47.91°N, 7.91°E, 1205 m a.s.l.) is a rural site located on the mountain with the
30 same name, around 10 km southeast of Freiburg im Breisgau (220,000 residents), in the black
31 forest.

32 (9) Hohenpeißenberg (HP; 47.80°N, 11.00°E, 988 m a.s.l.) is a rural site located 50 km south of
33 Munich on top of a hill that rises about 300 m above the surrounding landscape.

1 Sampling was started whenever the weather forecast predicted favourable meteorological
2 conditions (i.e. no precipitation and a constant air mass origin throughout the sampling day). The
3 sampling period was 24 hours, corresponding to a sampled air volume of 108 m³.

4 Prior to use, the aluminium foils were pre-heated at 300 °C for at least two hours in order to
5 remove organic traces. After sampling, the foils were stored at -21 °C until analysis.

6

7 2.2 Classification of sampling days

8 Out of the complete dataset, only sampling days with unambiguous air mass origins were
9 selected and chemically analysed. This was the case for 30 sampling days, corresponding to 156
10 impactor runs or 738 Berner impactor foils. Depending on the season and the air mass origin during
11 sampling, sampling days were classified into six categories: Winter West (WiW), Winter North (WiN),
12 Winter East (WiE), Summer West (SuW), Summer North (SuN), and Summer East (SuE). This empirical
13 categorisation has proven to be successful in former studies in Central Europe (Spindler et al., 2010,
14 2012, 2013) and considers differences in PM mass concentrations and compositions under different
15 meteorological conditions. Summer included sampling days between May and October and winter
16 included days between November and April. The air mass origin was determined using 96-hours-
17 backward trajectories from the NOAA HYSPLIT transport model (Hybrid Single Particle Lagrangian
18 Integrated Trajectory Model; Draxler and Hess, 1998; <http://ready.arl.noaa.gov/HYSPLIT.php>).
19 Backward trajectories were calculated for each sampling day and each sampling site at 10:00 CET and
20 18:00 CET for arrival heights of 200, 500 and 1,000 m above the ground level. An overview of the
21 sampling events is given in the Supplementary Material.

22

23 2.3 Weighing and chemical analysis

24 The determination of the collected particle mass was done gravimetrically using a
25 microbalance (UMT-2, Mettler-Toledo, Switzerland) after at least 48 hours of equilibration at
26 (20±1) °C and a relative humidity of (50±5)%. After weighing, the foils were cut with ceramic scissors
27 and chemically analysed.

28 Chemical analysis was performed after extraction of an aliquot of an aluminium foil in 2 ml of
29 deionised water (> 18 MΩ·cm) following a standard protocol (10 min shaking, 10 min ultrasonic
30 treatment, 10 min shaking). After extraction, the solution was filtered using syringe filters with a pore
31 size of 0.45 µm.

32 Main inorganic ions (chloride, nitrate, sulphate) were determined from the aqueous extracts
33 using ion chromatography with conductivity detection (ICS3000, Dionex). Cations were separated
34 applying a methylsulfonic acid eluent and a CS16 (3 mm) column, anions were separated applying a

1 KOH eluent in a AS18 (2 mm) column. Calibration was done daily, using a four point standard (Fluka,
2 Switzerland).

3 HMSA and oxalate were determined from the aqueous extracts using a capillary
4 electrophoresis method described by Kramberger-Kaplan (2003) and Scheinhardt et al. (2013b).
5 Shortly, a background electrolyte consisting of 2 mM 5-sulfosalicylic acid, 8 mM
6 tris(hydroxymethyl)aminomethane and 0.001% hexadimethrine bromide at a pH of 8.2 was used in
7 an Agilent 7100 capillary electrophoresis system. An uncoated fused-silica capillary with an inner
8 diameter of 75 μ m and a total length of 80.5 cm (72 cm to the detector) was used. The capillary was
9 maintained at 20 °C. Separation of HMSA from other compounds was reached within 13 min,
10 applying a voltage of -30 kV (corresponding to a current of about -5 μ A) following hydrodynamic
11 sample injection with 750 mbar·s (corresponding to 1% of the capillary length). Indirect UV detection
12 with a measurement wavelength of 260 nm (bandwidth: 20 nm), a reference wavelength of 208 nm
13 (bandwidth: 36 nm) and a time resolution of 20 Hz was used for quantification. Migration times and
14 peak areas were very well reproducible (n = 10, RSD 0.08% and 2.16%, respectively). No significant
15 blank values were found. The HMSA detection limit (LOD; three times the standard deviation of the
16 background signal) was 1.15 μ M (127 ppb) and the quantification limit (LOQ; LOQ = 3 LOD) was
17 3.44 μ M (382 ppb).

18 HMSA concentrations above the LOD were found in 224 of 738 samples. From these 224
19 samples, 157 had HMSA concentrations between the LOD and the LOQ. Even though concentrations
20 in this range are less reliable, they were still considered in this study, since the concentrations
21 uncertainties associated with such concentrations are regarded less problematic than setting all
22 those HMSA concentrations to zero. Thus, in the present study, all HMSA concentrations above the
23 LOD are reported. In atmospheric units, the LOD corresponds to mass concentrations of about 6-
24 7 ng/m³ (depending on the impactor stage and the extraction protocol). Values below the LOD were,
25 however, taken as zero. The HMSA quantification method in this study has a slightly better LOD than
26 the method applied by Suzuki et al. (2001), who for the first time investigated particulate HMSA by
27 ¹H NMR.

28 The amount of organic and elemental carbon (OC/EC) was quantified using a thermographic
29 method (C-mat 5500, Ströhlein, Germany) following VDI guideline 2465, Part 2 with minor
30 modifications. In the first step, an aliquot of an aluminium foil was heated to 650 °C in a nitrogen
31 atmosphere. Under these conditions, organic compounds evaporated and were flushed towards a
32 CuO catalyst. There they were oxidised, forming CO₂ that was subsequently quantified with a NDIR
33 detector (OC). In the next step, after cooling to at least 75 °C, the foil was again heated to 650 °C in
34 an oxygen atmosphere oxidising EC, which was quantified as CO₂, too. Compared to other methods,
35 this method tends to overestimate EC and to underestimate OC (Schmid et al., 2001). However, due

1 to the melting point of aluminium (660 °C), the method is limited to a temperature of 650 °C, and
2 thermo-optical methods applying the EUSAAR-2, NIOSH or IMPROVE protocols cannot be applied. For
3 details see Spindler et al. (2012).

4

5 **2.4 Particle aqueous phase pH**

6 The charge balance in our particle samples, considering main inorganic ions (NH_4^+ , Na^+ , K^+ ,
7 Ca^{2+} , Mg^{2+} , SO_4^{2-} , NO_3^- , Cl^-) and organic ions (oxalate, malonate, tartronate, succinate, malate and
8 hydroxymethanesulfonate), was generally equalised and varied only within analytical errors.
9 Contrary to recent studies from China (Cheng et al., 2011; Zhou et al., 2012), charge balances could
10 thus not be applied to calculate particle aqueous phase pH in this study. They were instead
11 determined applying measurements of the aqueous extracts' pH and a model that was able to
12 calculate the particle liquid water content. The particle aqueous phase pH was then calculated back
13 from the pH of the aqueous extracts, assuming its dilution due to the extraction protocol mentioned
14 above. A comparable approach was applied by Li et al. (1997) and Keene and Savoie (1998).

15 The pH of the aqueous extracts was determined using a micro pH electrode (PHR 146S
16 microelectrode, Lazar Research Laboratories, Los Angeles, USA). The particle water content was
17 calculated using the E-AIM model (Wexler and Clegg, 2002; www.aim.env.uea.ac.uk), which has been
18 shown to show good agreement with measured data (Engelhart et al., 2011). In former studies, E-
19 AIM Model III was found to be the most suitable E-AIM type for our samples (Scheinhardt et al.,
20 2013b). The average relative humidity during the measurement and the mass concentrations of the
21 main constituents (NH_4^+ , Na^+ , SO_4^{2-} , NO_3^- , and Cl^-) are the model input parameters. The mass
22 concentrations of H^+ and OH^- were adjusted to assure the particles' charge neutrality. The formation
23 of insoluble solids was enabled in the calculation. The model output provided the water content.

24

25 **3. Results and Discussion**

26 **3.1 Mass concentrations and contributions to PM**

27 The HMSA mass concentrations determined in atmospheric samples were highly variable
28 within the set of 224 samples with HMSA above the detection limit (out of a total of 738 samples, cf.
29 supplementary material). The highest observed value of 625 ng/m^3 was determined in a sample from
30 Augsburg on December 16, 2009 under Winter-East conditions on impactor stage 2. Since this value
31 was disproportionately high (more than 2.5 times higher than the second largest value), it was
32 identified as an outlier, most likely due to a local pollution episode at that site (analytical errors were
33 excluded by means of repetition experiments). It was therefore regarded as being not representative
34 and is thus not considered in the following discussions. Concentrations below detection limit were
35 set zero for all calculations.

1 The dataset was investigated regarding the influence of sampling location, particle diameter
2 and the meteorological conditions on HMSA mass concentrations (Figure 3). Although some
3 exceptions exist, urban sites generally exhibited higher HMSA mass concentrations than rural sites
4 (Figure 3a; average of the urban sites: 37.9 ng/m³, average of the rural sites: 23.8 ng/m³). Moreover,
5 rural lowland sites show higher HMSA mass concentrations than mountain sites. Generally, HMSA
6 mass concentrations in Central Europe seem to be slightly higher than those in Japan (14.7 ng/m³ in
7 urban aerosols, 1998 – 1999; Suzuki et al., 2001). To judge on the relative contribution of HMSA to
8 total PM, the fraction of HMSA in PM was calculated and compared for different sample types
9 (Figure 4). We found HMSA to be enriched by a factor of 1.23 in urban samples ($2.21 \pm 1.08\%$ vs.
10 $1.79 \pm 0.80\%$, Figure 4a). Even though this is not a statistically significant difference, it is consistent
11 with the precursors of HMSA originating from anthropogenic emissions.

12 Regarding the impact of the particle diameter, a strong dependency was observed, the
13 highest HMSA mass concentrations being found on impactor stage 3 (Figure 3b). A similar size
14 distribution was found by Suzuki et al. (2001). Since particles of that size have the longest
15 atmospheric lifetime and can therefore be transported over long distances, this observation might
16 suggest that HMSA was formed during aging of particles, e.g. in pollution plumes, and/or in fog or
17 cloud processing prior to the sampling time of the aerosol particles. In fact, from its abundance in
18 single particles with diameter $> 0.7 \mu\text{m}$ and its coincidence with periods of fog or high relative
19 humidity, HMSA has been suggested to represent a tracer for fog processing (Whiteaker and Prather,
20 2003; Healy et al., 2012). In contrast to impactor stage 3, short-lived particles (stages 1 and 5) contain
21 only small amounts of HMSA. The relative contribution to PM is also largest on stages 2 and 3 (Figure
22 4b). However, this might be due to the low absolute amounts of HMSA on the other stages, which
23 makes the calculation of the HMSA/PM fraction on those stages susceptible to errors.

24 Regarding the air mass origin, highest HMSA concentrations in total PM₁₀ (sum of impactor
25 stages 1–5) were observed for eastern (continental) air mass origins (Figure 3c; West: 23.9 ng/m³,
26 North: 7.7 ng/m³, East: 51.0 ng/m³). This reflects the high HMSA precursor concentrations (VOCs,
27 SO₂) in continental air masses and shows that the high anthropogenic SO₂ emissions in Eastern
28 Europe not only promote the formation of main inorganic PM constituents such as sulphate, but
29 might also enhance the formation of organic trace compounds such as HMSA. It can be presumed
30 that similar conclusions could be drawn from the analysis of other sulphur-containing organic
31 compounds, too. From the fraction of HMSA in PM₁₀ it again appears that HMSA is enriched in some
32 samples (Figure 4c).

33 In summer, HMSA mass concentrations were lower than in winter (Figure 3c; Summer:
34 23.9 ng/m³, Winter: 31.2 ng/m³), most likely again due to stronger anthropogenic emissions of HMSA
35 precursors, e.g. from individual heating systems.

1 It should be noted that, besides emissions, the meteorological conditions in winter and
2 during eastern air mass origin (i.e. low mixing layer height, low temperatures, decreased turbulence,
3 few precipitation) generally favour high PM loads, too. Clearly, this applies for HMSA as well as for all
4 the other PM constituents and might partly explain the HMSA concentration differences observed
5 between the seasons and air mass origins.

6

7 3.2 Correlations with other parameters

8 In the previous section, absolute HMSA mass concentrations were found to show
9 dependencies generally resembling the behaviour of total PM (i.e. highest concentrations on
10 impactor stage 3, at urban sites, in winter and with eastern air mass origins, respectively; cf. Spindler
11 et al., 2010 and 2012; Scheinhardt et al., 2013a). This is to some extent confirmed by correlating
12 HMSA mass concentration and the total PM mass concentration (Figure 5a).

13 The correlation of HMSA with sulphate (Figure 5b) is comparably strong, confirming that both
14 HMSA and sulphate are formed from the same precursor (SO_2) and under comparable conditions
15 (secondary formation in the atmospheric aqueous phase). Oxalate, which is photochemically formed
16 from higher organic compounds, also correlates with HMSA (Figure 5c). This also might be
17 interpreted in a way that both substances are formed under comparable conditions (secondary
18 formation in the atmospheric aqueous phase via photochemical multiphase oxidation processes
19 occurring in pollution plumes), even though both substances have different precursors.

20 Oxalate is one of the main contributors to the sum parameter OC, but the correlation of
21 HMSA with OC is weak (Figure 5d). This is probably due to the various sources of the different OC
22 components, including, for example, direct emissions. Traffic emissions, which are characterised by
23 high EC (diesel soot) contents, seem to affect HMSA concentrations only to a minor extent (Figure
24 5e). The same is true for potassium, a tracer for biomass burning (Figure 5f). The combination of
25 Figures 4b-4f suggests that HMSA is formed in sulphur-rich aged air masses. Future discussions of
26 HMSA formation should include direct SO_2 and formaldehyde measurements to identify possible
27 impacts on HMSA concentrations in more detail.

28

29

30 3.3 Impact of pH

31 Since the formation and degradation kinetics of HMSA is pH-dependent, the impact of the
32 particle aqueous phase pH on HMSA mass concentrations was investigated. In our study, particle
33 aqueous phase pH was found to vary between about 0.5 and 2.5. These values are somewhat higher
34 than those found in Los Angeles' particles (-2.4 – 0.2; Li et al., 1997) and lower than pH in marine
35 particles (2.48 – 3.48; Keene and Savoie, 1998). The impact of pH on absolute HMSA mass

1 concentrations is weak (Figure 6a; R^2 and slope close to zero). Interestingly, the fraction of HMSA in
2 PM shows a small dependency and decreases with increasing pH. Although the scatter is large, this is
3 in qualitative agreement with the decreasing stability of HMSA at increasing pH. In our samples, an
4 empiric relationship of $f \approx -0.16 \cdot \text{pH} + 0.72$ was found between pH 0 and 4, with f being the
5 percentage of HMSA in PM_{10} . It has to be noted, that HMSA formation is much more effective at pHs
6 higher than the ones estimated for the samples of this study. Olson and Hoffmann, 1989, predict the
7 formation rate to strongly increase at pHs above approx. 4.5. It is thus plausible to assume that the
8 formation of HMSA might have taken place at higher pH in cloud and fog water. Upon cloud/fog
9 dissipation, HMSA will then be stabilized due to a much lower water content (i.e. higher apparent
10 acidity) of the residual particles.

11

12 **4. Summary**

13 The present study presents data from a unique dataset regarding HMSA concentrations in size-
14 segregated ambient aerosol particles. HMSA mass concentrations were found to be highly variable.
15 Highest concentrations were found in urban environments during winter and eastern advection on
16 Berner impactor stage 3 ($D_p = 0.42\text{--}1.2 \mu\text{m}$). The fraction of HMSA in PM generally showed similar
17 trends. HMSA concentrations correlated with sulphate ($R^2 = 0.53$), Oxalate ($R^2 = 0.46$) and PM ($R^2 =$
18 0.42) mass concentrations. Correlations with EC ($R^2 = 0.37$), OC ($R^2 = 0.23$) and potassium ($R^2 =$
19 $0.23/0.06$) were also observed, but to a lesser extent. The fraction of HMSA in PM seems to be
20 slightly influenced by pH, possibly due to its pH-dependent stability. Overall, the results are
21 consistent with well-known aqueous phase formation of HMSA in polluted air masses from
22 anthropogenic precursors SO_2 and formaldehyde.

23

24 **Acknowledgements**

25 This study has been supported by the German Federal Ministry of Education and Research under
26 grant no. 01LR0802 (REGKLAM) and by the German Federal Environment Ministry under grant no.
27 F&E 370343200 (GUAN). We thank all our project partners in GUAN and REGKLAM. We would also
28 like to thank our technical staff: A. Dietze, S. Fuchs, A. Grüner, R. Rabe and A. Thomas as well as two
29 undergraduate students: A. Rau (Universität Leipzig) and E. Charlesworth (Seattle University), for
30 whom DAAD RISE support is gratefully acknowledged. Input of two anonymous reviewers to our
31 manuscript is much appreciated as well.

32

33

34 **References**

1 Birmili, W., Weinhold, K., Nordmann, S., Wiedensohler, A., Spindler, G., Müller, K., Herrmann, H.,
2 Gnauk, T., Pitz, M., Cyrys, J., Flentje, H., Nickel, C., Kuhlbusch, T.A.J., Löschau, G., Haase, D.,
3 Meinhardt, F., Schwerin, A., Ries, L., Wirtz, K.: Atmospheric aerosol measurements in the German
4 Ultrafine Aerosol Network (GUAN), Gefahrstoffe - Reinhaltung der Luft, 69(4), 137-145, 2009.
5

6 Cheng, S.H., Yang, L.X., Zhou, X.H., Xue, L.K., Gao, X.M., Zhou, Y., Wang, W.X.: Size-fractionated
7 water-soluble ions, situ pH and water content in aerosol on hazy days and the influences on
8 visibility impairment in Jinan, China, Atmos. Environ., 45, 4631-4640, 2011.
9

10 Draxler, R.R., Hess, G.D.: An overview of the HYSPLIT_4 modelling system for trajectories, dispersion
11 and deposition, Austr. Met. Mag., 47, 295-308, 1998.
12

13 Engelhart, G.J., Hildebrandt, L., Kostenidou, E., Mihalopoulos, N., Donahue, N.M., Pandis, S.N.: Water
14 content of aged aerosol, Atmos. Chem. Phys. 11, 911-920, 2011.
15

16 Healy, R. M., Sciare, J., Poulain, L., Kamili, K., Merkel, M., Müller, T., Wiedensohler, A., Eckhardt, S.,
17 Stohl, A., Sarda-Estève, R., McGillicuddy, E., O'Connor, I. P., Sodeau, J. R., and Wenger, J. C.:
18 Sources and mixing state of size-resolved elemental carbon particles in a European megacity:
19 Paris, Atmos. Chem. Phys., 12, 1681-1700, 2012.
20

21 Hoigné, J., Bader, H., Haag, W.R., Staehelin, J.: Rate constants of reactions of ozone with organic and
22 inorganic compounds in water – III Inorganic compounds and radicals, Water Res., 19, 993-1004,
23 1985.
24

25 Katagiri, Y., Sawaki, N., Arai, Y., Okochi, H., Igawa, M.: Enhanced dissolution of SO₂ into dewwater by
26 forming hydroxyalkanesulfonate, Chem. Lett., 197-198, 1996.
27

28 Keene, W.C., Savoie, D.L.: The pH of deliquesced sea-salt aerosol in polluted marine air, Geophys.
29 Res. Lett., 25, 2181-2184, 1998.
30

31 Kramberger-Kaplan, H.V.: Carbonsäuren und Dicarbonsäuren in atmosphärischen
32 Mehrphasenprozessen, Ph.D. Thesis, Technische Universität Darmstadt, Germany, 2003.
33

1 Li, S.M., Macdonald, A.M., Strapp, J.W., Lee, Y.N., Zhou, X.L.: Chemical and physical characterizations
2 of atmospheric aerosols over southern California, *J. Geophys. Res. Atmos.*, 102(D17), 21.341-
3 21.353, 1997.

4

5 Martin, L.R., Easton, M.P., Foster, J.W., Hill, M.W.: Oxidation of hydroxymethanesulfonic acid by
6 Fenton's reagent, *Atmos. Environ.*, 23, 563-568, 1989.

7

8 McArdle, J.V., Hoffmann, M.R.: Kinetics and Mechanism of the Oxidation of aquated sulfur dioxide by
9 hydrogen peroxide at low pH, *J. Phys. Chem.*, 87, 5425-5429, 1983.

10

11 Munger, J.W., Jacob, D. J., Hoffmann, M. R.: The Occurrence of Bisulfite-Aldehyde Addition Products
12 in Fog- and Cloudwater, *J. Atmos. Chem.*, 1, 335-350, 1984.

13

14 Munger, J.W., Tiller, C., Hoffmann, M.R.: Identification of hydroxymethanesulfonate in fog water.
15 *Science*, 231, 247-249, 1986.

16

17 Olson, T.M., Hoffmann, M.R.: Hydroxyalkylsulfonate formation: its role as a S(IV) reservoir in
18 atmospheric water droplets, *Atmos. Environ.*, 23, 985-997, 1989.

19

20 Ojo, J.F., Otoikhian, A., Olojo, R., Simoyi, R.H.: Oxyhalogen-Sulfur chemistry: nonlinear oxidation
21 kinetics of hydroxymethanesulfonic acid by acidic iodate, *J. Phys. Chem. A*, 108, 2457-2463, 2004.

22

23 Richards, L.W., Anderson, J.A., Blumenthal, D.L., McDonald, J.A., Kok, G.L., Lazarus, A.L.: Hydrogen
24 peroxide and sulfur (IV) in Los Angeles cloud water, *Atmos. Environ.*, 17, 911-914, 1983.

25

26 Scheinhardt, S., Spindler, G., Leise, S., Müller, K., Iinuma, Y., Zimmermann, F., Matschullat, J.,
27 Herrmann, H.: Comprehensive chemical characterisation of size-segregated PM10 in Dresden and
28 estimation of changes due to global warming, *Atmos. Environ.*, 75, 365-373, 2013a.

29

30 Scheinhardt, S., Müller, K., Spindler, G., Herrmann, H.: Complexation of trace metals in size-
31 segregated aerosol particles at nine sites in Germany, *Atmos. Environ.*, 74, 102-109, 2013b.

32

33 Schmid, H., Laskus, L., Abraham, H.J., Baltensperger, U., Lavanchy, V., Bizjak, M., Burba, P., Cachier,
34 H., Crow, D., Chow, J., Gnauk, T., Even, A., ten Brink, H.M., Giesen, K.P., Hitzenberger, R., Hueglin,
35 C., Maenhaut, W., Pio, C., Carvalho, A., Putaud, J.P., Toom-Sauntry, D., Puxbaum, H.: Results of the

1 "carbon conference" international aerosol carbon round robin test stage I, *Atmos. Environ.*, 35,
2 2111-2121, 2001.

3

4 Spindler, G., Brüggemann, E., Gnauk, T., Grüner, A., Müller, K., Herrmann, H.: A four-year size-
5 segregated characterization study of particles PM10, PM2.5 and PM1 depending on air mass
6 origin at Melpitz, *Atmos. Environ.*, 44(2), 164-173, 2010.

7

8 Spindler, G., Gnauk, T., Grüner, A., Iinuma, Y., Müller, K., Scheinhardt, S., Herrmann, H.: Size-
9 segregated characterization of PM10 at the EMEP site Melpitz (Germany) using a five-stage
10 impactor: a six year study, *J. Atmos. Chem.*, 69(2), 127-157, 2012.

11

12 Spindler, G., Grüner, A., Müller, K., Schlimper, S., Herrmann, H.: Long-term size-segregated particle
13 (PM₁₀, PM_{2.5}, PM₁) characterization study at Melpitz – influence of air mass inflow, weather
14 conditions and season, *J. Atmos. Chem.*, 70, 165-195, 2013.

15

16 Sorensen, P.E., Andersen, V.S.: The formaldehyde-hydrogen sulphite system in alkaline aqueous
17 solution. Kinetics, mechanisms, and equilibria, *Acta Chem. Scand.*, 24(4), 1301-1306, 1970.

18

19 Suzuki, Y., Kawakami, M., Akasaka, K.: ¹H NMR application for characterising water-soluble organic
20 compounds in urban atmospheric particles, *Environ. Sci. Technol.*, 35, 3656–2664, 2001.

21

22 Takeuchi, M., Okochi, H., Jgawa, M.: Dominant factors of major and minor components and
23 formation of hydroxyalkanesulfonate in urban dew-water, *Water Air Soil Poll.*, 130, 613-618,
24 2001.

25

26 Wexler, A.S., Clegg, S.L.: Atmospheric aerosol models for systems including the ions H⁺, NH₄⁺, Na⁺,
27 SO₄²⁻, NO₃⁻, Cl⁻, Br⁻, and H₂O, *J. Geophys. Res. Atmos.*, 107(D14), 4207, 2002.

28

29 Whiteaker, J. R., and Prather, K. A.: Hydroxymethanesulfonate as a tracer for fog processing of
30 individual aerosol particles, *Atmos. Environ.*, 37, 1033-1043, 2003.

31

32 Voisin, D., Legrand, M., Chaumerliac, N.: Scavenging of acidic gases (HCOOH, CH₃COOH, HNO₃, HCl,
33 and SO₂) and ammonia in mixed liquid-solid water clouds at the Puy de Dôme mountain (France),
34 *J. Geophys. Res.*, 105(D5), 6817-6835, 2000.

1 Zhou, Y., Xue, L.K., Wang, T., Gao, X.M., Wang, Z., Wang, X.F., Zhang, J.M., Zhang, Q.Z., Wang, W.X.:
2 Characterization of aerosol acidity at a high mountain site in central eastern China, *Atmos.*
3 *Environ.*, 51, 11-20, 2012.

4
5
6
7
8
9

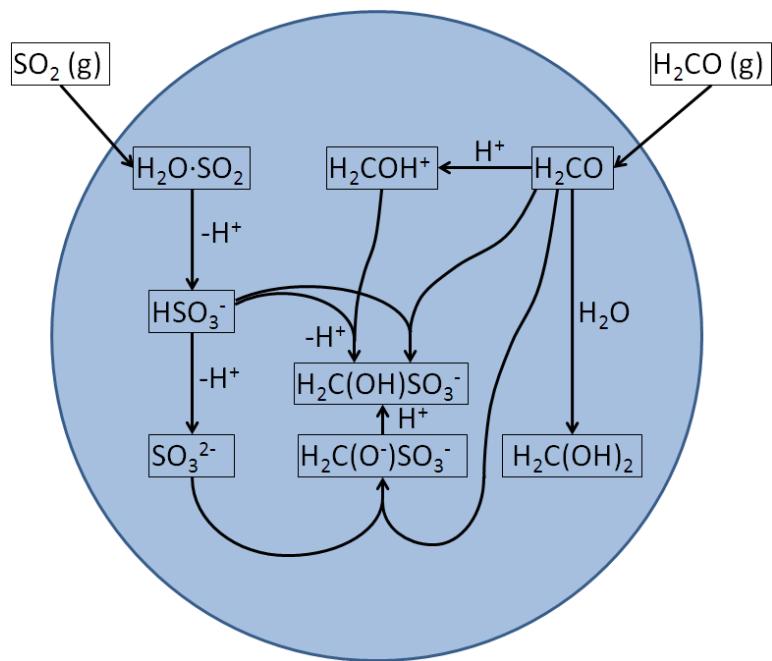
10
11
12
13

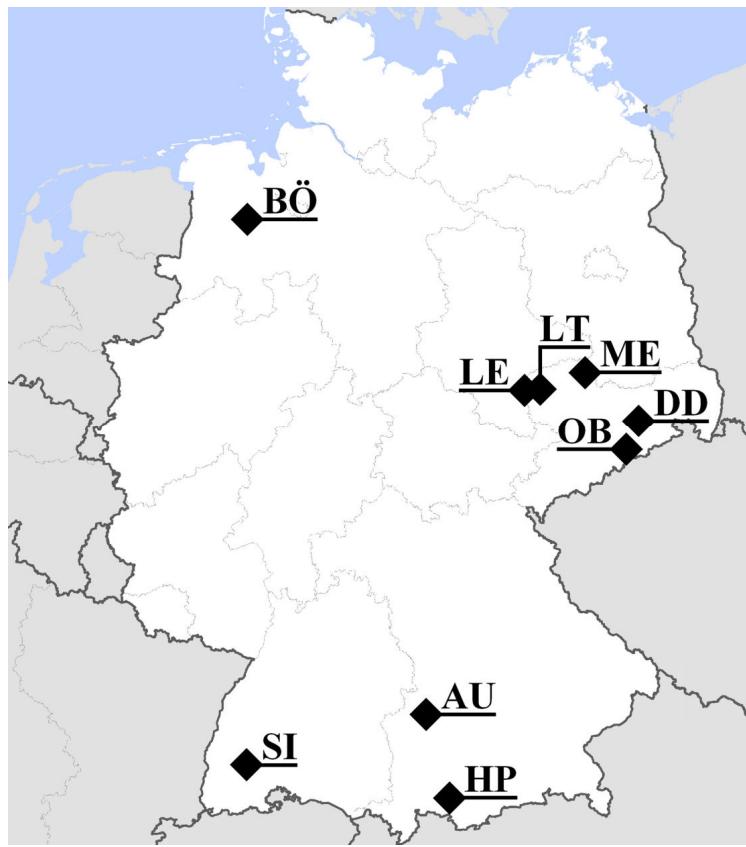
14
15 Figure Captions
16

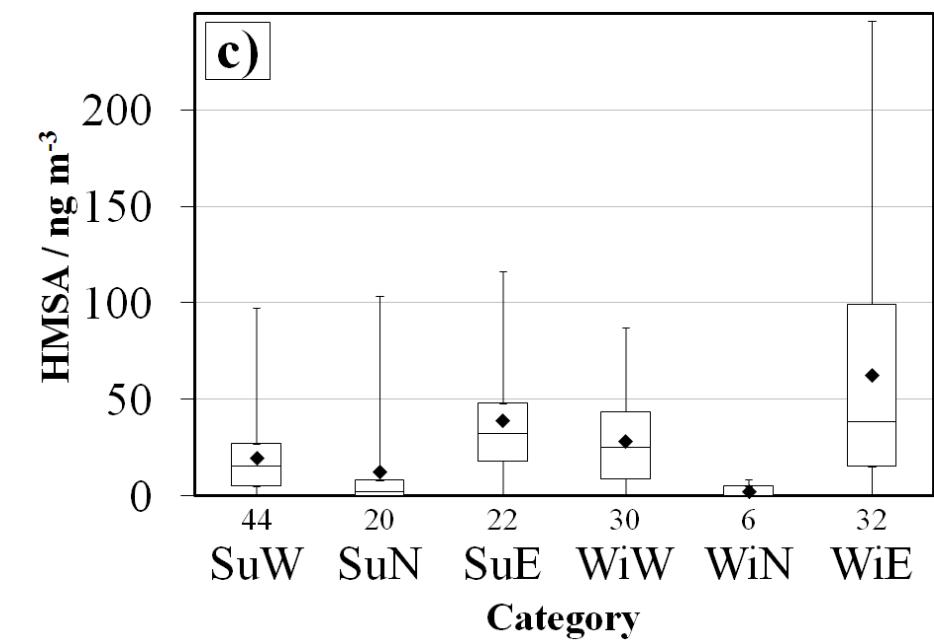
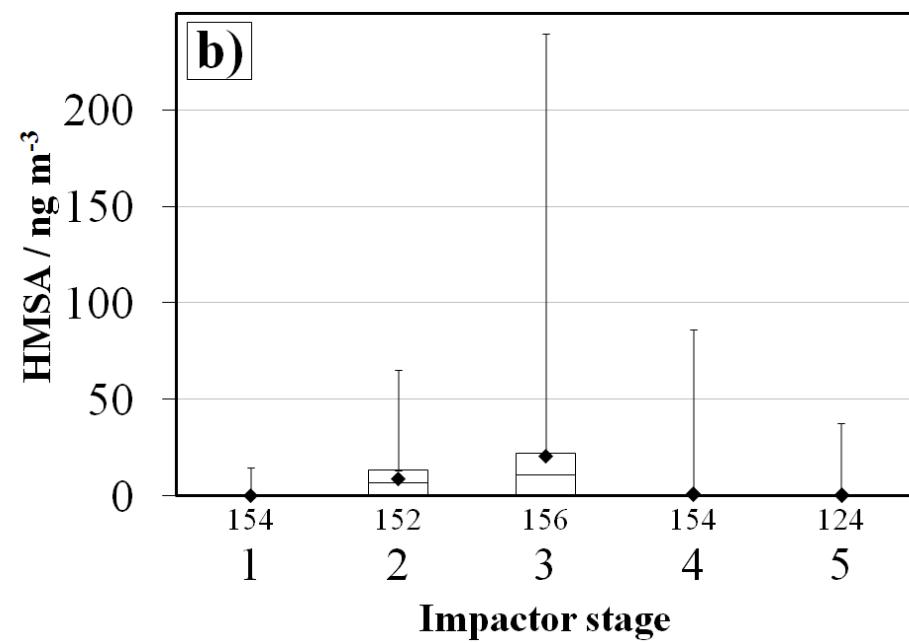
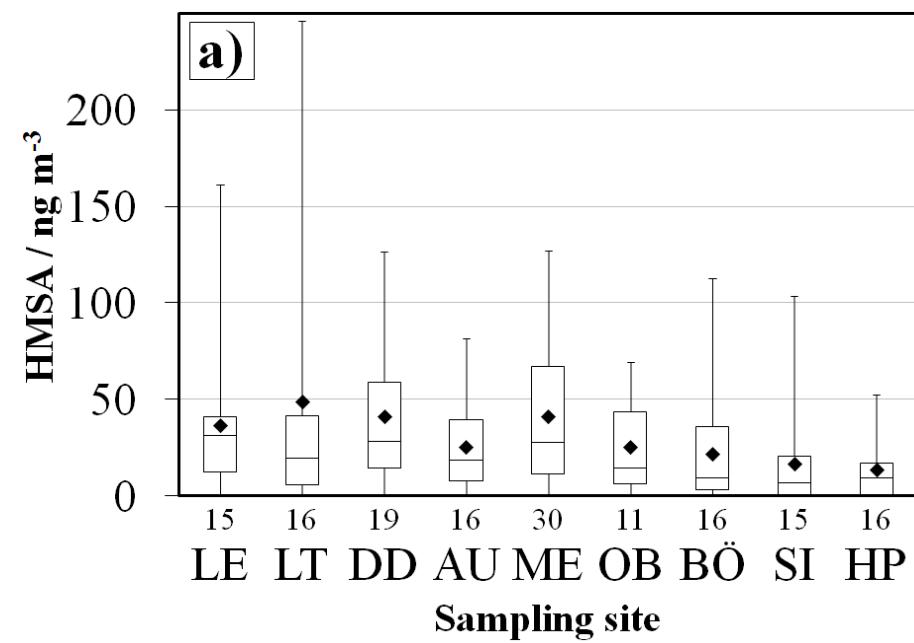
17 Fig. 1: Formation pathways of HMSA (Munger et al., 1984; Olson and Hoffmann, 1989). All reactions
18 are equilibrium reactions. The circle indicates an atmospheric droplet.

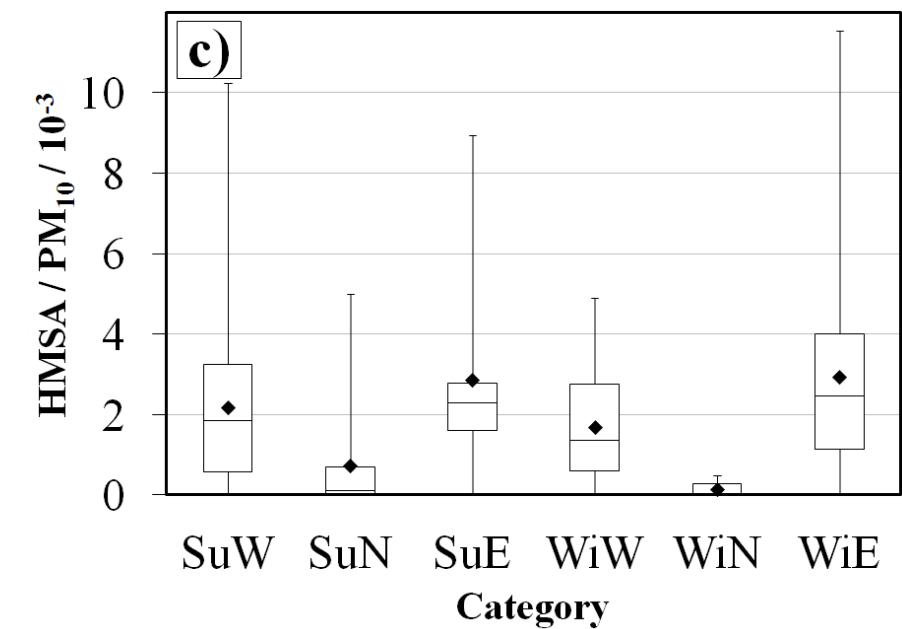
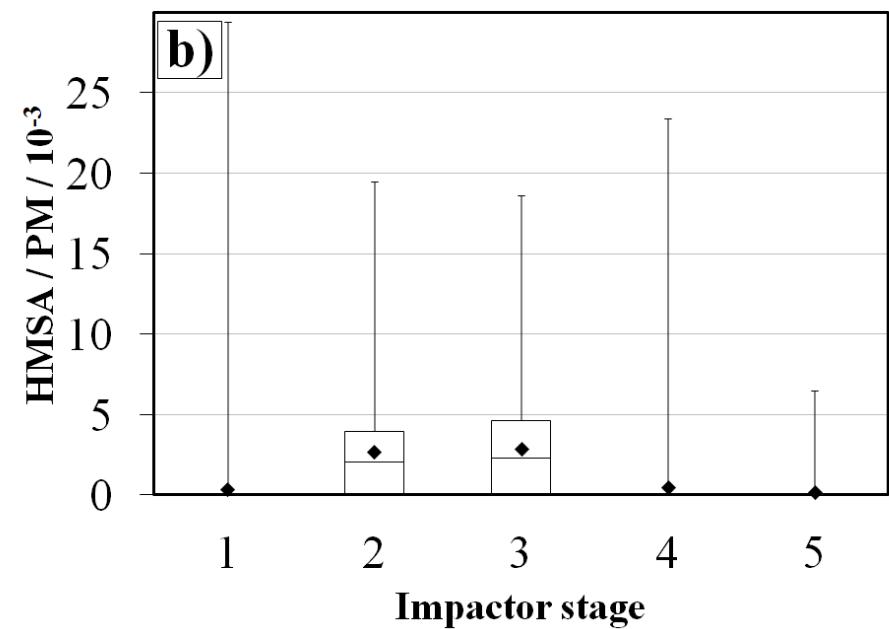
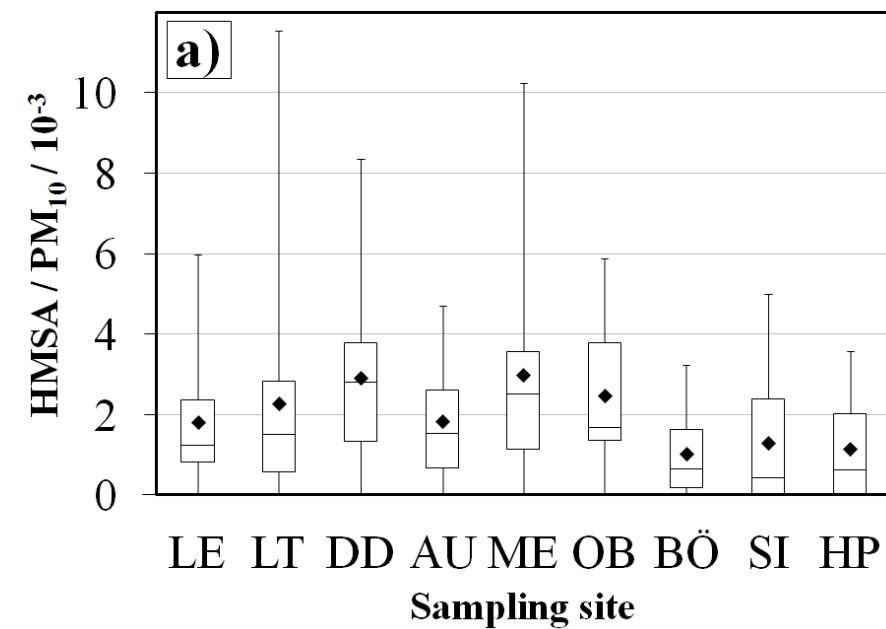
19
20 Fig. 2: Sampling sites (cf. Scheinhardt et al., 2013b). See text for explanations.
21
22 Fig. 3: (a) HMSA mass concentrations in PM_{10} (sum of impactor stages 1-5) as a function of the
23 sampling site. (b) HMSA mass concentrations as a function of particle size. (c) HMSA mass
24 concentrations in PM_{10} (sum of impactor stages 1-5) as a function of the meteorological category.
25 Boxes indicate the 25%, 50% and 75% quartiles, whiskers indicate the minimum and maximum
26 values. \blacklozenge indicates the respective mean value. The number of samples is given below each column.
27 See text for discussion.

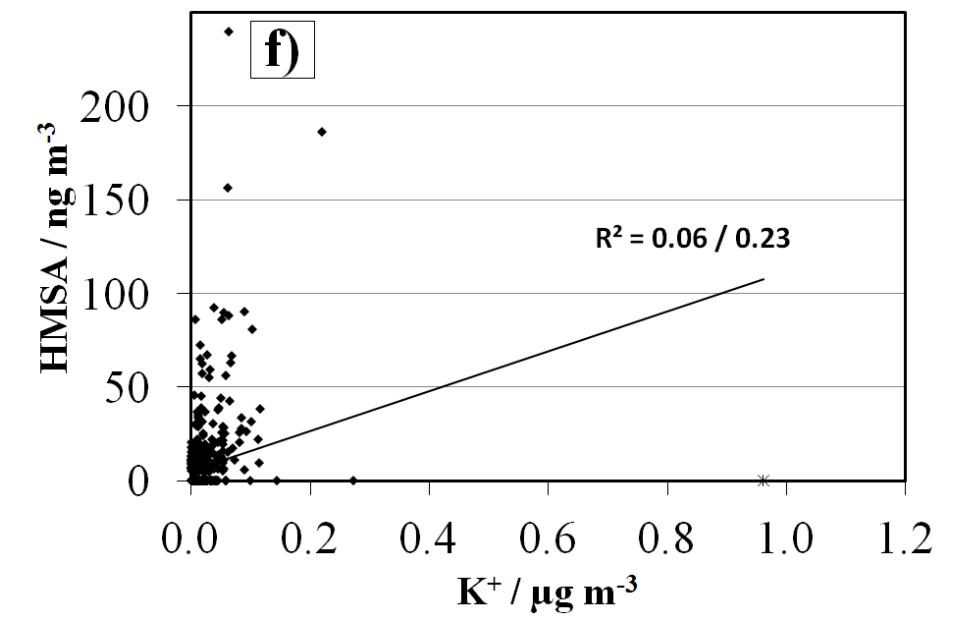
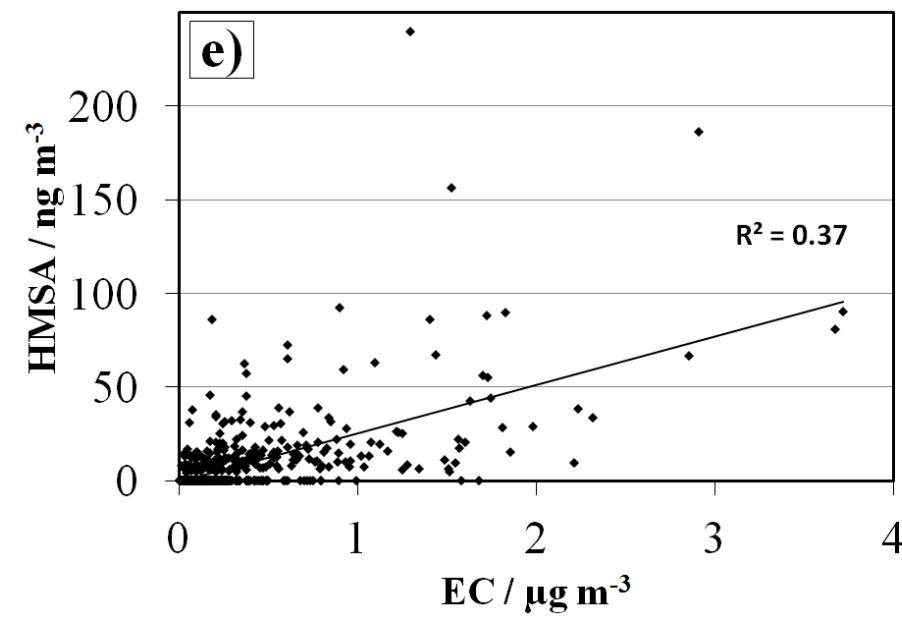
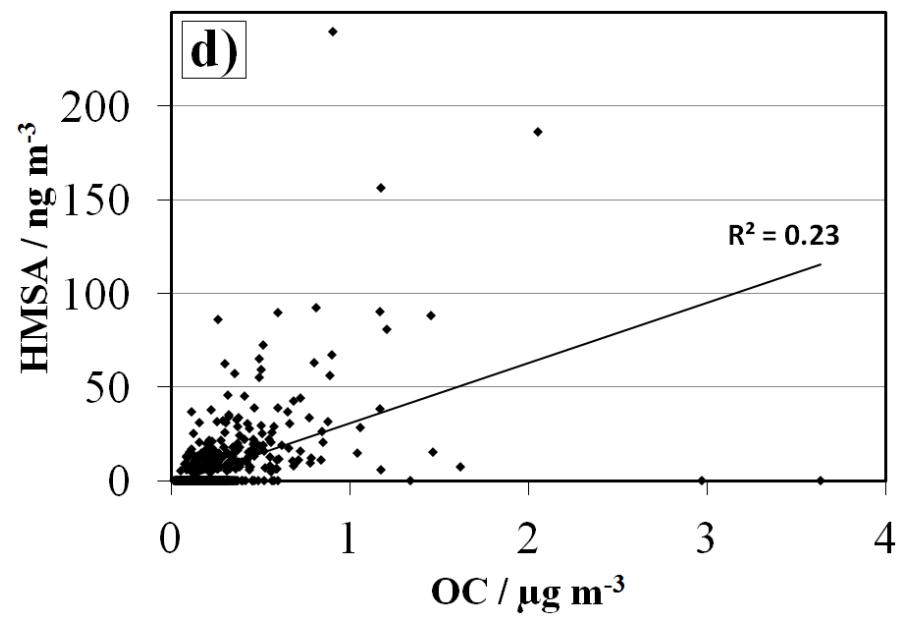
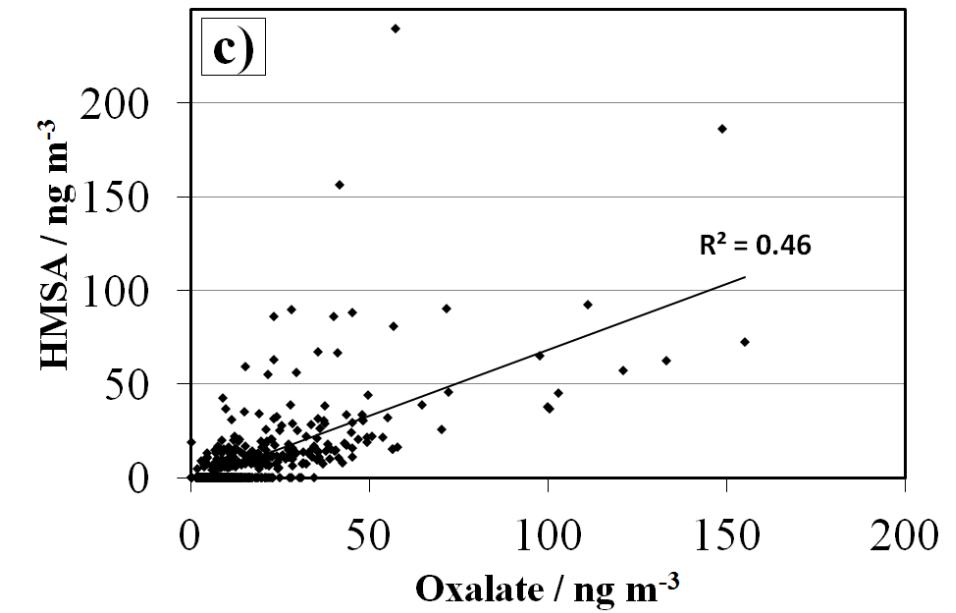
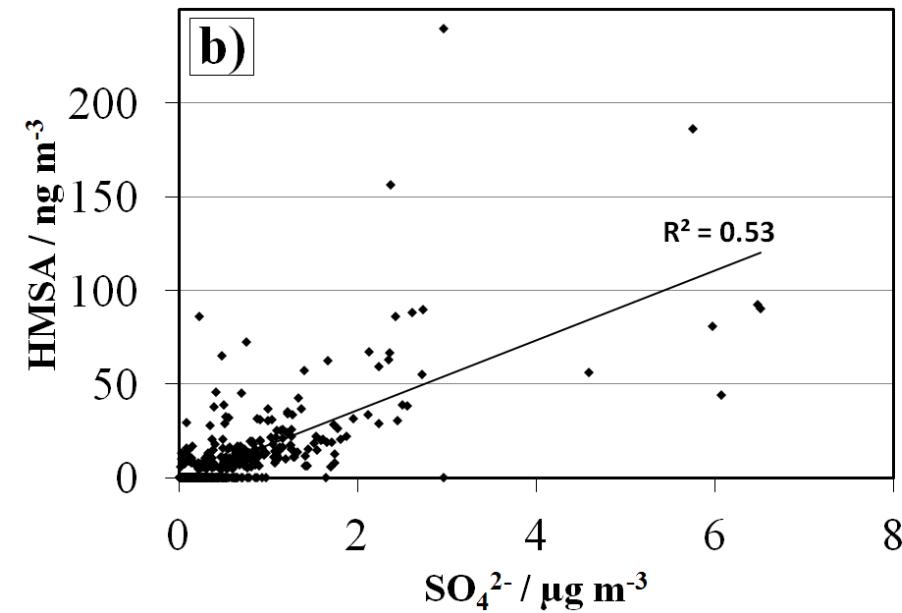
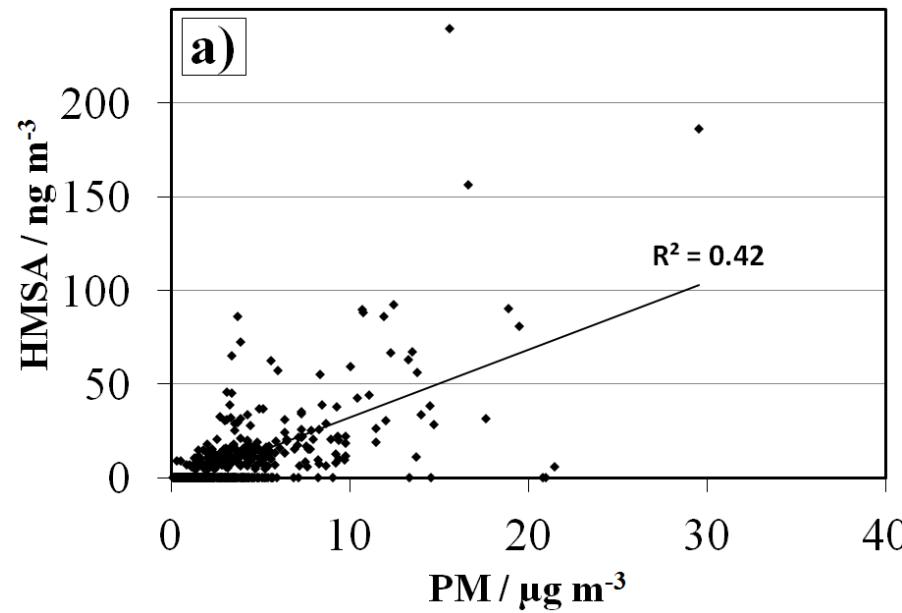
28
29 Fig. 4: (a) Fraction of HMSA in PM_{10} (sum of impactor stages 1-5) as a function of the sampling site.
30 (b) Fraction of HMSA in PM as a function of the particle size. (c) Fraction of HMSA in PM_{10} (sum of
31 impactor stages 1-5) as a function of the meteorological category. The symbols and numbers of
32 samples are consistent with Figure 3. See text for discussion.


33
34 Fig. 5: Correlations of HMSA mass concentrations with (a) the respective PM mass concentration and
35 (b-f) the mass concentrations of sulphate, oxalate, organic carbon, elemental carbon and potassium,


1 respectively. In f), R^2 is given with and without the consideration of an outlier ($0.96 \mu\text{g m}^{-3} \text{ K}^+$). The
2 charts comprise the complete dataset (738 samples). See text for discussion.




3




4







5 Fig. 6: (a) HMSA mass concentrations and (b) fractions of HMSA in PM as functions of the particle
6 liquid phase pH. The charts comprise only samples with HMSA concentration above the detection
7 limit (224 samples). See text for discussion.

