Impact of Data Quality and Surface-to-Column Representativeness on the PM_{2.5}/Satellite AOD Relationship for the Continental United States

Travis D. Toth¹, Jianglong Zhang¹, James R. Campbell², Edward J. Hyer², Jeffrey S. Reid², Yingxi Shi¹, and Douglas L. Westphal²

¹Dept. of Atmospheric Sciences, University of North Dakota, Grand Forks, ND, USA ²Aerosol and Radiation Sciences Section, Marine Meteorology Division, Naval Research Laboratory, Monterey, CA, USA

Submitted to:

Atmospheric Chemistry and Physics

15 October 2013

¹Corresponding Author Contact: Dr. Jianglong Zhang, c/o Department of Atmospheric Sciences, 4149

E-mail: jzhang@atmos.und.edu

ABSTRACT

Satellite-derived aerosol optical depth (AOD) observations have been used to estimate particulate matter less than 2.5 μ m (PM_{2.5}). However, such a relationship could be affected by the representativeness of satellite-derived AOD to surface aerosol particle mass concentration and satellite AOD data quality. Using purely measurement-based methods, we have explored the impacts of data quality and representativeness on the AOD inferred PM_{2.5}/AOD relationship for the Continental United States (CONUS). This is done through temporally and spatially collocated datasets of PM_{2.5} and AOD retrievals from Aqua/Terra Moderate Resolution Imaging Spectroradiometer (MODIS), Multiangle Imaging Spectroradiometer (MISR), and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). These analyses show that improving data quality of satellite AOD, such as done with data assimilation-grade retrievals, increases their correlation with PM_{2.5}. However, overall correlation is relatively low across the CONUS. Also, integrated extinction observed within the 500 m above ground level (a.g.l.), as measured by CALIOP, is not well representative of the total column AOD. Surface aerosol in the Eastern CONUS is better correlated than in the Western CONUS. The best correlation values are found for estimated dry mass CALIOP extinction at 200-300 m a.g.l. and PM_{2.5}, but additional work is needed to address the ability of using actively sensed AOD as a proxy for $PM_{2.5}$ concentrations.

1.0 Introduction

3	Particulate matter (PM), especially suspended particles and solution droplets with
4	diameters smaller than 2.5 μ m (PM _{2.5}), contributes greatly to regional air pollution and
5	can pose a threat to human health [e.g., Schwartz and Neas, 2000; Pope et al., 2002].
6	Traditionally, the United States (U.S.) Environmental Protection Agency (EPA) has
7	monitored surface-based PM _{2.5} concentrations using either a gravimetric-based method at
8	ground stations with 24-hour filter samplers or hourly Tapered Element Oscillating
9	Microbalance (TEOM) and beta gauge samplers. [Federal Register, 1997]. A number of
10	studies have attempted estimates of surface-based PM2.5 concentrations using satellite-
11	retrieved aerosol optical depth (AOD) data [e.g., Hutchison, 2003; Wang and Christopher,
12	2003; Engel-Cox et al., 2004; Kumar et al., 2007; Liu et al., 2007; Hoff and Christopher,
13	2009]. The advantages of estimating surface–based $PM_{2.5}$ concentrations using satellite-
14	derived AOD data are obvious, as satellites, including both polar orbiting and
15	geostationary satellites, typically provide a much larger spatial coverage than what can be
16	inferred from ground stations over a broad surface footprint. However, data is limited to
17	daylight cloud free conditions with once per day collection by polar orbiters [Diner et al.,
18	1998; Remer et al., 2005] or multiple images in morning or afternoon from geostationary
19	satellites [Zhang et al., 2001; Prados et al., 2007].
20	Previous research efforts have focused on algorithm development for solving PM
21	proxies based on AOD. For example, Chu et al., [2003] compare PM10 concentrations
22	with surface AOD measurements from the Aerosol Robotic Network (AERONET) in
23	northern Italy and highlight the potential of using Moderate Resolution Imaging

24 Spectroradiometer [MODIS; Remer et al., 2005] AOD as an estimate for PM₁₀

25 concentration. Several studies have focused on correlating satellite AOD observations 26 and PM_{2.5} concentrations [e.g., Wang and Christopher, 2003; Liu et al., 2004], and 27 advances have been made improving correlation between the two by considering other 28 meteorological and environmental parameters, such as the surface mixed-layer height 29 [Engel-Cox et al., 2006; Gupta et al., 2006] and relative humidity [Shinozuka et al., 2007; 30 Van Donkelaar et al., 2010]. Simulated vertical structure from chemical transport 31 models [e.g., Van Donkelaar et al., 2006; 2010] has also been used to help improve the 32 PM_{2.5}/satellite AOD relationship. 33 There are important issues, however, that need be considered when applying 34 satellite-based observations in general, much less as a proxy for PM_{2.5} estimates. First, 35 uncertainties exist in satellite-retrieved AOD values due to issues such as cloud 36 contamination, inaccurate optical models used in the retrieval process and heterogeneous 37 surface boundary conditions [e.g., Zhang and Reid, 2006; Shi et al., 2011a; Toth et al., 38 2013]. Even today, convergence has not yet been reached for retrieved AOD values 39 found among the most widely used satellite aerosol products, such as the Dark 40 Target/DeepBlue MODIS and Multi-angle Imaging Spectroradiometer [MISR; Diner et 41 al., 1998; Kahn et al., 2010] aerosol products [e.g., Shi et al., 2011b]. Any estimate of 42 PM_{2.5} derived from satellite AOD data cannot be more accurate than the AOD data 43 themselves. Thus, relationships between AOD and PM_{2.5} are likely to be highly sensor 44 product specific. Second, AOD derived from passive sensors is a column-integrated 45 value, and PM_{2.5} concentration is a surface measurement. Under conditions where 46 aerosol particles are concentrated primarily within the surface/boundary layer, AOD is

47 presumably a likelier proxy for PM_{2.5} concentration. Conversely, in conditions where

aerosol plumes are transported above the boundary layer, AOD will likely prove a weaker
one. Finally, AOD is a column-integrated sum of total <u>ambient particle extinction</u>,
whereas PM_{2.5} is measured with respect to dried particle ingested for analysis by
corresponding instruments. Thus, hygroscopicity and mass extinction <u>efficiency</u>
corrections are further required to accurately characterize any relationship present
between the two parameters.

54 While some studies have attempted to use chemical transport models and groundbased lidars to investigate a relationship between aerosol particle structure, column-55 56 integrated AOD and surface-based PM_{2.5} [Liu et al., 2004; Van Donkelaar et al., 2006; 57 Boyouk et al., 2010; Hyer and Chew, 2010], a measurement-based analysis using the 58 Cloud-Aerosol Lidar with Orthogonal Polarization [CALIOP; Winker et al., 2007; Hunt 59 et al., 2009] would allow for such a study over relatively-broad spatial and temporal 60 scales, for which more tenable proxies between AOD and PM_{2.5} may be realized and thus 61 applied on more representative scales. Range-resolved information collected with 62 CALIOP provides the critical perspective for relating the depth and vertical extent of aerosol particle presence to both surface-based PM2.5 measurements and passive retrievals 63 64 of column-integrated AOD. 65 This paper differs from past research efforts in several aspects. For one, the impact 66 of passive satellite AOD data quality on the $PM_{2.5}$ /satellite AOD relationship has yet to 67 be investigated. Secondly, while other studies have considered the aerosol vertical 68 distribution during estimation of PM_{2.5} from satellite AOD retrievals, this has not been 69 examined over large spatial and temporal domains. Lastly, to the best of our knowledge, near-surface aerosol extinction from CALIOP has never been evaluated as a potential 70

71	proxy for surface PM _{2.5} concentrations. Therefore, through the use of MODIS, MISR,
72	and CALIOP observations, the following research questions are considered:
73	1. How does the quality of passive satellite AOD retrievals impact the $PM_{2.5}/AOD$
74	relationship?
75	2. Based on CALIOP data, how representative are surface-based measurements to
76	aerosol particle presence within the full column?
77	3. Can near surface observations from CALIOP be used as a better proxy for $PM_{2.5}$
78	concentration?
79	The paper has been designed to discuss each component sequentially, thus building off
80	the previous step. In Sec. 2 of this paper, we describe the various satellite and surface-
81	based datasets used. In Sec. 3, the $PM_{2.5}/AOD$ relationship is first examined at an hourly
82	timescale, followed by a daily analysis in which we explore the impact of AOD quality
83	on this relationship. In Sec. 4, we investigate the representativeness of satellite-derived
84	surface aerosol concentration to that of the entire column, and how well surface AOD
85	correlates with total column AOD. Lastly in Sec. 5, we provide results comparing
86	surface-based $PM_{2.5}$ and CALIOP aerosol extinction near the lower bounds of the satellite
87	profile to investigate the potential use of CALIOP data for air quality applications.
88	
89 90	2.0 Datasets
91 92	2.1 MODIS, MISR, and CALIOP Data
93	Aboard both the NASA Aqua and Terra satellites, MODIS is a spectroradiometer
94	with 36 channels (0.41 to 15 μ m), seven of which (0.47 to 2.13 μ m) are applied
95	operationally for the retrieval of aerosol particle optical properties. The Dark Target

96	Level 2 products created from these retrievals are reported at a spatial resolution of 10 x
97	10 km ² , with over-land uncertainties of 0.05 ± 0.15 *AOD [Remer et al., 2005]. This
98	study utilizes the Corrected_Optical_Depth_Land (0.550 µm) parameter of Dark Target
99	Level 2 Collection 5.1 retrievals from Aqua (MYD04_L2) and Terra (MOD04) MODIS
100	(2008-2009, operational), with quality assurance (QA) limiting the analysis to only those
101	retrievals with Quality_Assurance_Land parameter flags of "very good". Although the
102	DeepBlue (DB) MODIS aerosol products also provide aerosol retrievals over land, the
103	Collection 5.1 Aqua/Terra DB MODIS aerosol products are not available for the study
104	period and are thus not included in the study.
105	MISR, aboard the Terra satellite, is a unique spectroradiometer, able to collect
106	observations at nine different viewing angles, providing a means for studying aerosol
107	particle size and shape [Diner et al., 1998]. MISR features four spectral bands, located at
108	0.446, 0.558, 0.672, and 0.867 μm . Different from the Dark Target MODIS aerosol
109	products, the MISR aerosol product also includes AOD retrievals over bright surfaces
110	such as desert regions. Kahn et al. [2005] suggested that 70% of MISR AOD data are
111	within 0.05 (or 20% × AOD) of sun-photometer measured AOD values. This study
112	utilizes the same two years (2008-2009) of AOD derived from Version 22 MISR
113	retrievals (0.558 µm), flagged through QA screening as "successful".

- 114 CALIOP is a multi-wavelength (0.532 and 1.064 µm) polarization lidar flown
 115 aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations
- 116 (CALIPSO) platform within the NASA "A-Train" constellation [e.g., Stephens et al.,
- 117 2002]. To gain an understanding of aerosol particle distribution over the U.S. for 2008-
- 118 2009, this study utilizes the Version 3.01 CALIOP Level 2.5 km Aerosol Profile

(L2_05kmAProf) [Winker et al., 2007; Winker et al., 2012] product. The Version 3.01
Level 2 Vertical Feature Mask (L2_VFM) product is also used to restrict the analysis to
those 5 km AOD and total extinction (at 0.532 µm) profile retrievals that are cloud-free,
in a manner consistent with that of Toth et al. [2013].
2.2 Quality-Assured MODIS and MISR Subsets
Existing uncertainties in passive satellite AOD retrievals, such as those for

127 MODIS and MISR, are optimally suppressed before being considered and applied for

128 data assimilation (DA) activities involving operational aerosol forecast models [e.g.,

129 Zhang et al., 2008]. Through rigid QA, reduced AOD uncertainties have been

130 characterized and DA-quality AOD datasets have been created for both over land [Hyer

et al., 2011] and over ocean MODIS DT products [Shi et al., 2011a], as well as the MISR

aerosol products [Shi et al., 2011b; 2012]. In this study, we use DA-quality MODIS and

133 MISR AOD products as control datasets for comparison with operational MODIS and

134 MISR products.

Available at 6-hourly 1° x 1° resolution, DA-quality AOD data are converted to daily averages and then compared with daily PM_{2.5} concentrations. For comparison purposes with the PM_{2.5} data available (described further below), we have constructed daily-averaged 'Level 3' AOD data using operational MODIS and MISR aerosol products after applying first-order QA as described in Sec. 2.1. DA-quality MODIS aerosol products are available from the Global Ocean Data Assimilation Experiment (GODAE) server (http://www.usgodae.org/). However, no quality-assured hourly DA-

142	quality aerosol products are currently available, and no comparisons were therefore made
143	between the DA-quality products and hourly PM _{2.5} measurements.

145 **2.3 Surface PM**_{2.5}

146 147 The U.S. EPA has collected observations of surface-based PM since the passage 148 of the Clean Air Act in 1970 (http://www.epa.gov/air/caa/). In 1997, the EPA began 149 specifically monitoring PM_{2.5} concentrations [Federal Register, 2006]. The Federal 150 Reference Method (FRM), a filter-based method, is used to measure concentration over a 151 continuous 24-hr period. The filter is weighed before and after the sample collection 152 interval and PM_{2.5} mass concentration ($\mu g/m^3$) is calculated by dividing the total mass of 153 PM_{2.5} particles by the volume of air sampled [Federal Register, 1997]. Some EPA sites 154 also report hourly (continuous) PM25 measurements. For this study, two years (2008-155 2009) of daily and hourly PM_{2.5} Local Conditions (EPA Parameter Code 88101) data were used and obtained from the EPA Air Quality System (AQS). 156 157 158 **2.4 AERONET AOD** 159 AERONET is a worldwide ground-based network of sun photometers that 160 provides measurements of aerosol optical properties, and is currently used as the 161 benchmark for validation of satellite AOD retrievals. AERONET AOD is reported at 162 eight channels (0.34 to 1.64 μ m), and has an uncertainty of 0.01 to 0.015 [Holben et al. 163 1998]. For the purposes of this study, AOD derived at 0.67 μ m is used. 164

3.0 How Does the Quality of Passive Satellite AOD Retrievals Impact their Linear Correlation with Surface-Based PM_{2.5}?

167 168	As a first step, linear correlations between passive satellite AOD retrievals and
169	PM _{2.5} observations in the United States are derived. We investigate the impact of data
170	quality to the AOD/PM _{2.5} relationship through a daily analysis using both daily-averaged
171	operational and DA-Quality AOD datasets, as well as daily $PM_{2.5}$ data. No hourly DA-
172	quality AOD retrievals are currently available, and therefore the impact of data quality to
173	the AOD/PM _{2.5} correlations are not specifically characterized on this temporal scale. Still,
174	an hourly analysis is first considered, using only operational AOD data and hourly $PM_{2.5}$
175	data, for comparison purposes and for establishing a relevant context for the relationship
176	between AOD and PM _{2.5} .
177	Figure 1 depicts those $PM_{2.5}$ monitoring sites for the 2008-2009 period that reported
178	hourly (Fig. 1a) and daily-averaged (Fig. 1b) $PM_{2.5}$ observations. A total of 102 sites
179	reported hourly data, while 991 sites collected daily data (see figure caption for color
180	scheme). Note that some sites feature multiple instruments observing $PM_{2.5}$
181	concentration; one routine/primary, regular measurement and a secondary measurement
182	that is only available sporadically. Both types of $PM_{2.5}$ data are included for this analysis.
183	
184	3.1 Hourly Analysis
185 186	For 2008-2009, the operational Level-2 AOD datasets are spatially and temporally
187	collocated with available $PM_{2.5}$ observations. After these AOD data are filtered through
188	basic QA screening (Sec. 2.1), each hourly $PM_{2.5}$ observation is matched with those
189	Level-2 AOD retrievals meeting the QA criteria and found within 40 km and 1 hr of the
190	PM _{2.5} observation. All remaining AOD values are then averaged for a single comparison
191	with the PM _{2.5} observation. We chose 40 km as the averaging range for the satellite data

192 after assuming a mean wind speed of 10 m/s influencing aerosol plumes transport 193 (approximately 40 km/hr). AOD autocorrelation at or exceeding 0.8 has been reported 194 for a distance of 40 km (on average) [Anderson et al., 2003; Zhang et al., 2011], making 195 this a reasonable constraint. 196 Table 1 summarizes the results of the hourly collocation of 40 km/1 hr average 197 MODIS/MISR AOD with corresponding ground-based PM_{2.5} measurements over the two 198 year study, including linear correlation coefficients and data counts for the contiguous 199 U.S. divided into its four respective time zones: Eastern (UTC-5), Central (UTC-6), 200 Mountain (UTC-7), and Pacific (UTC-8). Relatively low correlations are found for the 201 U.S., as a whole. However, a regional dependence of the relationship between the two 202 parameters is also apparent. The Eastern U.S. region exhibits higher correlation than 203 does the Pacific U.S. by a factor of nearly two (0.2 vs. 0.4). This is consistent with 204 several studies that have shown similar regional effects. For example, Hu [2009] reports 205 average PM_{2.5}/AOD correlations of 0.67 (Eastern U.S.) and 0.22 (Western U.S.), with 206 Engel-Cox et al. [2004] and Paciorek et al. [2008] reporting similar correlations of 0.6-207 0.8 (Eastern U.S.) and 0.2-0.4 (Western U.S.). It has been suggested that this regional 208 variability in the $PM_{2.5}/AOD$ relationship is due to differences in topography, surface 209 albedo, and boundary layer depth between the Eastern and Western U.S. [Engel-Cox et 210 al., 2006].

In Fig. 2, regional differences of PM_{2.5}/AOD correlation are also evident from scatterplots for the Eastern (Figure 2a) and Pacific (Figure 2b) time zones, with greater linearity observed in the Eastern U.S. compared to the west. Also, PM_{2.5} concentration averages were computed for each 0.1 bin of AOD, and shown with respect to both Terra

11

215	MODIS and MISR. Note that although we have listed both Aqua and Terra MODIS in
216	Table 1, we show only the Terra MODIS/MISR analysis in Fig. 2 because of their
217	common satellite-observing platform. In general, a better correlation is found for the bin
218	averages, which is consistent with that reported by Gupta et al., [2006].
219	Seasonally, each of the hourly $PM_{2.5}/AOD$ correlations coefficients shown in
220	Table 1 are recomputed for December through May (Table 1; DJFMAM) and June
221	through November (Table 1; JJASON). There are fewer data points for DJFMAM than
222	JJASON (~68% decrease), enhanced by the absence of December 2007 in the dataset
223	(this month was not included in the analysis due to the lack of PM _{2.5} Local Conditions
224	data, EPA Parameter Code 88101, before 2008). Overall, however, lower correlations
225	are found during this season compared with the annual mean. The opposite is thus true
226	for JJASON. Although not shown here, further analysis reveals that higher correlations
227	of JJASON may be due to a significant number of cases of relatively high $PM_{2.5}$ (greater
228	than 35 μ g/m ³) and high satellite AOD (greater than 0.3) that occur during this season,
229	relative to DJFMAM, which may positively influence the regression compared with
230	JJASON.
231	

232 **3.2 Daily Analysis**233

We next investigate how the relationship between AOD and PM_{2.5} is affected by the perceived data quality of the operational satellite AOD datasets, using only basic QA, versus the DA-quality Level 3 AOD data. As discussed above, these latter data are subject to more advanced screening, with filtering, correction, and spatial aggregation applied. Each available daily ground-based PM_{2.5} observation is matched with both the

239	operational and DA-quality AOD retrievals found within 1° latitude/longitude and the
240	day of the $PM_{2.5}$ observation. Results of the daily 1° x 1° operational and DA-quality
241	MODIS/MISR AOD analyses are shown for the CONUS and each respective time zone
242	in Table 2.
243	Distinct increases are found for $PM_{2.5}/AOD$ correlation using the DA-quality
244	satellite AOD products versus the operational satellite AOD datasets (Table 2). For
245	example, $PM_{2.5}$ /AOD correlations for the CONUS increase by about 0.12 (Aqua MODIS),
246	0.16 (Terra MODIS), and 0.14 (MISR) from each respective operational to DA-quality
247	dataset. Note that data counts for each DA-quality AOD analysis decrease relative to
248	each corresponding operational AOD analysis, indicative of fewer available collocations
249	from the Level 3 AOD datasets from increased data rejection. We believe that such a
250	pronounced pattern reflects the influence of AOD retrieval quality from the passive
251	satellites on their relationship with surface-based PM2.5 measurements.
252	Also shown in Table 2, the Eastern sample exhibits greater linearity (i.e.,
253	correlation) overall compared with the Western one. Figure 3 further illustrates the
254	regional variation in $PM_{2.5}/DA$ AOD correlation, through corresponding scatterplots for
255	the Eastern (Figure 3a) and Pacific (Figure 3b) time zones. As in Fig. 2, we only show
256	the Terra MODIS/MISR analysis because of their common platform. Also, averages of
257	$PM_{2.5}$ concentrations are shown for each 0.1 bin of DA TERRA and MISR AOD
258	The seasonality of the $PM_{2.5}/AOD$ relationship for the daily analysis is investigated
259	in Table 2. As encountered above for Table 1, there are fewer data points for DJFMAM
260	than JJASON (~32% decrease). Likewise, lower $PM_{2.5}$ /AOD correlations are found
261	during DJFMAM, and higher correlations are found from JJASON, as compared to the

262	mean annual results presented in Table 2. Again, this pattern may be due to a larger
263	number of high $PM_{2.5}$ (greater than 35 μ g/m ³) and high satellite AOD (greater than 0.3)
264	values that are found from JJASON, as compared to DJFMAM. However, a longer study
265	period is likely needed to more appropriately understand the seasonal dependence of the
266	PM _{2.5} /AOD relationship.
267	Figure 4 consists of two maps depicting daily PM _{2.5} sites used in this analysis, color-
268	coded with respect to $PM_{2.5}/AOD$ correlation coefficient. Figure 4a reflects the
269	PM _{2.5} /daily operational Terra MODIS AOD relationship, with generally higher
270	correlations in the Eastern U.S. than the Pacific U.S. Figure 4b illustrates a clear increase
271	in $PM_{2.5}/AOD$ correlation for the daily DA Terra MODIS AOD analysis, with again still
272	higher correlations for the Eastern U.S. compared to those results found in the west.
273	Similar regional and operational-to-DA AOD patterns in the PM _{2.5} /AOD relationship are
274	shown in Figure 5 for the operational MISR AOD (Figure 5a) and DA MISR AOD
274 275	shown in Figure 5 for the operational MISR AOD (Figure 5a) and DA MISR AOD (Figure 5b) daily analyses.
274 275 276	shown in Figure 5 for the operational MISR AOD (Figure 5a) and DA MISR AOD (Figure 5b) daily analyses. In order to strengthen the results obtained in the hourly and daily analyses, we apply
274 275 276 277	shown in Figure 5 for the operational MISR AOD (Figure 5a) and DA MISR AOD (Figure 5b) daily analyses. In order to strengthen the results obtained in the hourly and daily analyses, we apply a common point filter to the data. Our common point filter refers to the requirement of
 274 275 276 277 278 	shown in Figure 5 for the operational MISR AOD (Figure 5a) and DA MISR AOD (Figure 5b) daily analyses. In order to strengthen the results obtained in the hourly and daily analyses, we apply a common point filter to the data. Our common point filter refers to the requirement of valid points from all four data sources (i.e., hourly/daily PM _{2.5} and operational/DA AOD).
 274 275 276 277 278 279 	 shown in Figure 5 for the operational MISR AOD (Figure 5a) and DA MISR AOD (Figure 5b) daily analyses. In order to strengthen the results obtained in the hourly and daily analyses, we apply a common point filter to the data. Our common point filter refers to the requirement of valid points from all four data sources (i.e., hourly/daily PM_{2.5} and operational/DA AOD). As such, for common PM_{2.5} sites, correlations between hourly PM_{2.5} and 40 km average
 274 275 276 277 278 279 280 	 shown in Figure 5 for the operational MISR AOD (Figure 5a) and DA MISR AOD (Figure 5b) daily analyses. In order to strengthen the results obtained in the hourly and daily analyses, we apply a common point filter to the data. Our common point filter refers to the requirement of valid points from all four data sources (i.e., hourly/daily PM_{2.5} and operational/DA AOD). As such, for common PM_{2.5} sites, correlations between hourly PM_{2.5} and 40 km average operational AOD, and daily PM_{2.5} and 1° x 1° average DA AOD, were computed (Table)
 274 275 276 277 278 279 280 281 	 shown in Figure 5 for the operational MISR AOD (Figure 5a) and DA MISR AOD (Figure 5b) daily analyses. In order to strengthen the results obtained in the hourly and daily analyses, we apply a common point filter to the data. Our common point filter refers to the requirement of valid points from all four data sources (i.e., hourly/daily PM_{2.5} and operational/DA AOD). As such, for common PM_{2.5} sites, correlations between hourly PM_{2.5} and 40 km average operational AOD, and daily PM_{2.5} and 1° x 1° average DA AOD, were computed (Table 3). Regional variations in the PM_{2.5}/AOD relationship found here are similar to those in
 274 275 276 277 278 279 280 281 282 	 shown in Figure 5 for the operational MISR AOD (Figure 5a) and DA MISR AOD (Figure 5b) daily analyses. In order to strengthen the results obtained in the hourly and daily analyses, we apply a common point filter to the data. Our common point filter refers to the requirement of valid points from all four data sources (i.e., hourly/daily PM_{2.5} and operational/DA AOD). As such, for common PM_{2.5} sites, correlations between hourly PM_{2.5} and 40 km average operational AOD, and daily PM_{2.5} and 1° x 1° average DA AOD, were computed (Table 3). Regional variations in the PM_{2.5}/AOD relationship found here are similar to those in earlier analyses presented in this paper, with higher correlations for the east than for the
 274 275 276 277 278 279 280 281 282 283 	 shown in Figure 5 for the operational MISR AOD (Figure 5a) and DA MISR AOD (Figure 5b) daily analyses. In order to strengthen the results obtained in the hourly and daily analyses, we apply a common point filter to the data. Our common point filter refers to the requirement of valid points from all four data sources (i.e., hourly/daily PM_{2.5} and operational/DA AOD). As such, for common PM_{2.5} sites, correlations between hourly PM_{2.5} and 40 km average operational AOD, and daily PM_{2.5} and 1° x 1° average DA AOD, were computed (Table 3). Regional variations in the PM_{2.5}/AOD relationship found here are similar to those in earlier analyses presented in this paper, with higher correlations for the east than for the west. Also, the correlations from the hourly analysis are generally higher than those from
 274 275 276 277 278 279 280 281 282 283 284 	 shown in Figure 5 for the operational MISR AOD (Figure 5a) and DA MISR AOD (Figure 5b) daily analyses. In order to strengthen the results obtained in the hourly and daily analyses, we apply a common point filter to the data. Our common point filter refers to the requirement of valid points from all four data sources (i.e., hourly/daily PM_{2.5} and operational/DA AOD). As such, for common PM_{2.5} sites, correlations between hourly PM_{2.5} and 40 km average operational AOD, and daily PM_{2.5} and 1° x 1° average DA AOD, were computed (Table 3). Regional variations in the PM_{2.5}/AOD relationship found here are similar to those in earlier analyses presented in this paper, with higher correlations for the east than for the west. Also, the correlations from the hourly analysis are generally higher than those from the daily analysis, but with some dependency on region and satellite sensor. While this

common point study implies that operational AOD may be a better estimate of PM _{2.5} than
DA AOD, we note here that when only daily data are used (Table 2), there exists a
distinct improvement in PM _{2.5} estimation from the operational to DA AOD datasets.
Thus, it is reasonable to expect further improvement in the $PM_{2.5}$ /passive satellite AOD
relationship through the use of hourly DA-quality AOD datasets. These data are
currently not readily available, however, so this topic is left for a future study.
As a final step for Section 3, we examine the hourly PM _{2.5} /AERONET AOD
relationship for the CONUS. AERONET AOD (0.67 µm) measurements found within
0.3° latitude/longitude and the hour of an hourly PM _{2.5} observation were first averaged,
and hourly PM _{2.5} /AERONET AOD correlations and data counts were then computed
(Table 4). Similar to the results from the PM _{2.5} /satellite AOD analyses, a higher
correlation is found for the Eastern Time zone (0.57) compared to the Pacific Time zone
(0.47). Also, the hourly $PM_{2.5}$ /AERONET AOD correlations are generally higher than
those between hourly PM _{2.5} /satellite AOD (Table 1). These findings are not surprising,
as AERONET is considered the benchmark for validation of satellite AOD retrievals.
4.0 How Representative is the Surface Layer Aerosol Particle Presence to the
Atmospheric Column?
We have demonstrated that the quality of the AOD datasets investigated impacts
any linear correlation apparent with ground-based $PM_{2.5}$ measurements. Next we explore
the representativeness of aerosol particle presence near the surface to that of the
atmospheric column. We use the CALIOP L2_05kmAProf product, featuring a vertical

resolution of 60 m for altitudes below 20.2 km above mean sea level (MSL). Using the

corresponding mean surface elevation reported with each profile, values of extinction
coefficient and AOD (0.532 µm) are re-gridded linearly at 100 m resolution vertically
from the surface (above ground level, or a.g.l.) to 8.2 km after a robust QA screening
procedure takes place. The details of this QA process are documented in past studies
[Kittaka et al., 2011; Campbell et al., 2012a; Winker et al., 2012; Toth et al., 2013]. Only
cloud-free profiles are considered.

314 Shown in Fig. 6 are 1° x 1° averages (relative to the number of cloud free 5 km 315 CALIOP profiles in each 1° x 1° regional bin) of 0.532 µm aerosol extinction coefficient 316 for the 0.0 to 0.5 km layer (Fig. 6a), 0.5-1.5 km (Fig. 6b), 1.5-2.5 km (Fig. 6c) and 2.5-317 3.5 km a.g.l. (Fig. 6d), respectively. In general, extinction values observed in the lower 318 atmospheric layers (Figs. 6a and b) are larger than those observed in the elevated 319 atmospheric layers (Figs. 6c and d). However, higher mean values are found nearer the 320 surface in the eastern region (particularly the southeastern U.S.; Figs. 6a and b), while 321 higher values are found at elevated heights in the west (Figs. 6c and d). These data 322 indicate that, on average, aerosol particle distributions tend to be more concentrated near 323 the surface in the east and more diffuse vertically in the west.

Corresponding with Fig. 6a, Fig. 7 is a plot of the average percentage of surface layer-integrated extinction (altitudes lower than 500 m a.g.l.) to total column AOD. We use the average of the lower 500 m a.g.l. to represent the surface layer so as to minimize ground flash contamination in the CALIOP data when observations are near the ground [e.g., Campbell et al., 2012b]. Values are generally below 40% across the CONUS, with higher values more concentrated in the eastern part of the country. The distribution is noisy, however, and thus to better interpret these data, we present a five-year assessment

(2006-2011) of CALIOP data (Figure 8). Common patterns emerge, though more
distinctly, as higher percentages are again found over the east versus the west. In general,
however, AOD below 500 m a.g.l. accounts for only 30% or less of the total column
AOD across the U.S. This indicates that it is necessary to have a priori knowledge of the
ratio between near-surface integrated extinction to column-integrated AOD in order to
better characterize the likely representativeness of applying satellite AOD as a proxy for
surface PM_{2.5} concentration.

338 Note that although integrated extinction over the lowest 500 m a.g.l. may not be 339 representative of the total column AOD, it is possible that the correlation between the two 340 could be high, and thus useful for satellite AOD/PM_{2.5} studies. Although not shown here, we also compute the 1° x 1° average correlation between integrated extinction from the 341 342 lowest 500 m a.g.l. and total column AOD. Globally over land, an average correlation 343 of 0.61 is found. For the United States, a similar value of 0.62 is calculated, with values 344 of 0.61 for the Eastern time zone and 0.57 for the Pacific. Importantly, the lack of 345 significant regional variability in these relationships indicates that although the Eastern 346 and Pacific time zones may exhibit different AOD surface contribution percentages, 347 integrated surface extinction correlates relatively consistently with total column AOD. 348 Still, given a perfect possible correlation of 1 between integrated surface level extinction 349 and PM_{2.5} concentration, the correlation value of ~0.6 between the former with column-350 integrated AOD might represent the best case scenario, on a regional average, that one 351 could derive presently for the satellite AOD to PM_{2.5} concentration relationship. This 352 agrees well with the findings reported in Hoff and Christopher (2009).

353 To evaluate the influence of aerosol particle presence at elevated levels, in Fig. 9a

354	we show the fraction of CALIOP-retrieved column-integrated AOD found above an
355	arbitrary standard height of 2 km a.g.l., thus segregating mostly boundary layer particle
356	presence versus those propagating within the free troposphere. It is evident that regional
357	variations in the fraction of AOD above 2 km exist, as the western half of the U.S.
358	exhibits at least double the amount of particle extinction above 2 km than does the
359	eastern U.S. However, note that many areas in California, where a relatively dense array
360	of Pacific U.S. PM _{2.5} sites are located, exhibit relatively low contributions comparable to
361	that of the east (usually below 30%). Consistent with the findings shown in Fig. 9a,
362	regional variations in the frequency of occurrence of AOD above 2 km a.g.l. are also
363	observed (Fig. 9b), with generally higher frequencies in the west as compared to the east.
364	The average frequency of occurrence of aerosol particle presence (as measured by
365	CALIOP total column AOD) above 2 km a.g.l for the U.S. is ~ 40% (Fig. 9b). Also,
366	about 20% of data records (not shown) have at least 50% of aerosol particle presence
367	above 2 km a.g.l. This indicates a significant number of elevated aerosol plumes
368	occurred over the U.S. during the 2008-2009 period, and thus will not be recognized by
369	surface-based PM _{2.5} measurements.
370	
371 372 373	5.0 Can Near Surface Observations from CALIOP Be Used As a Better Proxy for PM _{2.5} Concentration?

Taking advantage of an active-profiling aerosol particle sensor like CALIOP, we investigate the relationship between hourly $PM_{2.5}$ concentration and CALIOP 532 µm extinction coefficient values near the surface. The temporal/spatial collocation and 40 km AOD averaging process here is the same as described in Sec. 3. Recall that $PM_{2.5}$ is a dry particle mass measurement. However, satellite-retrieved AOD values include the 379 effects of aerosol particle growth as a function of vapor pressure. To compute the 380 CALIOP extinction and PM_{2.5} relationship, a sensitivity study was performed for which 381 the hygroscopic growth of aerosol particles was accounted for. We approximate that 382 aerosol particles over the U.S. are sulfate aerosols, and apply the sulfate aerosol 383 hygroscopic growth factor [Hanel, 1976; Hegg et al., 1993; Anderson et al., 1994] to 384 compute dry aerosol extinction and AOD using Goddard Modeling and Assimilation 385 Office (GMAO) relative humidity values included as metadata in the NASAdisseminated CALIOP files. No correction is made to extinction coefficient values when 386 387 relative humidity is less than 30% or above 95%. Further, we investigate the sensitivity 388 of the CALIOP value chosen to compare with by varying the height of the retrieval used 389 between 0 and 500 m a.g.l. in 100 m segments.

390 Results, including the level of CALIOP extinction used, are summarized in Table 5. 391 For both the Eastern and Pacific U.S. time zones, altering the level of the reported 392 CALIOP extinction from 200 to 500 m a.g.l. has little effect on correlation. Relatively 393 low correlation is observed using the CALIOP extinction values at the 0-100 m level, 394 however, suggesting the likely impacts of ground contamination of the backscatter signal. 395 When hygroscopic growth of aerosol particles is considered, modest improvements are 396 found for the Eastern U.S. but not the climatologically drier Pacific region. 397 We next investigate the relationship between CALIOP extinction near the surface 398 and PM_{2.5} concentrations when collocated Aqua MODIS operational retrievals are 399 available. This PM_{2.5}/CALIOP/Aqua MODIS dataset was constructed for both hourly 400 and daily analyses during the 2008-2009 period. For the hourly study, both CALIOP and 401 operational Aqua MODIS observations are again averaged within 40 km and the 1 hr of

403	averaged within 100 km along-track (approximately 1°), and those from operational Aqua
404	MODIS are averaged within 1° latitude/longitude, and the day of each $PM_{2.5}$
405	measurement.
406	Figure 10 shows hourly analysis results for dry mass-adjusted CALIOP extinction
407	at 200-300 m a.g.l. (Figure 10a) and operational Aqua MODIS AOD (Figure 10b)The
408	200-300 m layer was used because the lowest 200 m a.g.l. of retrieved extinction is
409	considered subject to ground contamination [e.g., Schuster et al., 2012; Omar et al., 2013].
410	<u>R</u> easonably high correlations of ~ 0.8 are found for CALIOP/PM _{2.5} for both the Eastern
411	and Pacific time zonesA difference exists between these two regions for Aqua MODIS,
412	however. The Eastern U.S. exhibits similar correlation compared with that found above
413	from CALIOP, but drops off to about ~ 0.5 for the Pacific U.S. Clearly, CALIOP and
414	Aqua MODIS retrievals behave similarly for the Eastern U.S., but CALIOP performance
415	is much better than Aqua MODIS over the Pacific. However, the correlations between
416	PM _{2.5} and CALIOP/Aqua MODIS observations computed in this analysis should be
417	considered with caution, as the low data count (fewer than 100 data points) make these
418	findings tenuous.
419	Figures 11a and b depict the same analyses as in Fig. 10, but now for the daily
420	analysis of PM _{2.5} /CALIOP/Aqua MODIS. Correlations are reduced for each time zone,
421	compared with the hourly results. As was shown in Fig. 10, CALIOP and Aqua MODIS
422	exhibit similar correlations with daily PM _{2.5} for the Eastern U.S., but daily
423	$PM_{2.5}/CALIOP$ correlations are better than daily $PM_{2.5}/Aqua$ MODIS correlations for the
474	Pacific U.S.

the $PM_{2.5}$ measurements. For the daily comparison, observations from CALIOP are

425	CALIOP near-surface extinction/ hourly PM2.5 relationships represent the most
426	consistent correlations solved in this study. However, more research is necessary to
427	advance our understanding of the relationship between actively-profiled aerosol optical
428	properties and PM _{2.5} . This is particularly important since studies have reported
429	significant uncertainties in CALIOP AOD and extinction data [e.g., Schuster et al., 2012;
430	Omar et al., 2013], especially for values lower than 200 m a.g.l., which are clearly critical
431	to resolving the most optimal CALIOP extinction/ $PM_{2.5}$ relationship. Note, however, that
432	aside from ground contamination issues described above, Campbell et al., [2012a,b]
433	argue for an additional QA step of removing CALIOP profiles from bulk averages where
434	no aerosol extinction is retrieved below 200 m to limit the effects of signal pulse
435	attenuation. This effect may be further contributing to lower skill at these heights.
436	Further, additional analysis can be further explored where the top height of the surface-
437	detached mixed aerosol layer is known. This constraint was not considered here, and is
438	outside the general scope of our investigation.

440 **6.0 Conclusions**

Surface measurements of particulate matter with diameters less than 2.5 μ m (PM_{2.5}) are a frequent tool used to evaluate air quality in urban areas. Past studies have investigated the ability of using aerosol optical depth (AOD) retrievals from passive satellite sensors as proxies for PM_{2.5} concentrations. Extending from past efforts, this study explores the impact of passive satellite AOD data quality and satellite-derived surface-to-column aerosol representativeness on the PM_{2.5}/AOD relationship for a twoyear period (2008-2009). With a focus on the United States, passive AOD operational

448	Level-2 retrievals from Aqua/Terra Collection 5.1 Moderate Resolution Imaging
449	Spectroradiometer (MODIS) and Version 22 Multi-angle Imaging Spectroradiometer
450	(MISR) are temporally and spatially collocated for an hourly comparison with $PM_{2.5}$
451	measurements. Next, operational and data assimilation (DA) quality Aqua/Terra MODIS
452	and MISR AOD datasets are analyzed against $PM_{2.5}$ on a daily temporal scale to reveal
453	the effects that AOD data quality can exhibit with respect to $PM_{2.5}/AOD$ correlations.
454	The representativeness of surface aerosol particle concentration to that of the entire
455	column, as well as the correlation between surface AOD and total column AOD, are
456	investigated using observations from Cloud-Aerosol Lidar with Orthogonal Polarization
457	(CALIOP). CALIOP is then used to examine the relationship between near surface
458	aerosol extinction and PM _{2.5} .
459	The conclusions of this study are summarized as follows:
460	(1) Application of aggressive QA procedures to passive satellite AOD retrievals
461	increases their correlation with PM _{2.5} for all of the CONUS, but significantly
462	decreases data counts by a factor of about 2.
463	(2) Correlations remain low even with aggressive QA.
464	(3) <u>Aerosol particle distributions tend to be more concentrated near the surface in the</u>
465	Eastern U.S and more diffuse vertically in the Western U.S. This regional
466	variability in aerosol vertical distribution across the CONUS confirms one reason
467	for the higher PM _{2.5} /satellite AOD correlations observed in the east compared to
468	the west.
469	(4) Near-surface extinction (below 500 m a.g.l.), as measured by CALIOP, is not well
470	representative of total column-integrated extinction (i.e., AOD). Regionally,

471	near-surface aerosols are more representative of total column AOD in the Eastern
472	U.S. than in the Western U.S.
473	(5) Correlations between near-surface CALIOP 0.532 μ m extinction and hourly PM _{2.5}
474	observations are better than can be achieved with passive AOD retrievals.
475	However, with fewer than 100 pairs of collocated $PM_{2.5}$ and CALIOP extinction
476	data points used, such a finding is tenuous. Additional studies are needed to
477	further explore the possibility of accurately estimating $PM_{2.5}$ concentrations from
478	surface extinction derived from active sensors.
479	
480	In this paper, we have demonstrated that estimation of $PM_{2.5}$ concentrations from
481	satellite retrieved AOD is limited by both the quality of satellite AOD retrievals as well
482	as the representativeness of column-integrated AOD to near surface AOD. Also, some of
483	the past studies have shown that passive satellite AOD may be used to accurately
484	estimate $PM_{2.5}$ for particular sites. However, this study shows that, even with the use of
485	higher-quality DA AOD observations, column-integrated AOD derived from passive
486	satellite sensors may not be used directly as accurate proxies for surface-based PM _{2.5} over
487	broad spatial domains. As discussed earlier, this is partly attributed to differences in the
488	aerosol surface-to-column representativeness across the CONUS. Therefore, we caution
489	the direct use of passive satellite AOD observations for PM _{2.5} estimation over large areas,
490	especially in regions where elevated aerosol plumes exist.
491	Additionally, as our initial study has shown, the use of near surface extinction
492	measurements from active sensors, such as CALIOP, may provide a better $PM_{2.5}$
493	estimation over broad spatial scales than column-integrated passive satellite AOD.

494	However, ground contamination for near-surface CALIOP measurements and the effects
495	of humidity on aerosol optical properties need further investigation. Still, satellite
496	derived aerosol properties are of much value to $PM_{2.5}$ studies, especially with the
497	synergistic use of passive and active aerosol-sensitive observations, and through
498	assimilating these quality-assured data into air-quality focused numerical models for
499	future PM _{2.5} monitoring and forecasts.
500	
501 502 503 504	ACKNOWLEDGEMENTS
505	This research was funded through the support of the Office of Naval Research Code 322
506	and the NASA Interdisciplinary Science Program. Author JRC acknowledges the support
507	of NASA Interagency Agreement NNG13HH10I on behalf of the Micropulse Lidar
508	Network and NASA Radiation Sciences Program. Author YS acknowledges the support
509	of the NASA Earth and Space Science Fellowship (NESSF) Program. CALIPSO and
510	MISR data were obtained from the NASA Langley Research Center Atmospheric
511	Science Data Center. MODIS data were obtained from NASA Goddard Space Flight
512	Center. The DA-quality MODIS data were obtained from the Global Ocean Data

513 Assimilation Experiment (GODAE) server.

REFERENCES

- Anderson, T. L., Charlson, R. J., White, W. H., and McMurry, P. H.: Comment on "Light scattering and cloud condensation nucleus activity of sulfate aerosol measured over the Northeast Atlantic Ocean" by D.A. Hegg et al., J. Geophys. Res., 99(D12), 25947–25949, doi:10.1029/94JD02608, 1994.

521	
522	Anderson T. L. Charlson R. J. Winker D. M. Ogren J. A. and Holme'n K.
523	Mesoscale variations of tropospheric aerosols J Atmos Sci 60 119–136 2003b
524	
525	Boyouk N Léon LE Delbarre H Podvin T and Deroo C. Impact of the mixing
526	boundary layer on the relationship between PM2.5 and aerosol ontical
520 527	thickness. Atmospheric Environment $AI(2)$, 271, 277, 2010
527	the kness. At no spheric Environment, $44(2)$, $271-277$, 2010.
520	Comphall I. P. Taakatt I. I. Paid I. S. Thang I. Curtis C. A. Huar F. I. Saggiong
529	W. D. Westman D. L. Reiu, J. S., Zhang, J., Curus, C. A., Hyer, E. J., Sessions,
521	w. K., Westplial, D. L., Flospelo, J. W., Weltoll, E. J., Ollial, A. H., Vaugilali, W. A., and Winker, D. M.: Evaluating nighttime CALIOD 0.522 um aproval antical danth
521	and winker, D. W. Evaluating inglitume CALIOF 0.552 µm acrosof optical deput
552 522	and extinction coefficient retrievals, Atmos. Meas. Tech., $5, 2143-2160$,
533	dol:10.5194/amt-5-2143-2012, 2012a.
534	
535	Campbell, J. R., Keid, J. S., Westphal, D. L., Zhang, J., Tackett, J. L., Chew, B. N.,
536	Welton, E. J., Shimizu, A., Sugimoto, N., Aoki, K., and Winker, D. M.:
537	Characterizing the vertical profile of aerosol particle extinction and linear
538	depolarization over southeast Asia and the maritime continent: the 2007–2009 view
539	from CALIOP, Atmos. Res., 122, 520–543, doi:10.1016/j.atmosres.2012.05.007,
540	2012b.
541	
542	Chu, D. A., Kaufman, Y. J., Zibordi, G., Chern, J. D., Mao, J., Li, C., and Holben, B N.:
543	Global monitoring of air pollution over land from the Earth Observing System-Terra
544	Moderate Resolution Imaging Spectroradiometer (MODIS), J. Geophys. Res., 108,
545	4661, doi:10.1029/2002JD003179,D21, 2003.
546	
547	Diner, D. J., Beckert, J. C., Reilly, T. H., Bruegge, C. J., Conel, J. E., Kahn,, R. A.,
548	Martonchik, J. V., Ackerman, T. P., Davies, R., Gerstl, S. A. W., Gordon, H. R.,
549	Muller, JP., Myneni, R. B., Sellers, P. J., Pinty, B., and Verstraete, M. M.: Multi-
550	angle Imaging SpectroRadiometer (MISR) instrument description and experiment
551	overview, IEEE Trans. Geosci. Remote Sens., 36, 1072–1087, 1998.
552	
553	Engel-Cox, J. A., Hoff, R. M., Rogers, R., Dimmick, F., Rush, A. C., Szykman, J., Al-
554	Saadi, J., Chu, D. A., and Zell, E. R.: Integrating lidar and satellite optical depth with
555	ambient monitoring for 3-dimensional particulate characterization. Atmos. Environ.
556	40_8056_8067_2006
557	40, 0000 0007, 2000.
558	Engel-Cov I A Holloman C H Coutant B W and Hoff B M : Qualitative and
550	quantitative evaluation of MODIS satellite sensor data for regional and urban scale air
560	quality Atmos Environ 28, 2405, 2500, 2004
561	quality. Athlos. Elivitoli., 36, 2493–2309, 2004.
562	Enderal Degister: National embient ein quality standards for norticulate metter. Final Dule
562	Endered Degister/vol 62 no. 128/Eridey, July 19, 1007/Einel Dulo 40 CED Dart 50
567	1007
304 565	1777.
303 5((Federal Devictory National embiest size surflits standards (11 1 1 1 1 D
300	rederal Register: National amoient air quality standards for particulate matter. Proposed

567 Rule Federal Register/vol. 71, no. 10/Tuesday, January 17, 2006/Proposed Rules, 40 568 CFR Part 50, 2006. 569 570 Gupta, P., Christopher, S.A., Wang, J., Gehrig, R., Lee, Y.C., and Kumar, N.: Satellite 571 remote sensing of particulate matter and air quality over global cities. Atmospheric 572 Environment 40 (30), 5880-5892, 2006. 573 574 Hanel, G.: The properties of atmospheric aerosol particles as functions of relative 575 humidity at thermodynamic equilibrium with surrounding moist air, Adv. Geophys., 576 19, 73-188, 1976. 577 578 Hegg, D. A., Ferek, R. J., and Hobbs, P. V.: Light scattering and cloud condensation 579 nucleus activity of sulfate aerosol measured over the northeast Atlantic Ocean, J. 580 Geophys. Res., 98(D8), 14887-14894, doi:10.1029/93JD01615, 1993. 581 582 Hoff, R. M. and Christopher, S. A.: Remote sensing of particulate pollution from space: 583 have we reached the promised land?, J Air Waste Manag Assoc., 59:645-675, 2009. 584 585 Holben, B.N., Eck, T.F., Slutsker, I., Tanré, D., Buis, J.P., Setzer, A., Vermote, E., 586 Reagan, J. A., Kaufman, Y., Nakajima, T., Lavenu, F., Jankowiak, I., and Smirnov, 587 A.: AERONET - A federated instrument network and data archive for aerosol 588 characterization, Rem. Sens. Environ., 66, 1-16, 1998. 589 590 Hu, Z.: Spatial analysis of MODIS aerosol optical depth, PM2.5, and chronic coronary 591 heart disease, Int. J. Health Geogr., 8, 27, doi:10.1186/1476-072X-8-27, 2009. 592 593 Hunt, W. H., Winker, D. M., Vaughan, M. A., Powell, K. A., Lucker, P. L., and Weimer, 594 C.: CALIPSO lidar description and performance assessment, J. Atmos. Oceanic 595 Technol., 26, 1214–1228, doi:10.1175/2009JTECHA1223.1, 2009. 596 597 Hutchison, K. D.: Applications of MODIS satellite data and products for monitoring air 598 guality in the state of Texas. Atmos. Environ., 37, 2403–2412, 2003. 599 600 Hyer, E. J. and Chew, B. N.: Aerosol transport model evaluation of an extreme smoke 601 episode in Southeast Asia, Atmos. Environ., 44(11), 1422–1427, 2010. 602 603 Hyer, E. J., Reid, J. S., and Zhang, J.: An over-land aerosol optical depth data set for data 604 assimilation by filtering, correction, and aggregation of MODIS Collection 5 optical 605 depth retrievals, Atmos. Meas. Tech., 4, 379–408, doi:10.5194/amt-4-379-2011, 2011. 606 607 Kahn, R. A., Gaitley, B. J., Martonchik, J. V., Diner, D. J., Crean, K. A., and Holben, 608 B. N.: Multiangle Imaging Spectroradiometer (MISR) global aerosol optical depth 609 validation based on 2 years of coincident Aerosol Robotic Network (AERONET) 610 observations, J. Geophys. Res., 110, D10S04, doi:10.1029/2004JD004706, 2005. 611 612 Kahn, R. A., Gaitley, B. J., Garay, M. J., Diner, D. J., Eck, T., Smirnov, A. and

613	Holben, B. N.: Multiangle Imaging SpectroRadiometer global aerosol product
614	assessment by comparison with Aerosol Robotic Network, J. Geophys. Res., 115,
615	D23209, doi:10.1029/2010JD014601, 2010.
616	
617	Kittaka, C., Winker, D. M., Vaughan, M. A., Omar, A., and Remer, L. A.:
618	Intercomparison of column aerosol optical depths from CALIPSO and MODIS-Aqua,
619	Atmos. Meas. Tech., 4, 131-141, doi:10.5194/amt-4-131-2011, 2011.
620	
621	Kumar, N., Chu, A., and Foster, A.: An empirical relationship between PM2.5 and
622	aerosol optical depth in Delhi Metropolitan, Atmos. Environ., 41, 4492–4503, 2007.
623	
624	Liu, Y., Park, R. J., Jacob, D. J., Li, Q., Kilaru, V., and Sarnat, J. A.: Mapping annual
625	mean ground-level PM2.5 concentrations using Multiangle Imaging
626	Spectroradiometer aerosol optical thickness over the contiguous United States, J.
627	Geophys. Res., 109, D22206, doi:10.1029/2004JD005025, 2004.
628	
629	Liu, Y., Franklin, M., Kahn, R., and Koutrakis, P.: Using aerosol optical thickness to
630	predict ground-level PM2.5 concentrations in the St Louis area: a comparison
631	between MISR and MODIS. Remote Sens Environ 107:33-44, 2007.
632	
633	Omar, A. H., Winker, D. M., Tackett, J. L., Giles, D. M., Kar, J., Liu, Z., Vaughan, M. A.,
634	Powell, K. A., and Trepte, C. R.: CALIOP and AERONET aerosol optical depth
635	comparisons: One size fits none, J. Geophys. Res. Atmos., 118, 4748–4766,
636	doi:10.1002/jgrd.50330, 2013.
637	Paciorek C Liu Y Moreno-Macias H and Kondragunta S Spatio-temporal
638	associations between GOES aerosol optical depth retrievals and ground-level PM2 5
639	Environ Sci Technol 42:5800–5806 2008
640	
641	Pope III C A Burnett R T Thun M J Calle E E Krewski D Ito K and
642	Thurston, G.D.: Lung cancer, cardiopulmonary mortality, and long-term exposure to
643	fine particulate air pollution. Journal of the American Medical Association 287.
644	1132–1141 2002
645	
646	Prados, A. I., Kondragunta, S., Ciren, P., and Knapp, K. R.; GOES Aerosol/Smoke
647	Product (GASP) over North America: Comparisons to AERONET and MODIS
648	observations J Geophys Res 112 D15201 doi:10.1029/2006JD007968.2007
649	
650	Remer L A Kaufman Y J Tanre D Mattoo S Chu D A Martins J V Li R -R
651	Ichoku C Levy R C Kleidman R G Eck T F Vermote E and Holben B N
652	The MODIS aerosol algorithm products and validation I Atmos Sci 62 947–973
653	2005
654	
655	Schuster, G. L., Vaughan, M., MacDonnell, D., Su, W., Winker, D. Dubovik, O.
656	Lapvonok, T., and Trepte, C.: Comparison of CALIPSO aerosol ontical denth
657	retrievals to AERONET measurements, and a climatology for the lidar ratio of
658	dust, Atmos. Chem. Phys. Discuss., 12, 11641–11697, 2012.

659	
660	Schwartz, J., and Neas, L. M.: Fine particles are more strongly associated than coarse
661	particles with acute respiratory health effects in school children. Epidemiology, 11,
662	6–10, 2000.
663	
664	Shi, Y., Zhang, J., Reid, J. S., Holben, B., Hyer, E. J., and Curtis, C.: An analysis of the
665	Collection 5 MODIS over-ocean aerosol optical depth product for its implication in
666	aerosol assimilation, Atmos. Chem. Phys., 11, 557–565, doi:10.5194/acp-11-557-
667	2011a, 2011.
668	
669	Shi, Y., Zhang, J., Reid, J. S., Liu, B., and Deshmukh, R.: Multi-sensor Analysis on Data-
670	Assimilation-Quality MISR Aerosol Products, Abstract A53C-0358 presented at 2011
671	Fall Meeting, AGU, San Francisco, Calif., 5-9 Dec, 2011b.
672	
673	Shi Y., Zhang, J., Reid, J. S., Liu, B., and Deshmukh, R.: Critical evaluation of cloud
674	contamination in MISR aerosol product using collocated MODIS aerosol and cloud
675	products, Abstract A13J-0310, presented at 2012 Fall Meeting, AGU, San Francisco,
676	Calif., 3-7 Dec, 2012.
677	
678	Shinozuka, Y., Clarke, A. D., Howell, S.G., Kapustin, V. N., McNaughton, C. S., Zhou,
679	J., and Anderson, B. E.: Aircraft profiles of aerosol microphysics and optical
680	properties over North America: Aerosol optical depth and its association with PM2.5
681	and water uptake, J. Geophys. Res., 112, D12S20, doi:10.1029/2006JD007918, 2007.
682	
683	Stephens, G. L., Vane, D. G., Boain, R. J., Mace, G. G., Sassen, K., Wang, Z.,
684	Illingworth, A. J., O'Connor, E. J., Rossow, W. B., Durden, S. L., Miller, S. D.,
685	Austin, R. T., Benedetti, A., and Mitrescu, C.: The CloudSat mission and the A-Train:
686	A new dimension of space-based observations of clouds and precipitation. Bull. Amer.
687	Meteorol. Soc., 83, 1771–1790, doi:10.1175/BAMS-83-12-1771, 2002.
688	
689	Toth, T. D., Zhang, J., Campbell, J. R., Reid, J. S., Shi, Y., Johnson, R. S., Smirnov, A.,
690	Vaughan, M. A., and Winker, D. M.: Investigating enhanced Aqua MODIS aerosol
691	optical depth retrievals over the mid-to-high latitude Southern Oceans through
692	intercomparison with co-located CALIOP MAN and AERONET data sets J
693	Geophys Res Atmos 118 4700-4714 doi:10.1002/jgrd 50311.2013
694	Geophys. Res. Hullos., 110, 1700 1711, doi:10.1002/jgrd.50511, 2015.
695	van Donkelaar A. Martin R. V. and Park R. L. Estimating ground-level PM2.5 using
696	aerosol optical depth determined from satellite remote sensing Journal of
697	Geophysical Research 111 D21201 doi:10.1029/2005ID006996.2006
698	Geophysical Research 111, D21201, doi:10.1029/20030D000990, 2000.
699	van Donkelaar A Martin R V Brauer M Kahn R Levy R Verduzco C and
700	Villeneuve P. J.: Global estimates of ambient fine particulate matter concentrations
701	from satellite-based aerosol optical depth: development and application Environ
702	Health Perspect 118.847–855 2010
703	Houth Forspool, 110.077 000, 2010.
704	Wang L and Christopher S A : Intercomparison between satellite derived aerosol
/ U T	mang, v., and emissiopher, S. T.: intercomparison between satemic derived derosol

705	optical thickness and PM2.5 mass: implications for air quality studies. Geophysical
706	Research Letters 30 (21), 2095, doi:10.1029/2003GL018174, 2003.
/0/	
/08	Winker, D. M., Hunt, W. H., and McGill, M. J.: Initial performance assessment of
/09	CALIOP, Geophys. Res. Lett., 34, L19803, doi:10.1029/200/GL030135, 200/.
/10	
/11	winker, D. M., Tackett, J. L., Getzewich, B. J., Liu, Z., Vaugnan, M. A., and Rogers, R.
/12	K.: The global 3-D distribution of tropospheric aerosols as characterized by CALIOP.
/13	ACPD, doi:10.5194/acpd-12-1-2012, 2012.
714	Zhang I. Christenhar S. A. and Helben P. N. Intercomparison of smalle acrossel
715	antical thickness derived from COES 8 imager and ground based Sun photometers. L
710	Georbus Pas 106 D7 doi: 10.1020/2000ID000540.2001
/1/ 718	000000000000000000000000000000000000
710	Zhang L and Reid L S: MODIS aerosol product analysis for data assimilation:
720	Assessment of over-ocean level 2aerosol ontical thickness retrievals. I. Geophys. Res.
721	111 D22207 doi:10.1029/2005 D006898 2006
721	111, D22207, d01.10.1029/20033D000096, 2000.
723	Zhang I Reid I S. Westnhal D L. Baker N L. and Hver F. I. A system for
724	operational aerosol optical depth data assimilation over global oceans. I Geophys
725	Res 113 D10208 doi:10.1029/2007JD009065 2008
726	1.00., 110, 0 10200, 00.10.1027/200700 007000, 2000.
727	Zhang J Campbell J R Reid J S Westphal D L Baker N L Campbell W F
728	and Hyer, E. J.: Evaluating the impact of assimilating CALIOP-derived aerosol
729	extinction profiles on a global mass transport model. Geophys. Res. Lett., 38, L14801.
730	doi:10.1029/2011GL047737, 2011.
731	
732	
733	
734	
735	
736	
737	
738	
739	
740	
741	
742	
743	
744	
745	
746	
747	
748	
749	
750	

Figure 2

Two-year (2008-2009) scatterplots of operational Terra MODIS (in light blue) and MISR
(in red) AOD, averaged within 40 km of each respective PM_{2.5}-monitoring site, versus
hourly PM_{2.5} concentrations for the (a) Eastern and (b) Pacific U.S. time zones. Also
plotted are averages of PM_{2.5} for each 0.1 AOD bin, represented with triangles (in dark
blue) for Terra MODIS and squares (in orange) for MISR. Error bars (+/- 1 standard
deviation) for the bin averages are also shown.

Figure 3

801 Figure 4

used in this study. Sites are color-coded based on the correlation between daily $PM_{2.5}$

805 observations and daily 1° x 1° (a) operational and (b) DA Terra MODIS AOD.

⁸⁰³ For 2008-2009, those U.S. Environmental Protection Agency (EPA) daily PM_{2.5} sites

Figure 5

```
818 For 2008-2009, U.S. Environmental Protection Agency (EPA) daily PM<sub>2.5</sub> sites used in
```

```
819 this study. Sites are color-coded based on the correlation between daily PM_{2.5}
```

```
820 observations and daily 1^{\circ} \times 1^{\circ} (a) operational and (b) DA MISR AOD.
```


Figure 8

860
861 From 2006-2011, fraction of CALIOP integrated 0.532 μm extinction below 500 m a.g.l.

862 for the Continental United States.

894 each 1° x 1° bin, for the Continental United States.

912 TABLES

Data	aset	Operati MODIS	ional Aqua	Operati Terra N	ional AODIS	Operational MISR		
		R	Data	R	Data	R	Data	
		value	Count	value	count	value	count	
	All	0.57	2081	0.47	2748	0.42	614	
Eastern	DJFMAM	0.49	477	0.39	566	0.11	154	
	JJASON	0.57	1551	0.50	2001	0.50	408	
	All	0.27	1765	0.22	2005	0.22	447	
Central	DJFMAM	0.11	335	0.14	346	0.16	112	
	JJASON	0.38	1330	0.28	1511	0.26	304	
	All	0.19	1369	0.12	1632	0.10	391	
Mountain	DJFMAM	-0.08	215	0.09	250	0.16	95	
	JJASON	0.30	1136	0.17	1354	0.20	277	
	All	0.15	3832	0.22	3873	0.11	903	
Pacific	DJFMAM	0.08	1064	0.21	1047	0.15	269	
	JJASON	0.26	2560	0.21	2564	0.29	539	
	All	0.19	9047	0.22	10258	0.15	2355	
Contiguous	DJFMAM	0.03	2091	0.12	2209	0.07	630	
U.S.	JJASON	0.34	6577	0.25	7430	0.27	1528	

Table 1

917 Correlation coefficients and data counts of the 40 km average operational Aqua/Terra

918 MODIS and MISR AOD/hourly PM_{2.5} collocation analyses for the Eastern, Central,

919 Mountain, and Pacific time zones and continental United States total for the entire two-

920 year (2008-2009) study period, December through May 2008-2009 (DJFMAM), and June

921 through November 2008-2009 (JJASON).

			Aqua	MODIS		Terra MODIS				MISR				
			Operational		DA		Operational		DA		Operational		DA	
Dat	aset	R value	Data	R value	Data	R value	Data	R value	Data	R value	Data	R value	Data	
			Count		Count		Count		Count		Count		Count	
	All	0.40	76194	0.50	29682	0.38	80810	0.51	38725	0.32	15526	0.50	10949	
Eastern	DJFMAM	0.23	30615	0.31	12180	0.23	32492	0.35	15166	0.20	6819	0.37	4829	
	JJASON	0.45	43837	0.56	17123	0.44	45839	0.55	22723	0.37	8194	0.55	5750	
	All	0.39	39942	0.47	18584	0.36	40824	0.51	21084	0.30	8396	0.46	6256	
Central	DJFMAM	0.27	15892	0.31	7507	0.22	15853	0.29	8130	0.23	3536	0.35	2549	
	JJASON	0.45	23217	0.55	10708	0.44	23979	0.57	12506	0.33	4649	0.53	3551	
	All	0.09	14160	0.21	5007	0.07	15597	0.13	6313	0.04	3455	0.06	2489	
Mountain	DJFMAM	0.06	4788	0.00	1180	0.04	5258	-0.04	1463	-0.01	1385	-0.05	782	
	JJASON	0.13	9178	0.30	3775	0.13	10078	0.29	4793	0.12	1974	0.16	1659	
	All	0.13	21871	0.33	11446	0.12	22405	0.33	11470	0.16	4639	0.27	3625	
Pacific	DJFMAM	0.00	9110	0.08	4218	-0.03	9308	0.08	4265	0.06	2047	0.16	1509	
	JJASON	0.24	12310	0.44	7107	0.24	12470	0.43	7011	0.27	2431	0.37	2025	
	All	0.31	152167	0.43	64719	0.29	159636	0.45	77592	0.26	32016	0.40	23319	
Contiguous	DJFMAM	0.15	60405	0.21	25085	0.12	62911	0.22	29024	0.15	13787	0.26	9669	
U.S.	JJASON	0.40	88542	0.52	38713	0.39	92366	0.52	47033	0.34	17248	0.48	12985	

933 **Table 2**

934

935 Correlation coefficients and data counts of the daily 1° x 1° average operational/DA Aqua/Terra MODIS and MISR AOD/daily

936 PM_{2.5} collocation analyses for the Eastern, Central, Mountain, and Pacific time zones and continental United States total for the

entire two-year (2008-2009) study period, December through May 2008-2009 (DJFMAM), and June through November 2008-2009

938 (JJASON).

	Aqua MODIS			<u>T</u>	erra MODI	S	MISR		
Dataset	Hourly	Daily	Data	Hourly	Daily	Data	Hourly	Daily	Data
	R value	R value	Count	R value	R value	Count	<u>R value</u>	R value	Count
Eastern	0.63	0.54	<u>369</u>	0.52	0.58	<u>543</u>	0.56	<u>0.49</u>	<u>138</u>
Central	0.29	<u>0.2</u>	<u>305</u>	0.25	0.28	<u>362</u>	0.20	0.12	<u>93</u>
Mountain	0.52	0.56	108	0.35	0.55	<u>119</u>	0.39	-0.08	21
Pacific	0.32	<u>0.16</u>	<u>916</u>	0.25	0.21	874	0.25	0.15	270
Contiguous US	0.36	0.20	<u>1698</u>	0.30	0.25	1898	0.30	0.22	522

- 946 <u>Table 3</u>
- 948 Correlation coefficients and data counts for the hourly $PM_{2.5}/40$ km average operational AOD and daily $PM_{2.5}/1^{\circ}$ x 1° average DA
- 949 AOD common point analyses for the Eastern, Central, Mountain, and Pacific time zones and continental United States total for the
- 950 <u>two-year (2008-2009) study period.</u>

Dataset	R value	Data Count
Eastern	0.57	6596
Central	0.39	613
Mountain	0.12	2438
Pacific	0.47	512
Contiguous US	0.47	10159

Table 4

961 Correlation coefficients and data counts for the hourly PM_{2.5}/average AERONET AOD (0.670 µm) collocation analysis (AERONET

962 AOD averaged within the hour and 0.3° latitude/longitude of an hourly PM_{2.5} measurement) for the Eastern, Central, Mountain, and

963 Pacific time zones and continental United States total for the two-year (2008-2009) study period.

CALIOP Extinction Layer	Uncorrected CALIOP Extinction		Dry Mass CALIOP Extinction	
	Eastern	Pacific	Eastern	Pacific
0 - 100 m	0.35	0.72	0.33	0.71
100 - 200 m	0.62	0.73	0.66	0.72
200 - 300 m	0.57	0.72	0.69	0.74
300 - 400 m	0.54	0.61	0.63	0.59
400 - 500 m	0.69	0.58	0.70	0.56

Table 5

969 Two-year (2008-2009) correlation coefficients of hourly PM_{2.5} observations and 40 km average CALIOP extinction (both uncorrected

970 and dry mass) at various 100 m a.g.l. atmospheric layers.