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Abstract 28 

This study is the first in a series of papers that aim to develop high-resolution emission 29 

databases for different anthropogenic sources in China. Here we focus on on-road transportation. 30 

Because of the increasing impact of on-road transportation on regional air quality, developing 31 

an accurate and high-resolution vehicle emission inventory is important for both the research 32 

community and air quality management. This work proposes a new inventory methodology to 33 

improve the spatial and temporal accuracy and resolution of vehicle emissions in China. We 34 

calculate, for the first time, the monthly vehicle emissions for 2008 in 2364 counties (an 35 

administrative unit one level lower than city) by developing a set of approaches to estimate 36 

vehicle stock and monthly emission factors at county-level, and technology distribution at 37 

provincial level. We then introduce allocation weights for the vehicle kilometers traveled to 38 

assign the county-level emissions onto 0.050.05 grids based on the China Digital 39 

Road-network Map (CDRM). The new methodology overcomes the common shortcomings of 40 

previous inventory methods, including neglecting the geographical differences between key 41 

parameters and using surrogates that are weakly related to vehicle activities to allocate vehicle 42 

emissions. The new method has great advantages over previous methods in depicting the spatial 43 

distribution characteristics of vehicle activities and emissions. This work provides a better 44 

understanding of the spatial representation of vehicle emissions in China and can benefit both 45 

air quality modeling and management with improved spatial accuracy. 46 
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1. Introduction 47 

Quantifying the magnitude and trend of anthropogenic air pollutants and greenhouse gas 48 

(GHG) emissions from China is of great importance because of their negative impact on the 49 

environment and their significant contribution to global emission budgets. The community has 50 

put tremendous effort into quantifying anthropogenic emissions in China through the 51 

development of bottom-up emission inventories (e.g. Streets et al., 2003; Ohara et al., 2007; 52 

Zhang et al., 2009). However, the spatial and temporal resolution in existing bottom-up 53 

inventories is still very low due to the limitation of emission models and lack of input data 54 

(Zhang et al., 2009). This has been recognized as the bottleneck limiting the performance of 55 

chemical transport models and the development of emission control strategies. There is an 56 

urgent need to develop high spatial and temporal emission profiles with improved accuracy 57 

through new emission models and data. This study, the first in a series that will develop 58 

high-resolution emission databases for different anthropogenic sources in China, will address 59 

emissions from on-road transportation. 60 

On-road transportation contributes significantly to air pollutant emissions in China because 61 

of the substantial vehicle growth during the past three decades. It is estimated that vehicles 62 

contributed 24%, 29% and 20% to national nitrogen oxides (NOx), Non-methane volatile 63 

organic compound (NMVOC) and carbon monoxide (CO) emissions, respectively, in China in 64 

2006, with higher contributions in urban areas (e.g., 40%, 41%, and 52%, respectively, in 65 

Beijing) (Zhang et al., 2009). Given the significant impact of vehicles to total emissions in 66 

China, it is of great importance to estimate vehicle emissions accurately at a high spatial and 67 

temporal resolution for both atmospheric chemistry research and air quality management. 68 

Vehicle emissions are difficult to quantify and locate spatially, because they are mobile and 69 



4 
 

affected by many influencing factors, such as vehicle stock, vehicle technology distribution (the 70 

shares of different technologies in the fleet), emission factors, and activity levels. Previous 71 

studies have developed numerous vehicle emission inventory methods at various resolutions, 72 

which can be classified into two broad categories. One method estimates vehicle emissions by 73 

road segment on the basis of link-based activity data (Niemeier et al., 2004; Huo et al., 2009; 74 

Wang et al., 2009), which has been applied to a few cities in China (Huo et al., 2009; Wang et 75 

al., 2009). However, this method is extremely data-intensive and thus difficult to extrapolate to 76 

most Chinese cities because of the limited data availability.  77 

The other method estimates emissions at provincial level and allocates total emissions to 78 

counties or grids based on surrogates, such as GDP (Cai and Xie, 2007), population density 79 

(Wei et al., 2008), or road density (Streets et al., 2003; Ohara et al., 2007; Zhang et al., 2009), 80 

by assuming a linear relationship between the surrogates and vehicle emissions of counties or 81 

grids within a province. However, these studies often apply national averages for key 82 

parameters (such as, technology distributions and vehicle emission factors) to estimate 83 

provincial emissions, which can introduce significant errors in the spatial distribution of 84 

emissions. Furthermore, many surrogates, such as GDP and population density, are not directly 85 

related to vehicle activity. While road density is directly related, it cannot reflect the variation of 86 

traffic flow between different roads and, therefore, this allocation method has been considered 87 

to have significant uncertainties at city level (Tuia et al., 2007; Ossés de Eicker et al., 2008; 88 

Saide et al., 2009). Some studies have improved on this method by using an aggregated 89 

surrogate that combines population density, road density, and traffic flow (Saide et al., 2009; 90 

Zheng et al., 2009). However, this method can only be applied for a few provinces with good 91 

data availability because data, such as traffic flow road by road, are not available for the whole 92 
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of China. Therefore, previous inventory methods are applicable either for a few specific cities, 93 

or for provinces and the country but with significant uncertainties resulting from the exclusion 94 

of geographical differences in key parameters and the choice of spatial surrogates that are 95 

weakly related to vehicle activity. Consequently, existing methods are not able to establish an 96 

accurate, high-resolution vehicle emission inventory for China.  97 

There are two important objectives to improve the accuracy and resolution of the vehicle 98 

emission inventory of China: (1) to increase the spatial resolution of the key influencing factors 99 

of emissions; (2) to develop a gridding method in which the surrogates are strongly related to 100 

vehicle activity.  101 

With these two aims in mind, this work developed a new methodology of high-resolution 102 

vehicle emission inventory for China. We first developed a county-level vehicle emission 103 

inventory that covered 2364 counties in China (county is an administrative unit one level lower 104 

than city). To calculate the emissions from vehicles registered in each county, we simulated 105 

county-level vehicle stock, province-level technology distribution, and county-level emission 106 

factors that took into account the geographic differences in local meteorological factors (e.g. 107 

temperature and humidity). We then allocated the county-level vehicle emissions onto 108 

0.050.05 grids based on the electronic road map of China compiled in 2010, which is the 109 

only available data close to 2008. In this step, the total vehicle kilometers traveled (VKT) of 110 

each vehicle type in a county was allocated to roads according to the road type. Because the 111 

new method differentiated the traffic load on different types of roads, it had advantages over 112 

previous allocation methods in depicting the spatial distribution of vehicle activities.  113 

This study focused on CO, Non-methane hydrocarbon (NMHC), NOx, and particulate 114 

matters with diameter less than 2.5 µm (PM2.5) emissions generated from running, starting and 115 
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evaporative processes of passenger vehicles and trucks in China in 2008. The article is 116 

organized as follows: in Section 2 we describe the methods to determine the county-level 117 

parameters for calculating county-level vehicle emissions and to allocate the emissions onto 118 

grids; in Section 3 we analyze the results of key parameters, county-level vehicle emissions, 119 

and gridded emissions; in Section 4 we evaluate the new allocation method by comparing with 120 

previous methods and by conducting sensitivity analyses for key assumptions; finally in Section 121 

5 we discuss the main uncertainties of the inventory method and the next step of future work. 122 

2. Methodology and data 123 

2.1 General methodology description 124 

To develop a high-resolution vehicle emission inventory for China, we estimated vehicle 125 

emissions at county-level by exploring the geographic differences in the key parameters as fully 126 

as possible, and allocated the county-level emissions onto 0.050.05 grids with a new 127 

allocation method which could better reflect the spatial distribution characteristics of vehicle 128 

activities.  129 

For a given county, emissions from vehicles registered in that county were calculated as 130 

follows:              131 

  , , ,( )   k i i j i i j k
i j

EMIS VP X VKT EF                    (1) 132 

where i represents vehicle types, including four types of passenger vehicles: heavy-duty buses 133 

(HDBs), medium-duty buses (MDBs), light-duty buses (LDBs), and minibuses (MBs); and four 134 

types of trucks: heavy-duty trucks (HDTs), medium-duty trucks (MDTs), light-duty trucks 135 

(LDTs) and mini trucks (MTs); j represents the control technologies (corresponding to pre-Euro 136 
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I, Euro I, Euro II, Euro III and Euro IV standards); k represents pollutant type (CO, NMHC, 137 

NOx and PM2.5 in this work); EMISk is the vehicle emissions of pollutant k (Mg); VPi is the 138 

vehicle population (million); Xi,j is the share of vehicles with control technology j in the vehicle 139 

type i; VKTi is the average vehicle mileage traveled of vehicle type i (km/year); EFi,j,k is the 140 

emission factor of pollutant k of vehicle type i with control technology j (g/km). The research 141 

included all counties of the 31 provinces in China, except for Hong Kong, Macau and Taiwan. 142 

Motorcycle was excluded from this work because the method of refining spatial resolution of 143 

activities from province to county is not applicable to motorcycles given the fact that the 144 

growth pattern of motorcycle stock doesn’t follow the GDP-related Gompertz function (Wang 145 

et al., 2006). 146 

As Eq. (1) shows, to establish an accurate vehicle emission inventory at county level, it 147 

was important to understand the differences in major parameters between counties. By 148 

extensive application of available statistical data and existing model tools, we improved the 149 

spatial resolution and accuracy of three critical parameters –vehicle population, technology 150 

distributions, and emission factors. 151 

Different approaches were developed for these parameters: (1) County-level vehicle 152 

population was estimated by city-level Gompertz functions, which were adjusted by 153 

county-level socio-economic status; (2) Province-level technology distribution was calculated 154 

by provincial vehicle stock and survival functions; (3) Monthly county-level emission factors 155 

were simulated by the International Vehicle Emission (IVE) model using China’s on-road 156 

vehicle emission corrections and county-level meteorological corrections. Sections 2.2-2.4 157 

present the three approaches in detail.  158 

Inter-county traffic also impacts the real-world spatial patterns of vehicle emissions. In this 159 
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work, we allocated the emissions calculated by Eq. (1) to different road types (highways, 160 

national, provincial, and county roads, as defined in Table 1) on the basis of VKT weighting 161 

factors considering the effect of inter-county traffic. We then mapped the emissions onto 0.05 162 

0.05 grids according to road densities (for hot-stabilized emissions) and urban populations (for 163 

start and evaporation emissions). Details of the emission allocation approach are provided in 164 

Section 2.5. 165 

2.2 Modeling vehicle population at county level 166 

In China, the administrative tiers from high to low are province, city, and county, and statistics 167 

are not available for county-level vehicle populations. In this work, we developed a model 168 

approach to estimate total vehicle population in each county by linking total vehicle ownership 169 

(vehicle/1000 people) with the economic development. Vehicle population by type was then 170 

split from total vehicle population using the share of vehicle type at provincial level. 171 

The vehicle growth of a region is highly correlated to its economic development (e.g. 172 

per-capita GDP), and the Gompertz function (an S-shaped curve with three phases of slow, fast, 173 

and, finally, saturated growth) is often used to establish the relationship between per-capita 174 

GDP and total vehicle ownership (Dargay and Gately, 1999; Dargay et al., 2007; Huo and 175 

Wang, 2012). In this study, we used the Gompertz function to hindcast total vehicle ownership 176 

at county level using historical GDP data: 177 

         Gompertz Function: 
*=

EeV V e
                     (2) 178 

where V represents total vehicle ownership (vehicles/1000 people); V* represents the saturation 179 

level of total vehicle ownership (vehicles/1000 people); E represents an economic factor (here, 180 

per-capita GDP); and α and β are two negative parameters that determine the shape of the 181 
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curve.  182 

According to Eq (2), three key parameters must be determined to estimate the total vehicle 183 

population of a county: (1) the saturation level (V*), assumed to be 500 vehicles per 1,000 184 

people for all counties in in this study, which is a moderate vehicle growth scenario for China 185 

(Wang et al., 2006); (2) per-capita GDP (E) of the county, which is obtained from China 186 

Statistical Yearbook for Regional Economy (National Bureau of Statistics, 2002-2011), and; (3) 187 

parameters α and β of the county, which are determined by the α and β values of the city that 188 

this county belongs to and a county-specific adjustment factor, as described below.  189 

α and β values can be derived from historical GDP data and vehicle ownership according 190 

to the Gompertz function. We first use Eq. (3) (converted from Eq. (2)) to derive α and β for 191 

each city where both GDP and vehicle ownership data are available. 192 

       
*

ln (-ln( )) = ln(- ) + Ei
i i i

V

V
                      (3) 193 

where i represents the city that the county belongs to. City-level per-capita GDP (Ei) and 194 

vehicle ownership data (Vi) were available from 2001 to 2010 from China Statistical Yearbook 195 

for Regional Economy (National Bureau of Statistics, 2002-2011).  196 

As shown by Eq. (3), ln(-α) and β were linearly related, and could be regressed from the 197 

10 pairs (data from 2001 to 2010) of known ln(-ln(Vi/V*)) and Ei. According to the regression 198 

results, the mean value of R-square (R2) of the linear regression for all the cities was 0.92 and 199 

the median value was 0.96, indicating that the Gompertz function was reliable for simulating 200 

city-level vehicle growth patterns in China. A few cities (e.g. Qiqihar and Jiamusi City) showed 201 

a poor R2 (<0.5). For these cities, as well as those in Tibet, Qinghai, and Xinjiang where the 202 

statistics are largely incomplete, we used their provincial α and β regression parameters instead. 203 

In total provincial regression parameters were used for 14% of the cities. 204 
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β represents the growth rate of vehicle ownership driven by GDP per-capita. Cites with 205 

more GDP per-capita tend to have lower vehicle growth rates (and smaller β value) than those 206 

cities with less GDP per-capita. Fig. 1 illustrated the inverse relationship between β and GDP 207 

per-capita. Figure 1(a) compares the β values of Hebei and its three cities. As shown in the 208 

figure, the three cities had different β values from the provincial one. Of the three cities, the 209 

richer city has a lower vehicle growth rate because the Gompertz function is S-shaped and the 210 

vehicle growth rate slowed down close to the saturation level. Figure 1(b) further shows that the 211 

β values of the Hebei province and all its cities had a strong inverse correlation with their 212 

per-capita GDP in 2008. 213 

When applying β derived from each city to counties, it needs to be adjusted as the GDP 214 

per-capita in each county varies from the city they belong to. The adjustment factor k is derived 215 

as follows: 216 

,min
,min

, ,min ,max

,max
,max

 ( )

 =    1  ( )

 ( )

i
j i

j

i j i j i

i
j i

j

E
E E

E

k E E E

E
E E

E





  

 


                          (4) 217 

where i represents city; j represents county that belong to the city; Ej is the per-capita GDP of 218 

county j in 2008. Ei,min and Ei,max are the minimum and maximum per-capita GDP during 219 

2001-2010, respectively, used to regress the city-level Gompertz function. If the per-capita 220 

GDP of county is in the linearity range of the city Gompertz function (between Ei,min and Ei, max), 221 

we assume the β of the county same as the value of its city. If the per-capita GDP of a county 222 

was out of the range of Ei,min and Ei,max, the adjustment factor was calculated as the ratio of the 223 

minimum or maximum per-capita GDP of the Gompertz curve to the county per-capita GDP. 224 

We assumed the same α for all counties in the same city. The county-level α and β could be 225 
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calculated from Eq. (5) and (6). 226 

j i                                 (5) 227 

,j i j ik                               (6) 228 

After estimating county-level vehicle ownership using Eq. (2), total vehicle population for each 229 

county was calculated by multiplying the total vehicle ownership and population (National 230 

Bureau of Statistics, 2009a). The county total vehicle population was further broken down into 231 

different vehicle types (HDBs, MDBs, etc.) using the shares of each vehicle type at provincial 232 

level (National Bureau of Statistics, 2009b), implying an assumption that the share of vehicle 233 

type is the same for county level and provincial level. 234 

2.3 Modeling technology distributions 235 

In this study, the vehicle technology distributions were derived from the age distribution 236 

of the fleet and the implementation year of each stage of emission standard, based on the 237 

assumption that vehicles registered in a given year comply with the up-to-date emission 238 

standards. Because the parameters necessary for the calculation were available only at the 239 

provincial level, we simulated province-level vehicle technology distributions and assumed 240 

that all counties in one province had the same vehicle technology distribution.  241 

The age distribution of the fleet in 2008 was calculated for each province, as follows: 242 

, ,  i j i i j iA R S                            (7) 243 

where Ai,j represents the number of model year i vehicles that survived in target year j (j is 244 

2008); Ri represents the number of newly registered vehicles in year i (model year i vehicles), 245 

i=1994-2008; Si,j-i represents the survival rate of model year i vehicles at age (j-i).  246 

We obtained data for province-level newly registered vehicles (Ri) from 2002 to 2008 247 



12 
 

from the China Statistical Yearbook (National Bureau of Statistics, 2003-2009). For the period 248 

of 1994-2001, where many statistics were missing, we used a back-calculation method to get 249 

newly registered vehicle data for each province, as shown in Eq (8). This method has been 250 

applied previously to calculate future projections of the vehicle population of China at the 251 

national level (Wang et al., 2006). 252 

,
i=1994

= (j=1994,1995,...,2008) 
j

i i j i jR S P               (8) 253 

where i represents model year; j represents target year; Ri is the number of newly registered 254 

vehicles in year i; Pj is the province-level vehicle population in year j, which were available 255 

from China Statistical Yearbook (National Bureau of Statistics, 1995-2009); Si,j-i is the 256 

survival rates of model year i vehicles at age (j-i), which were calculated separately for 257 

passenger vehicles and trucks using the following function:  258 

,

(j-i)+
 = exp -

b

i j i

b
S

T

  
  
   

                      (9) 259 

where T is associated with vehicle life; b is associated with survival curve decline rate. 260 

National average T and b of different vehicle types were first derived based on our previous 261 

estimate (Huo and Wang, 2012) as the default for each province. We then use successive 262 

approximation approach to adjust T and b for each province to match the registered vehicles 263 

numbers calculated by Eq. (9) with the numbers derived from Eq. (8). T and b values of each 264 

province are presented in Table S1 of supplementary information. Note that survival rates 265 

were also used in Eq. (7) to calculate the age distribution of the fleet. 266 

2.4 Modeling emission factors at county level 267 

Vehicle emissions are influenced by many factors, including technology, fuels, local 268 
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meteorological conditions, and local driving patterns. In the vehicle emission models that are 269 

applied worldwide (e.g. the MOBILE model in the United States and the COPERT model in 270 

Europe), vehicle emissions are usually estimated using base emission factors measured in a 271 

standard environment, and applying correction parameters that can reflect the impact of these 272 

influencing factors. In this study, we applied the same method to estimate county-level 273 

emission factors in China, by coupling the IVE model developed by the International 274 

Sustainable Systems Research Center (Davis et al., 2005), local meteorological correction 275 

factors, and correction factors based on on-road measurement, as shown in Eq (10):  276 

, , , , , , , ,

, , , , , ,           ( )

IVE
i j k m j k m i j k j k

IVE
j k m j k i j k j k

EF EF

BEF K

 

 

  

   
                  (10)   277 

where i represents the county; j represents the pollutant (CO, NMHC, NOx and PM2.5); k 278 

represents the vehicle type (e.g. HDBs, MDBs etc.); m represents the IVE vehicle categories, 279 

which are categorized by fuels (gasoline and diesel), emission control technologies (e.g., Euro I, 280 

and Euro II, etc.) and accumulative mileage (<80,000 km, 80,000-160,000 km, and >160,000 281 

km, because emissions deteriorate as the mileage increases); EFi,j,k,m is the on-road emission 282 

factor of pollutant j of vehicle type k and IVE category m in county i; EFIVE
j,k,m is the emission 283 

factors simulated by IVE; ߟ௜,௝,௞ is the local meteorological correction factor, which reflects the 284 

effect of local meteorology on vehicle emissions; ߮௝,௞ is the emission correction factor, which 285 

takes into account the difference between the base emission factors embedded in IVE model 286 

and the real base emission factors in China; BEFIVE
j,k,m represents the base emission factors of 287 

the vehicle category k measured at an altitude of 500 feet, a temperature of 75° F, relative 288 

humidity of 60%, and under the US Federal Test Procedure (FTP) driving cycle. BEFs are built 289 

into the IVE model; Kj,k represents driving pattern correction factors, which are simulated in the 290 
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IVE model using driving bin distributions (Davis et al., 2005). 291 

The main parameters include local driving patterns (to calculate K in IVE), local 292 

meteorological correction factors (η), and correction factors (φ), as shown by Eq (10).  293 

Local driving patterns were obtained from surveys that we conducted in several Chinese 294 

cities, details of the data collection techniques are presented in our previous work (Liu et al., 295 

2007; Yao et al., 2007; Wang et al., 2008). We used the same driving patterns for all counties. 296 

Local meteorological parameters include atmospheric pressure, temperature and humidity, 297 

which can significantly affect emission levels (Bishop et al., 2001; Nam et al., 2008; 298 

Weilenmann et al., 2009). To use the most recent research findings, we applied the US 299 

Environmental Protection Agency’s latest model, MOVES (MOtor Vehicle Emission 300 

Simulator), to generate monthly county-specific meteorological correction factors (η), in which 301 

county-level altitude was obtained from the MODIS (Moderate Resolution Imaging 302 

Spectroradiometer) land use map (Schneider et al., 2009) and county-level monthly mean 303 

temperature and humidity from the aggregation of the WRF model v3.3.1 output at 36km 304 

horizontal resolution. 305 

Correction factors (φ) were included because the base emission factors embedded in IVE 306 

may not be able to reflect real emission levels in China. The correction factor ߮ is the ratio of 307 

measured emission factors to modeled emission factors from the IVE model using the same 308 

parameters (driving patterns, meteorological parameters, and accumulated mileage) as the 309 

measurement conditions. Measured emission factors are collected in 12 Chinese cites using the 310 

portable emissions measurement system (PEMS) during the past ten years (Wang et al., 2005; 311 

Yao et al., 2007, 2011; Liu et al., 2009; Huo et al., 2012a, b). Correction factor was set as 1 for 312 

the vehicle types when local measurements are not available. Correction factors remained the 313 



15 
 

same across counties. As an example, Fig. 2 presented the correction factor used for HDTs and 314 

compared measured emission factors for HDTs in China (Huo et al., 2012b), IVE modeled 315 

emission factors under the same condition, and base emission factors in IVE model. The ratio 316 

between measured emission factors and modeled emissions factors represents the differences 317 

between base emission factors in IVE and in China, given the fact that the “real” base emission 318 

factors for Chinese fleet are unknown. 319 

2.5 Spatial allocation 320 

The spatial allocation of vehicle emissions was processed in two steps. First, we used the 321 

VKT allocation weights on different types of roads (highway, national, provincial and county 322 

roads) to split vehicle activity. Second, we divided the county-level emissions according to road 323 

type, then plotted the results onto 0.050.05 grids based on road density for hot-stabilized 324 

emissions and urban population distributions for start and evaporation emissions.  325 

The truck VKT allocation weights were obtained from a survey conducted in Beijing and 326 

Shandong using GPS devices with data acquired over 278 hours. The results are presented in 327 

Table 1. Heavy duty trucks run more frequently on inter-county (including highways, national 328 

and provincial roads) than on county roads, because they are generally used for long-distance 329 

transportation. For passenger vehicles, we assumed that they are used more often in urban than 330 

in non-urban areas, given that the major purpose of passenger vehicles is to meet people’s 331 

routine travel needs. Because the VKT survey data of passenger vehicles were absent, we 332 

assumed that 80% of passenger vehicle VKT were driven on county roads and the remaining 20% 333 

on inter-county roads, based on previous estimates (Tuia et al., 2007). To investigate the effect 334 

of these VKT weight assumptions on gridded emissions, we performed a sensitivity analysis 335 

with different weighting factors (presented in Section 4.2).  336 



16 
 

We assumed that all use of passenger vehicles occurred within the city boundary and the 337 

use of trucks within the province boundary. This assumption for trucks may have introduced 338 

errors because a proportion of trucks travel between provinces. Unfortunately, the number of 339 

trucks used for inter-province transportation is unknown. This issue can be addressed once such 340 

traffic flow data become available in China.  341 

Table 2 presented VKT data for different types of vehicles, which is derived from the Fuel 342 

Economy and Environmental Impact (FEEI) model by assuming that VKT will decline as a 343 

vehicle ages and that the VKT of new vehicles varies with the model year (Huo et al., 2012c)., 344 

VKT remains the same across counties.  345 

Hot-stabilized, start, and evaporative emissions were assigned onto grids by different 346 

allocation approaches. Hot-stabilized emissions that were split into highway, national, 347 

provincial and county roads were allocated onto 0.050.05 grids based on road density. We 348 

used the China Digital Road-network Map (CDRM) data, a set of new road network data 349 

developed in 2010 by National Administration of Surveying, Mapping and Geoinformation of 350 

China, instead of the DCW data (Digital Chart of the World), which has been widely applied in 351 

previous work (Streets et al., 2003; Ohara et al., 2007; Zhang et al., 2009). The CDRM data is 352 

better at representing the road network in urban areas than the DCW data, because it includes 353 

more detailed city roads. Start and evaporation emissions were allocated based on the urban 354 

population density (ORNL, 2006) given that most vehicle journeys start at parking lots that are 355 

close to where people live and work. 356 
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3. Results 357 

3.1 County-level vehicle activity 358 

The spatial distribution of vehicle population represented by county in 2008 is shown in 359 

Figure 3. We observed significant spatial differences in vehicle population and ownership 360 

between the counties. Developed cities, such as provincial capitals, industrial and coastal cities, 361 

had higher vehicle numbers than less developed cities. For example, counties in the three most 362 

economically developed regions – North China Plain (NCP), Yangtze River Delta (YRD) and 363 

Pearl River Delta (PRD) – had 100 to 200 vehicles per 1000 people in 2008; whereas the 364 

median value in other counties was 23 and 84% of them had a vehicle ownership level lower 365 

than 55 vehicles per 1000 people. 366 

The economic development level affects vehicle ownership significantly. The large 367 

difference between counties suggests that they are at different stages of economic growth. 368 

Counties in developed regions (e.g. NCP, YRD, and PRD) had already entered into the fast 369 

growth period, the second growth phase of the Gompertz function, while most other counties 370 

had just begun the fast growth phase and thus had a much lower vehicle ownership.  371 

Figure 4 compares the simulated and statistical vehicle population for 665 counties and 372 

311 cities for which statistics were available. As shown in the figure, the simulated vehicle 373 

population shows good agreement with the statistical data with an R2 greater than 0.9. Note that 374 

the method we established to estimate county-level vehicle ownership is less accurate for 375 

counties with small vehicle populations, because the number of required vehicles in a country 376 

(those used to maintain the basic functioning of society) is not strongly related to economic 377 

growth and thus cannot be simulated by the Gompertz function. A large vehicle ownership can 378 

reduce the influence of this proportion of vehicles, but for counties with a low vehicle 379 
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population, the basic need for vehicles accounts for a significant share and can therefore reduce 380 

the accuracy of the calculation.  381 

3.2 Technology distributions at provincial level 382 

Vehicle technology distribution differs significantly between regions, as shown by Figure 383 

5(a). Provinces where emission standards were implemented 1-3 years earlier than the country 384 

(e.g. Beijing and Shanghai) tended to have a more technologically advanced fleet. For 385 

provinces with the same standard implementation schedule, a larger new vehicle fleet may lead 386 

to a smaller share of old vehicles in the future. As shown in Figure 5(b), provinces with higher 387 

vehicle growth rates tended to have a lower fraction of pre-Euro 1 vehicles. For example, 388 

vehicle numbers grew fastest in Zhejiang, which had 12% pre-Euro 1 vehicles, and slowest in 389 

Xinjiang with 31% pre-Euro 1 vehicles. Because the emission factors of vehicles compliant 390 

with different standards can vary significantly (e.g. CO, NMHC and NOx emission factors of 391 

pre-Euro 1 gasoline LDBs are 15, 40 and 8 times those of their Euro 3 counterparts, 392 

respectively) (Huo et al., 2012a), the assumption generally made in previous studies that all 393 

provinces (except Beijing and Shanghai) had the same vehicle technology distribution as the 394 

national average (Streets et al., 2003; Zhang et al., 2009; Huo et al., 2011) may have involved 395 

considerable uncertainties. Therefore, estimating technology distribution at provincial level will 396 

improve the accuracy of vehicle emission inventories significantly. 397 

As shown in Figure 5(b), shares of pre-Euro 1 vehicles of the provinces were inversely 398 

related to their vehicle growth rates, but Shanghai is an outlier point. With a vehicle growth rate 399 

of only 13%, Shanghai had a low share of pre-Euro 1 vehicles equivalent to that of the 400 

provinces that have a vehicle growth rate of 23%. The main reason for this is that old vehicles 401 

in Shanghai are scrapped at a much faster rate than in other provinces. As Figure 6 shows, of 402 
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the 261 counties examined, Shanghai counties had the greatest differences between the number 403 

of newly-registered vehicles and the net vehicle increase (9% in Shanghai versus 2% on 404 

average in other counties). The fast vehicle scrapping in Shanghai is attributable to its license 405 

plate auction policy, which began in 1994 and limits the number of new license plates available 406 

each year, making new license plates expensive. As the per-capita GDP grows in Shanghai, 407 

people will have the capability to purchase better cars, however, because of the license plate 408 

policy, they will have to scrap their old cars before they are able to purchase new ones.  409 

Figure 7 evaluates the back-calculation method by comparing the simulated new vehicle 410 

results with statistical records from 2002 to 2010 for 30 provinces (270 data points in total, the 411 

Hebei Province is not included because of irregularities in the data). As can be seen from Figure 412 

7, the simulated results showed good agreement with the statistical records, especially for 413 

passenger vehicles (R2=0.98). This indicates that the technology distribution calculated in this 414 

study is reliable, and the vehicle survival functions chosen for the provinces can accurately 415 

depict the vehicle scrapping patterns.  416 

3.3 Meteorological correction factors (η) 417 

The seasonal meteorological correction factors for NMHC and CO in light-duty gasoline 418 

buses (LDB-G), and for NOx in heavy-duty diesel trucks (HDT-D) are shown in Figure 8. 419 

LDB-G and HDT-D were selected as examples because they are the largest contributors to total 420 

on-road emissions of NMHC, CO and NOx. In general, NMHC and CO running emissions 421 

increased as the temperature increased. Conversely, NOx running and start emissions increased 422 

as the temperature decreased. In addition, start emissions were more sensitive to environmental 423 

temperature because, when starting the vehicle, the catalytic converters need longer/shorter 424 

time to reach the working temperature in a colder/warmer climate. For example, from summer 425 
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(July) to winter (January), the NOx start emission factors for HDT-D increased by 5-20 times 426 

while the NOx running emissions increased by only 1.1-1.3 times. 427 

The spatial distribution of the correction factors for CO emissions of LDB-G are presented 428 

in Figure 9. The correction factors varied considerably between northern and southern regions, 429 

because the regions differed significantly in temperature. In July, the CO running emission 430 

factors in the southern regions were approximately 30% higher than in the northern regions; 431 

while in January, the north had CO start emission factors 3.5 times higher than the south. Figure 432 

9 also reveals the remarkable differences in meteorological correction factors between the 433 

western and eastern regions, which were caused not only by their different temperatures but 434 

also by their different altitudes. In general, western China is at a higher altitude than eastern 435 

China (e.g. 1900 meters in Gansu versus 12 meters in Jiangsu, which are both located at similar 436 

latitudes). Higher altitudes can result in more incomplete combustion products (e.g. CO and 437 

NMHC) because of the low concentration of oxygen in the atmosphere. Therefore, vehicles 438 

operated in the western regions had approximately 9-20% higher CO emission factors than 439 

those in the eastern regions under the same temperature. 440 

The analysis of meteorological correction factors suggests that vehicles with the same 441 

control technology may have very different emission factors in different regions. Therefore, the 442 

regions with weather conditions that increase vehicle emissions should take stricter control 443 

measures. The significant disparity in seasonal and regional correction factors also emphasizes 444 

the importance and necessity to calculate emission factors by region in order to improve the 445 

spatial and temporal resolution of the inventory. 446 

3.4 Total vehicle emissions in 2008 447 

The on-road CO, NMHC, NOx and PM2.5 emissions by vehicle and technology type are 448 
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summarized in Table 3. In 2008, China’s vehicles emitted 16.37 Tg CO, 1.53 Tg NMHC, 4.57 449 

Tg NOx, and 0.245 Tg PM2.5. As shown in Table 3, older vehicles (e.g. pre-Euro 1 and Euro 1 450 

vehicles) contributed significantly to on-road emissions. Pre-Euro 1 vehicles contributed 24-26% 451 

of CO and NMHC emissions, but only 13-14% of NOx and PM2.5 emissions, and this was 452 

because CO and NMHC emission factors decreased faster than those for NOx and PM2.5 from 453 

pre-Euro 1 to Euro 1 standards. Euro 3 vehicles contributed more significantly (17%) to NOx 454 

than to other pollutant types, because the reduction in the real-world NOx emission factors from 455 

Euro 2 to Euro 3 vehicles was very small (Huo et al., 2012b), and new vehicles tended to be 456 

used more often than old ones. As demand for long-distance transportation is growing rapidly 457 

and heavy duty vehicle numbers are increasing, more stringent control measures should be 458 

taken for heavy-duty diesel vehicles in order to control on-road NOx emissions. 459 

3.5 Monthly variation of vehicle emissions 460 

Monthly vehicle emissions are plotted in Figure 10. The total emissions, as well as the 461 

contributions from different processes (e.g. running the vehicle, starting and evaporation) vary 462 

significantly between months. During winter months (Dec to Feb) vehicles produce 19% more 463 

CO, 11% more NMHC, and 21% more NOx emissions than in the summer (Jun to Aug). The 464 

monthly PM2.5 emissions did not vary significantly because MOVES assumes that the PM2.5 465 

emission factors of diesel trucks change very little with temperature.  466 

Hot-stabilized processes accounted for the largest proportion of emissions, with 79% CO, 467 

80% NMHC, 97% NOx, and 87% PM2.5 emissions in the summer, and 52% CO, 69% NMHC, 468 

88% NOx, and 86% PM2.5 in winter. The share of CO and NMHC start emissions was much 469 

higher in winter (48% for CO and 30% for NMHC), because when the temperature decreased 470 

the CO and NMHC start emission factors increased while their running emission factors 471 
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decreased. 472 

The monthly variability in vehicle emissions at different latitudes is shown in Figure 11. 473 

The monthly pattern of variability of the CO and NMHC emissions differed remarkably by 474 

latitudes due to large contribution from start emissions, which have strong variability at 475 

different latitudes induced by differences in temperatures. For NOx and PM2.5 emissions, 476 

monthly variability was less dependent on latitudes because start emissions play a relatively 477 

small role in total NOx and PM2.5 emissions, and running emissions are not as sensitive to 478 

temperatures as start emissions. 479 

3.6 Spatial variation of vehicle emissions 480 

The county and gridded emissions of CO and NOx are depicted in Figure 12. The NMHC 481 

and PM2.5 emission maps are similar to those for CO and NOx, respectively, and they are 482 

therefore not shown. 483 

Vehicle emissions were distributed unevenly throughout China. The majority of emissions 484 

were concentrated in a few counties. Emission hot-spots could be identified, as shown in Figure 485 

12(a). The counties shown in red accounted for less than 1% of the total counties, but 486 

contributed approximately 20% of the CO emissions in 2008. Most of these counties are the 487 

urban centers of the province capitals, which can be considered as the most developed areas in 488 

China.  489 

Urban areas have the highest vehicle emission levels, in terms of both total amount and 490 

emission intensity (defined as emissions per unit area). In 2008, urban areas in China accounted 491 

for only 11% of the total land area and 28% of the total population. However, they contributed 492 

42%, 39%, 32% and 32% to the total vehicle CO, NMHC, NOx, and PM2.5 emissions, 493 

respectively. The share of urban NOx and PM2.5 emissions was a little lower because their major 494 
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contributors, trucks, run less often in urban areas. On average, the urban vehicle emission 495 

intensity was 2.9-3.8 times the national average. The differences were even more dramatic in 496 

developed areas. Taking Beijing as an example, the six urban districts (including Dongcheng, 497 

Xicheng, Haidian, Chaoyang, Fengtai, and Shijingshan) accounted for only 8% of the Beijing 498 

surface area, but contributed 53-64% of the total vehicle emissions for Beijing. The emission 499 

intensities of these six districts were 6.3–7.7 times the average of the entire city. 500 

Beijing, Shanghai, Guangzhou and Tianjin had the highest vehicle emissions in China. For 501 

example, the vehicle CO emission intensity was 45, 34, 27 and 17 times higher, respectively, 502 

than the average urban emission intensity for the country. Beijing, Shanghai and Guangzhou 503 

have implemented restriction policies on car purchases to constrain the excessive vehicle 504 

growth, address traffic congestion, and reduce vehicle emissions. Similar measures are planned 505 

for Tianjin.  506 

Gridded CO and NOx emissions are presented in Figure 12(b) and (d). The majority of 507 

vehicle emissions were concentrated in urban areas and on inter-county highways connecting 508 

major cities. However, the spatial distribution of CO and NOx emissions had notable differences. 509 

CO (NMHC) emissions were highly concentrated in urban areas, while much of the NOx (PM2.5) 510 

emissions were distributed on highways. This difference can be attributed to the fact that 511 

light-duty vehicles, the major contributor of CO and NMHC, are operated more frequently on 512 

county roads. On the other hand, heavy duty vehicles (HDBs and HDTs), the major NOx and 513 

PM2.5 contributors, are used extensively on inter-county roads.  514 
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4. Evaluation of the spatial allocation method 515 

4.1 Spatial surrogates 516 

Spatial surrogates are important because the extent to which they can represent the spatial 517 

distribution of emissions directly determines the accuracy of an emission inventory. The major 518 

differences between the spatial proxies used in this study and those applied in previous studies 519 

are: (1) VKT weight factors for different road types were used to allocate county emissions, 520 

which were usually neglected in previous work (Streets et al., 2003; Ohara et al., 2007; Zhang 521 

et al., 2009), and (2) the new CDRM data was adopted instead of DCW data. 522 

To evaluate the improvement provided by the new allocation method developed in this 523 

study, we compared the new method with three existing allocation methods: 1) the 524 

population-based allocation method (M1); 2) the road-length-based allocation method using 525 

DCW data (M2); and 3) the road-length-based allocation method using the CDRM data (M3) to 526 

explore the effect of road data quality. Details on the four methods are provided in Table 4. 527 

The differences in grid vehicle emissions between our method and the other three methods 528 

are illustrated in Figure 13. Compared with M1, this study generated higher emissions for rich 529 

counties with small populations, and lower emissions for less-developed counties with large 530 

populations. This is a more reasonable result than that of M1 where the ratio of vehicle 531 

activities or emissions was assumed to be proportional to population size. As mentioned in 532 

Section 2.2, vehicle population is determined by both per-capita GDP and total population. The 533 

population-based allocation method (M1) neglects the effect from per-capita GDP on vehicle 534 

ownership. More importantly, our work improves the estimates for super-large counties with a 535 

population over 2 million. Super-large cities are usually the most industrialized and developed 536 

cities in China (e.g. megacities, provincial capitals and coastal cities) and have much higher 537 
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percentage of vehicle ownership than the national average, and therefore the population-based 538 

method could underestimate their emissions. As shown in Figure 13(b) and (c), the 539 

road-length-based methods (M2 and M3) significantly underestimated the emissions for 540 

counties with high population or per-capita GDP, and thus failed to identify emission hotspots. 541 

When compared with the method developed in this study, the relative differences in M3 were 542 

smaller than those in M2, because the new CDRM data has more detailed information on urban 543 

roads that can improve spatial allocation in urban areas. However, the underestimation of 544 

emissions for urban areas is not addressed completely. 545 

The comparison of gridded emissions at different spatial resolutions is presented in Figure 546 

14. As shown in the figure, because the population-based method (M1) treats vehicle emissions 547 

as area sources, it failed to depict their spatial characteristics as line sources. M2 was not able to 548 

identify emission hotspots in big cities, because city roads are not included in DCW and few 549 

emissions could be allocated to urban areas. M3 could identify emission hotspots in cities but 550 

had less emissions allocated to major roads (e.g. inter-county highways) compared with our 551 

new method. The road-length-based method assumed a proportional relationship between 552 

emissions and the road length regardless the road type. As a result, major roads that carry a 553 

higher traffic load than smaller roads were allocated less emissions than they should have been. 554 

The allocation method developed in this work was able to reflect the characteristics of vehicle 555 

emissions as line sources and could identify emission hotspots in cities, because of 556 

improvements in three aspects: 1) emissions are estimated at county level, 2) detailed road 557 

network data was used, and 3) spatial distribution features of traffic activities were taken into 558 

consideration.  559 

As the grid resolution became coarser, differences between the four methods became less 560 
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significant because the spatial surrogates tended to have similar spatial distribution 561 

characteristics at a large spatial scale. As Figure 14 shows, when the grid resolution was 0.5 562 

degrees, which is greater than most counties in eastern China, the spatial distributions generated 563 

from the four methods had similar characteristics.  564 

Figure 15 further explores the differences in gridded emissions between the methods at 565 

different resolutions. Gridded emissions became sensitive to spatial proxies when grid size is 566 

less than 0.2 degree, indicating that the accuracy of urban scaling modeling would be 567 

significantly impacted by spatial proxies used in bottom-up emissions. It is suggested that 568 

gridded emissions obtained from M1 is closer to this work than M2 for large urban areas at fine 569 

resolution (e.g., 0.05 degree, Fig. 15b and 15c). This is because using population as spatial 570 

proxy tends to allocate more emissions in urban area, while M2 was not able to identify 571 

emission hotspots in big cities as city roads are not included in DCW and few emissions could 572 

be allocated to urban areas. Using DCW as spatial proxy may introduce substantial 573 

underestimation of emissions in urban areas.  574 

If the grid size was increased, the differences in the overall gridded emissions between the 575 

three methods were reduced. However, as Figure 15 (d) and (e) show, both M1 and M2 methods 576 

may significantly underestimate the emissions of some grids with large populations (e.g. grids 577 

that cover Beijing, PRD and YRD), even though the grid size was enlarged to 1.0 degree 578 

(equivalent to 100 km100 km). These highly-populated regions are usually the key objective 579 

and focus of air quality modeling studies. Therefore, the allocation method developed in this 580 

study can provide better accuracy at both high and low resolution.  581 

4.2 VKT allocation weights 582 

We introduced the concept of VKT allocation weights to improve the accuracy of the 583 
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gridded emission inventory. However, due to a lack of sufficient traffic survey data, the 584 

assumptions that we made for VKT weights may have created uncertainties in the gridded 585 

emission results. Therefore, we conducted a sensitivity analysis to quantify the sensitivity of the 586 

gridded emissions to the VKT allocation weights. Two scenarios (denoted as S1 and S2) were 587 

designed to represent the extreme values of VKT allocation weights for passenger vehicles and 588 

trucks, respectively, as shown in Table 5. 589 

The results of the sensitivity analysis for NMHC and NOx emissions are presented in 590 

Figure 16. As the CO result was similar to that of NMHC, and the PM2.5 result to that of NOx, 591 

this data is therefore not shown. As can be seen in Figure 16 (a) and (b), on average, the 592 

difference in gridded emissions between this work and S1 ranged from -1 to 7%, which 593 

suggests that the overall results were not very sensitive to the VKT weights of passenger 594 

vehicles. For each individual grid, the sensitivity of the emissions was dependent on the grid 595 

length ratio of county to inter-county roads (C/I road ratio). If a grid had the same C/I road ratio 596 

with the county where the grid was located, the emissions of this grid had zero sensitivity to the 597 

VKT weights of passenger vehicles. The greater the difference in the C/I road ratios between a 598 

grid and its county, the more sensitive the gridded emissions were to the VKT weights. As 599 

shown in Figure 16, compared with S1, this work allocated greater emissions to a few 600 

highly-populated grids, because grids with a high population were more likely to have a higher 601 

C/I road ratio than the county average. For a similar reason, this work allocated lower emissions 602 

than S1 for some grids with low populations. If a grid had 100% county roads and no 603 

inter-county roads, and its county had a C/I road ratio of 1.7 (the national average in China), 604 

which is an extreme and rare case, the change of the VKT weights for county roads from 80% 605 

to 50% could cause a maximal reduction of 60% in the gridded emissions of passenger vehicles. 606 
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Under a normal scenario, the emission change would have been much smaller.  607 

As Figure 16 (c) and (d) shows, the sensitivity of emissions to the VKT weights of trucks 608 

was small, given that the average difference in the gridded NMHC and NOx emissions between 609 

this work and S2 ranged from -2 to 2%. Furthermore, for individual grids, the sensitivity of 610 

emissions to the VKT weight of trucks was related to the grid C/I road ratio, as was the case 611 

with the VKT weights of passenger vehicles. Increasing the VKT weights of trucks from 8~25% 612 

(this work) to 63% (S2) allocated more truck emissions to highly-populated grids because these 613 

grids tended to have higher C/I road ratios, and vice versa for grids with low populations. 614 

However, as shown by Figure 16(c), the NMHC emissions of highly-populated grids were 615 

observed to have little sensitivity to VKT weights of trucks, because passenger vehicles usually 616 

dominated the NMHC emissions in highly-populated grids and trucks played only a very 617 

limited role.  618 

5. Discussion 619 

This work proposes a new inventory methodology to improve the spatial and temporal 620 

accuracy and resolution of vehicle emissions for China. By developing a set of approaches to 621 

estimate, for the first time, the vehicle emissions for each county, and introducing the VKT 622 

allocation weights to assign county emissions into grids, our proposed methodology overcomes 623 

the common weakness of previous methods, such as, neglecting the geographical differences in 624 

crucial parameters of vehicle emissions and using surrogates that are weakly related to vehicle 625 

activities to allocate vehicle emissions.  626 

Compared with previous methods, the new methodology has great advantages in 627 

portraying the spatial distribution characteristics of vehicle activities and emissions. However, 628 

uncertainties still exist in two aspects – vehicle emission factors and vehicle activities. In this 629 
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work, vehicle emission factors were simulated by a U.S. IVE model that was adjusted with 630 

hundreds of on-road vehicle emission measurements in China. The uncertainty in these 631 

emission factors lies in the representativeness of the selected measured vehicles. To lower this 632 

uncertainty, more measurements are required and eventually a vehicle emission model needs to 633 

be developed for China. This work did not include the spatial variations in emission factors 634 

induced by driving conditions due to the limitation of data availability. The national average 635 

driving patterns are used in this work, which are calculated on the basis of measurements in 636 

about 20 cities in China (Wang et al., 2008). A sensitivity analysis on CO emission factors of 637 

LDBs for Beijing and Changchun (one megacity with frequent traffic congestions and one 638 

midsize city with less traffic congestions) found that using local driven cycles will lead to 6% 639 

increase of CO emission factor in Beijing and 18% decrease in Changchun respectively, 640 

comparing with national average driving cycles. On the other hand, the vehicle activities are 641 

determined based on surveys conducted in a few cities and on several assumptions, which could 642 

involve uncertainties because of the disparity in vehicle activities between cities. To improve 643 

the data quality, dynamic traffic flow should be integrated into the inventory, which will require 644 

collaboration with traffic management research groups.  645 

Addressing these uncertainties requires long-term efforts from the research community and 646 

concrete support from various governmental sectors for data availability and sharing. In the 647 

meantime, we will continue to improve the methodology by addressing the remaining key 648 

issues, including VKT by county, different technology distributions within the same province, 649 

base emission factors by road type, and more reliable VKT weights. We also plan to extend this 650 

methodology from 2008 onwards to perform a multi-year analysis. 651 
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Table 1 Vehicle kilometers traveled allocation weights  762 

 Highways a National roads b Provincial roads c County roads d

HDTs 52% 29% 11% 8% 

MDTs 17% 52% 18% 13% 

LDTs and MTs 21% 30% 24% 25% 

HDBs, MDBs, 

LDBs and MBs 
20% on highways, national roads and provincial roads 80% 

a: The China Digital Road-network Map (CDRM), which was applied in this study, classified roads into four types: 763 

highways, national roads, provincial roads, and county roads.  764 

b: National roads are defined as main roads connecting provincial capitals, economically developed cities and 765 

traffic hub cities. The CDRM data separated a proportion of roads from national roads and categorized them as 766 

“Highways”  767 

c: Provincial roads are defined as main roads connecting cities within a province. The provincial government is 768 

responsible for the construction, maintenance and management of provincial roads. The CDRM data separated a 769 

proportion of roads from provincial roads, and categorized them as “Highways”. 770 

d: County roads are defined as roads used mainly for transportation within a city. The municipal government is 771 

responsible for the construction, maintenance and management of these roads.772 
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Table 2 National average vehicle kilometers traveled (VKT) in 2008 773 

Category HDB MDB LDB, MB HDT MDT LDT, MT 

VKT (103 km) 90 90 15 80 60 30 
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Table 3 Vehicle emissions in China in 2008 774 

  HDB MDB LDB MB HDT MDT LDT MT Share

CO Pre-Euro1 0.21 0.38 1.94 0.69 0.13 0.29 0.18 0.03 24%

Emission Euro 1 0.21 0.27 2.54 0.57 0.29 0.25 0.62 0.03 29%

(Tg) Euro 2 0.83 0.99 3.12 0.10 0.26 0.38 0.59 0.01 38%

 Euro 3 0.05 0.01 1.00 0.02 0.10 0.03 0.25 0.00 9% 

 Euro 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0% 

 Total 16.37 

 Passenger 
vehicle/Truck 

79%, 21% 

 Gasoline/Diesel 88%, 12% 

NMHC  Pre-Euro1 0.02 0.03 0.19 0.07 0.03 0.03 0.03 0.00 26%

Emission Euro 1 0.02 0.02 0.21 0.04 0.04 0.03 0.08 0.00 29%

(Tg) Euro 2 0.11 0.09 0.14 0.00 0.11 0.06 0.09 0.00 40%

 Euro 3 0.01 0.00 0.01 0.00 0.02 0.01 0.03 0.00 5% 

 Euro 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0% 

 Total 1.53 

 Passenger 
vehicle /Truck 64%, 36% 

 Gasoline/Diesel 65%, 35% 

NOx  Pre-Euro1 0.05 0.05 0.08 0.03 0.19 0.11 0.06 0.00 13%

Emission Euro 1 0.13 0.14 0.04 0.01 0.30 0.26 0.12 0.00 22%

(Tg) Euro 2 0.39 0.34 0.05 0.00 0.64 0.40 0.36 0.00 48%

 Euro 3 0.14 0.07 0.01 0.00 0.27 0.16 0.15 0.00 17%

 Euro 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0% 

 Total 4.57 

 Passenger 
vehicle /Truck 34%, 66% 

 Gasoline/Diesel 9%, 91% 

PM2.5  Pre-Euro1 0.005 0.003 0.000 0.000 0.017 0.007 0.003 0.000 14%

Emission Euro 1 0.010 0.007 0.001 0.000 0.022 0.014 0.004 0.000 24%

(Tg) Euro 2 0.030 0.018 0.001 0.000 0.051 0.021 0.011 0.000 54%

 Euro 3 0.005 0.001 0.000 0.000 0.009 0.003 0.001 0.000 8% 

 Euro 4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0% 

 Total 0.245 

 Passenger 33%, 67% 
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vehicle /Truck 

 Gasoline/Diesel 3%, 97% 
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Table 4 Description of the four emission allocation methods 775 

Method Description 

Method developed 

in this work 

Emissions by county are allocated into grids based on the China Digital 

Road-network Map (CDRM) and the traffic weights of different road types. 

Method 1 (M1) Provincial emissionsa are allocated into grids based on population (ORNL, 2006) 

Method 2 (M2) 
Provincial emissionsa are allocated into grids based on Digital Chart of the World 

(DCW) road network data  

Method 3 (M3) Provincial emissionsa are allocated into grids based on the CDRM data 

a: provincial emissions are obtained through aggregating the county-level emissions calculated in this study. 776 

  777 
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Table 5 Sensitivity analysis scenarios of vehicle kilometers traveled (VKT) allocation weights 778 

Scenarios Description 

Base scenario 

(This work) 

The VKT distribution weights for passenger vehicles and trucks are shown in 

Table 1. 

Scenario 1 (S1) 

Same as the Base scenario, except that 50% VKT of passenger vehicles are 

allocated to county roads and 50% VKT to inter-county roads, which assumes the 

same VKT for county and inter-county roads. Because passenger vehicles travel 

more often in urban areas, S1 represents an extreme case for passenger vehicles. 

Scenario 2 (S2) 

Same as the Base scenario, except that the VKT weights of trucks on county roads 

and inter-county roads are 63% and 37%, respectively, the same as the length 

ratios of these two types of road in China a. Because trucks are driven more 

intensively on inter-county roads than on county roads, assuming the same VKT 

per unit of road length for county and inter-county roads can be regarded as an 

extreme case for trucks. 

a:In China, county roads made up 63% and inter-county roads 37% of the total road length, according to the 779 

CDRM. 780 
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