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Abstract

SOA particle formation ranks among the least understood processes in the atmo-
sphere, rooted in part in (a) the limited knowledge about SOA chemical composition; (b)
the availability of only little concrete evidence for chemical structures; and (c) little avail-
ability of reference compounds needed for benchmarking and chemical identification in5

pure and homogenous form. Here, we address these challenges by synthesizing and
subjecting to physical and chemical analysis putative isoprene-derived SOA particle
constituents. Our surface-selective spectroscopic analysis of these compounds is fol-
lowed by comparison to synthetic SOA particles prepared at the Harvard Environmental
Chamber (HEC) and to authentic SOA particles collected in a tropical forest environ-10

ment, namely the Amazon Basin, where isoprene oxidation by OH radicals has been
reported to dominate SOA particle formation (Martin et al., 2010b; Sun et al., 2003;
Hudson et al., 2008; Yasmeen et al., 2010). We focus on the epoxides and tetraols
that have been proposed to be present in the SOA particles. We characterize the com-
pounds prepared here by a variety of physical measurements and polarization-resolved15

vibrational sum frequency generation (SFG), paying particular attention to the phase
state (condensed vs. vapor) of four epoxides and two tetraols in contact with a fused
silica window. We compare the spectral responses from the tetraol and epoxide model
compounds with those obtained from the natural and synthetic SOA particle samples
that were collected on filter substrates and pressed against a fused silica window and20

discuss a possible match for the SFG response of one of the epoxides with that of the
synthetic SOA particle material. We conclude our work by discussing how the approach
described here will allow for the study of the SOA particle formation pathways from first-
and second-generation oxidation products by effectively “fast-forwarding” through the
initial reaction steps of particle nucleation via a chemically resolved approach aimed at25

testing the underlying chemical mechanisms of SOA particle formation.
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1 Introduction

Secondary organic aerosol (SOA) particles are important in the climate system as they
can lead to significant negative radiative forcing, especially over the world’s large for-
est ecosystems (Kanakidou et al., 2005; Murray et al., 2000; Williams et al., 2011).
Despite this prominent role, SOA particle formation ranks among the least understood5

processes in the atmosphere (Kanakidou et al., 2005; Hallquist et al., 2009; Goldstein
and Galbally, 2007; Galbally et al., 2007; Weiss et al., 2008a), rooted in part in the lim-
ited knowledge about SOA chemical composition. Molecular studies (Yasmeen et al.,
2010; Weiss et al., 2008b; Kleiber et al., 2009; Wang et al., 2005b; Gao et al., 2010;
Mena-Carrasco et al., 2009; Huynh et al., 2003; Palaniappan et al., 2009; Greenham10

et al., 1996; Sharma et al., 2003; Tolocka et al., 2004; Grassian, 2009; Docherty et al.,
2005; Heaton et al., 2009) aimed at bridging this knowledge gap support the hypothe-
sis that the products formed from the gas phase oxidization of biogenic volatile organic
compounds react with one another to form species with lower and lower vapor pres-
sures, ultimately leading to SOA particle formation. Heterogeneous processes such as15

physisorption and surface reactions are important for conditions of condensational par-
ticle growth. The formation of larger particles through coagulative growth may also be
largely influenced by processes occurring at the surfaces of the particles, especially un-
der conditions of low relative humidity for which SOA particle material has been shown
to be solid.20

One key challenge in understanding SOA particle growth which is addressed in
this present work is that little concrete evidence for chemical structures is available.
Moreover, most reference compounds needed for benchmarking and chemical iden-
tification in, for instance, mass spectrometric studies of SOA particles (Heaton et al.,
2007, 2009), are not available in pure and homogenous form from commercial sources.25

A third challenge is that laboratory model studies typically begin with hydrocarbon
precursors, such as isoprene or α-pinene, to form SOA particles, while field studies
sample SOA particles at various stages along their formation pathway, which is cur-
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rently unknown. Finally, few molecularly specific techniques exist that are appropriate
for probing the particle/gas interface or the surfaces of samples of putative SOA particle
constituents directly.

Here, we address these challenges by synthesizing and subjecting to physical and
chemical analysis putative isoprene-derived SOA particle constituents. Our surface-5

selective spectroscopic analysis of these compounds is followed by comparison to
synthetic SOA particles prepared at the Harvard Environmental Chamber (HEC) and
to authentic SOA particles collected in a tropical forest environment, namely the Ama-
zon Basin (Martin et al., 2010a), where isoprene oxidation by OH radicals has been
reported to dominate SOA particle formation (Martin et al., 2010b; Sun et al., 2003;10

Hudson et al., 2008; Yasmeen et al., 2010). As part of this work, we focus on the epox-
ides (Sun et al., 2003) and tetraols (Yasmeen et al., 2010) that have been proposed to
be present in the SOA particles and that are characterized by oxygen-to-carbon (O/C)
ratios (Lewis et al., 2005) that fall into the 0.4+/-0.1 range typical for SOA particles in
tropical forests (Nelson and Chandler, 2004). Following a brief description of the syn-15

thesis and the analytical methods, we characterize the compounds prepared here by
a variety of physical measurements and surface-selective spectroscopic probes. We
collect polarization-resolved vibrational sum frequency generation (SFG) spectra of
condensed phase and vapor phase samples of four epoxides and two tetraols in con-
tact with a fused silica window. We compare the spectral responses from the tetraol20

and epoxide model compounds with those obtained from the natural and synthetic
SOA particle samples that were collected on filter substrates and pressed against
a fused silica window and discuss a possible match for the SFG response of one of
the epoxides with that of the synthetic SOA particle material. We conclude our work by
discussing how the approach described here will allow for the study of the SOA particle25

formation pathways from first- and second-generation oxidation products by effectively
“fast-forwarding” through the initial reaction steps of particle nucleation via a chemi-
cally resolved approach aimed at testing the underlying chemical mechanisms of SOA
particle formation.
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2 Experimental

2.1 Synthesis of putative isoprene-derived SOA particle precursors

During the isolation and structural determination of naturally occurring molecules, con-
crete evidence for tentative structural assignments is often obtained by synthesizing the
proposed structures in the laboratory. This need for de novo synthesis of putative struc-5

tures is especially important when the compounds in question exist naturally in such
small quantities that isolation of enough material for thorough spectroscopic analysis is
not practical or even possible. In this respect, the numerous organic molecules formed
in the atmosphere from naturally occurring isoprene represent a challenge due to dif-
ficulties associated with their collection in meaningful amounts (µg- or mg-amounts for10

offline analytical studies) and the complexity of the thus obtained mixtures. In order to
perform physical studies on these putative species that are relevant to atmospheric pro-
cesses, we sought to obtain a suite of pure chemical standards. To this end, we have
accomplished the synthesis of six putative hydroxyl radical-mediated, isoprene-derived
oxidation products (Fig. 1).15

Epoxides 1–4 were synthesized in an analogous fashion to the procedures reported
by Surratt and coworkers (Zhang et al., 2012). While all samples reported herein are
racemic, efforts were made to prepare diastereomerically pure samples where possi-
ble.

The internal epoxides 1 and 2 were prepared in diastereomerically pure form start-20

ing from 3-methyl-2-buten-1-ol and 3-methyl furan-2(5H)-one, respectively. The termi-
nal epoxides 3 and 4 were synthesized as 1 : 1 mixtures of inseparable diastereomers
starting from 2-methyl-2-vinyloxirane. Tetraols 5 and 6 were prepared in diastereomer-
ically pure form starting from protected trans and cis 2-methylbut-2-ene-1,4-diols, re-
spectively (Zhang et al., 2012; Fontana et al., 2000). The procedures employed in these25

syntheses are described in further detail in the Supplement.
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2.2 Synthetic and field-collected SOA particle material derived from isoprene

We compare the SFG spectra obtained from the epoxides and tetraols prepared here to
those obtained from aerosol particles synthesized as a model system from the photo-
chemical reaction of isoprene and OH radicals at the Harvard Environmental Chamber
(HEC), (Ebben et al., 2011b; Chen et al., 2011) as well as from submicron-sized SOA5

particles collected in the central Amazon Basin during the AMAZE-08 campaign (Mar-
tin et al., 2010a), chosen as an example of a tropical forest whose air is typically rich
in isoprene. We thus expect the SFG spectra obtained from the surfaces of the syn-
thetic and field-derived particles to be due to products of isoprene oxidation pathways.
The approach for our analysis of SOA particle material prepared at the HEC and col-10

lected at the AMAZE-08 field site by SFG has been described in detail in our prior work
(Ebben et al., 2012).

2.3 Vibrational sum frequency generation

The surface-specific probe employed here is based on a SFG setup that has been
previously described (Buchbinder et al., 2009; Voges and Geiger, 2005; Voges et al.,15

2007; Stokes et al., 2009a, c). Briefly, we utilize a Ti:S femtosecond laser system oper-
ating at 1 kHz repetition rate (Spectra Physics, Spitfire Pro). Half of the 800 nm output
is used to pump an optical parametric amplifier (Spectra Physics, OPA 800C) for gener-
ating tunable broadband (full width at half max of ∼ 150 cm−1) infrared light appropriate
for covering the aromatic and aliphatic C–H stretching regions. At the sample surface,20

the IR light field is upconverted using a visible pump beam filtered with a narrow band-
pass filter yielding an 800 nm pump pulse with a bandwidth of 1.57 nm. To avoid optical
damage, the incident pulse energies and foci are limited to 2 µJ and 50 µm in diameter,
respectively. Internal reflection geometry, in which the incident light fields pass through
the fused silica window to reach the sample interface, is utilized in all experiments.25

The ssp polarization combination that is employed in these experiments probes those
components of the vibrational transition dipole moments that are oriented perpendic-
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ular to the solid substrate. SFG experiments are repeated several times from at least
two different sample spots for spin-coated samples, or from vapor samples prepared
separately. Spectra shown in this work are averages of the individual spectra. The Sup-
plement shows the individual spectra for the various compounds under investigation in
this work. In general, we find that the frequency positions of the spectral features vary5

by less than 8 cm−1 among the individual spectra. The full C–H stretching frequency
region is analyzed with a hybrid scanning/broadband method pioneered by Walker and
coworkers (Esenturk and Walker, 2004). Spectra are collected for 7 acquisitions last-
ing 2 min each, in order to increase signal-to-noise. SFG spectra are referenced to the
SFG response from a gold substrate to account for the energy distribution in the in-10

cident IR pulse, and the frequencies are calibrated using a polystyrene standard (ICL
Crystal Laboratories).

2.4 Sample configurations

The synthetic epoxide and tetraol samples were analyzed at room temperature by SFG
by contacting a fused silica window with (a) their equilibrium vapor pressure (Handbook15

of Chemistry and Physics, 1997) and (b) their condensed phase following spin-coating
of the sample dissolved in deuterated methanol. Synthetic SOA particle material, con-
densed over the course of several days onto 50 nm-sized ammonium sulfate seed par-
ticles during the reaction of isoprene and OH radicals at the HEC and subsequently
collected on Teflon filters as described in our earlier work, (Ebben et al., 2011b) was20

probed by SFG by pressing a fused silica window against a Teflon filter containing
SOA particle material (Ebben et al., 2011a, 2012). Finally, field-derived SOA particle
material, collected on nucleopore impactor substrates sampled using a micro-orifice
uniform-deposit impactor (MOUDI) (Marple et al., 1991) in the central Amazon Basin
from 9 April 2008 to 17 April 2008 at the site of the AMAZE-08 campaign (Martin et al.,25

2010a), was probed by SFG in the same way as the synthetic SOA particle material
prepared at the HEC. Before collecting an SFG spectrum, all fused silica substrates
were rinsed and sonicated in methanol and Millipore water, nitrogen and oven dried,
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and plasma cleaned prior to exposure to samples. Substrates not exposed to sample
compounds showed no evidence of C–H stretches.

In the window/vapor experiments of the epoxides, a volume of approximately 30 µL
of sample was injected through a syringe into the void space of a custom-built Teflon
sample cell having an opening against which a fused silica window was sealed us-5

ing an O-ring. Vapor experiments with the gel-like tetraol samples were carried out by
spreading a gel drop of the sample at the bottom of a fused silica window. Following
the introduction of the sample to the sample cell and window, the vapor of the con-
densed phase samples was allowed to equilibrate in the void space of the cell. In this
configuration, the incident laser fields did not illuminate the condensed phase sample.10

In addition to window/vapor experiments, all of the compounds were dissolved to 100
mM in deuterated methanol and then spin-coated directly onto fused silica windows,
which were then placed against the sample cell with an O-ring. In this configuration,
the incident laser fields did illuminate the spin-coated film.

3 Results and discussion15

3.1 Phase states

There exists a keen interest in determining the phase state of SOA particles (Nelson
et al., 2001; Huang et al., 2008), as reactive processing inside the particle bulk may be
turned off upon particle solidification and may compete with surface reactions if the par-
ticles are not solid. Given this interest, and given the sensitivity of SFG spectroscopy20

to interfaces between materials undergoing phase changes, (Miranda and Shen, 1999;
Wei et al., 2002) we report here which of the model compounds are liquid vs. solid at
temperatures relevant to the upper and lower troposphere. In the following section, we
also discuss differences in the vibrational SFG responses obtained from vapor phase
vs. condensed phase model compounds in contact with the fused silica windows em-25

ployed here.
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We find that each of the epoxides is a liquid at room temperature, becoming increas-
ingly viscous (but not solid) with lower and lower temperatures down to −40 ◦C. The
two tetraol compounds described in this work are also not solid at room temperature.
However, in contrast to the epoxides that form them, they are gel-like down to −40 ◦C.
The gel state made it difficult to handle the tetraols with a syringe. As described in5

the prior section, the vapor experiments with the tetraol samples were therefore car-
ried out by spreading a gel drop of the sample at the bottom of a fused silica window,
followed by equilibration of the vapor in the space between the window and the cell.
Room-temperature vapor pressures over the epoxides and tetraols – and their bind-
ing constants for interaction with the solid fused silica substrate – are evidently high10

enough to produce the sizable SFG responses at the vapor/solid interface reported
here.

3.2 Vibrational sum frequency generation spectra

Figures 2a, b and 3a, b summarize our findings from carrying out ssp-polarized vibra-
tional SFG spectroscopic analyses of the epoxides and tetraols in the two phase states15

studied here (vapor and condensed phase), of isoprene-derived synthetic SOA particle
material, and of field-derived SOA particles in the 1.0 µm size fraction. The latter was
chosen as a representative spectrum of PM1-sized (i.e. below 1 µm in diameter) SOA
particles collected during AMAZE-08 (Ebben et al., 2012). Using our sample storage
procedures, SFG spectra of the isoprene-derived synthetic SOA particle material do20

not change over the duration of three years, as shown in the Supplement. The fol-
lowing two sections discuss the results obtained from the epoxides and the tetraols,
and the last section compares the results to those obtained from the synthetic and
field-derived SOA particles samples.

29819

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/13/29811/2013/acpd-13-29811-2013-print.pdf
http://www.atmos-chem-phys-discuss.net/13/29811/2013/acpd-13-29811-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
13, 29811–29843, 2013

Synthesis and
coherent vibrational
laser spectroscopy

C. J. Ebben et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

3.2.1 Epoxides

Figure 2a shows that a peak at 2955 cm−1 dominates the SFG spectra of fused silica
windows in contact with the vapor-phase epoxides. The spectra also exhibit smaller sig-
nal contributions around 2880 cm−1. SFG responses from methyl groups of long-chain
hydrocarbons usually occur at 2960 cm−1 and 2940 cm−1, attributable to the Fermi res-5

onance of the CH3 asymmetric stretch with a CH3 bending overtone and the CH3 asym-
metric stretch, (Miranda and Shen, 1999; Chen et al., 2002; Opdahl et al., 2002) and
at 2880 cm−1, which is attributable to the CH3 symmetric stretch (Miranda and Shen,
1999; Conboy et al., 1997, 1998). These SFG responses are typically the dominant
and most intense features in the SFG spectra of hydrocarbons. We therefore attribute10

the strong peak near 2955 cm−1 to the asymmetric methyl stretch and/or its Fermi reso-
nance and the smaller peak near 2880 cm−1 to the symmetric methyl stretch. However,
the molecules studied here also contain one or two hydroxyl-substituted methylene
groups. SFG spectra of analogous ethanolic methylene groups within a series of alco-
hols have been reported in one study by Wang and co-workers to exhibit a symmetric15

stretch at 2886 cm−1 and a Fermi resonance at 2974 cm−1 (Lu et al., 2004), located
where the SFG spectra of the epoxides studied here also show some intensity. Epox-
ides 3 and 4 also contain a vicinal diol moiety having one methylene group. The SFG
responses from this methylene group may be compared to those reported by the Wang
group for the two methylene groups at the glycol/vapor interface (Lu et al., 2004), for20

which symmetric and asymmetric stretches occur at 2870 cm−1 with strong intensity
and at 2900 cm−1 with quite low intensity, respectively, along with a Fermi resonance
having medium signal intensity at 2938 cm−1. The SFG spectra reported here exhibit
SFG signal intensity at these frequencies, but the contributions are either not well re-
solved spectroscopically or overlap with the strong SFG responses produced by the25

methyl group.
The SFG spectra of epoxides 3 and 4 show some intensity between 3050 cm−1 and

3020 cm−1. In SFG spectroscopy, this frequency region is typically associated with aro-
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matic C–H groups, (Hommel and Allen, 2003; Weiss et al., 2007) or vinylic groups
(Buchbinder et al., 2009; Stokes et al., 2008a, 2009a, b), which are not present in
these two species. While the SFG responses observed from epoxides 3 and 4 be-
tween 3050 cm−1 and 3020 cm−1 are weak, they are likely to indicate the presence
of the single methylene group attached to the strained epoxide ring structure in these5

compounds: previous SFG studies have shown that as the number of carbon atoms
in a cyclic hydrocarbon decreases, and the C–C single bonds become increasingly
strained, the vibrational frequencies of the methylene symmetric stretches shift beyond
3000 cm−1 (Watson, 2010). Furthermore, the IR spectra of bromocyclopropane, (Diallo
and Waters, 1988) cyclopropane-d1, (Diallo and Waters, 1988) cyclopropane-1,1-d2,10

(Keeports and Eggers, 1984) cyclopropane 1,1,2,2-d4, (Keeports and Eggers, 1984)
and cyclopropane (Diallo and Waters, 1988; Spiekermann et al., 1980) all show vibra-
tional responses beyond 3000 cm−1. Based on these literature reports, we assign the
peak at ∼ 3020 cm−1 that is exhibited by epoxides 3 and 4 to the symmetric stretching
mode of the single methylene group in the epoxide motif of these molecules.15

Finally, the epoxides studied here all contain one methine group, which is generally
observed by SFG at a frequency of approximately 2900 cm−1 (Buck and Himmelhaus,
2001; Lu et al., 2005). The SFG spectra shown in Fig. 2a and b exhibit little intensity
at those frequencies, indicating that the contributions from the methine group in the
epoxides is quite weak.20

From our spectral analysis, we conclude that the epoxides studied here produce SFG
signals that are mainly due to their CH3 asymmetric stretch and/or Fermi resonance,
with minor contributions from the CH3 symmetric stretch and some contribution from
the methylene groups, depending on whether the epoxide ring is internally or terminally
located.25

As described in the experimental section, the SFG experiments were also carried
out by spin coating the same IEPOX samples in deuterated methanol onto fused silica
windows. Figure 2b shows increased SFG signal intensity in the symmetric stretching
region (i.e. below 2900 cm−1) for all compounds analyzed when compared to Fig. 2a.
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Generally, the ratio of the SFG signal intensities from the symmetric and the asym-
metric stretching modes of a methyl group informs on that group’s molecular tilt angle
(Yang et al., 2002). The increased SFG signal intensity obtained from the methyl sym-
metric stretching mode suggests that the C3v symmetry axes of the methyl groups of
the four epoxides studied here are tilted much more towards the surface normal for5

the spin-coated samples than for the vapor phase samples. The ratio of the SFG sig-
nal intensities from the symmetric and the asymmetric stretching modes may thus be
used as a marker for distinguishing vapor samples from condensed phase samples
in contact with the fused silica windows. Finally, the contributions from the strained
methylene group in epoxides 3 and 4 that we observed above 3000 cm−1 in the win-10

dow/vapor experiments are much weaker, if present at all, in the condensed phase
samples. Moreover, well-resolved spectral features at the frequencies associated with
ethanolic or glycolic methylene groups are not observed in Fig. 2b. Taken together, our
findings indicate significant restructuring of the epoxides at the fused silica windows
employed here depending on whether they are in the condensed or vapor phase.15

3.2.2 Tetraols

As mentioned in the introduction, ongoing reactions with hydroxyl radicals under acidic
low NOx conditions can lead to the formation of 2-methyltetraols from IEPOX precur-
sors, which may be part of SOA particle material. We therefore analyzed two tetraols,
5 and 6, which are syn- and anti-diastereomers of one another. Just like in the case of20

the epoxides, we carried out our analysis for vapor and spin-coated tetraol compounds
in contact with fused silica windows (Fig. 3a and b).

As expected, neither tetraol shows appreciable SFG signal intensity at frequencies
exceeding 3000 cm−1, which is consistent with the absence of aromatic, vinylic, or
strained methylene groups in these tetraols. Similar to the epoxides, the SFG spectra25

of tetraols 5 and 6 vapor display a dominant feature at 2946 and 2953 cm−1, respec-
tively, which we attribute to the methyl asymmetric stretch and/or Fermi resonance of
the methyl group in the tetraols for the reasons outlined above. As in the case of the
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epoxides, the methyl symmetric stretching contribution to the SFG spectra increases
– quite substantially in fact – when the samples are spin-coated as opposed to present
in the vapor phase. Furthermore, while syn-2-methyltetraol (5) features only one peak
in this region at 2880 cm−1, anti-2-methyltetraol (6) shows an additional fairly well re-
solved contribution at 2840 cm−1, which we attribute here to contributions from the5

symmetric methylene C-H stretches for the reasons outlined above. Just like the epox-
ides, the two tetraols studied here contain one methine group. Unlike for the epoxides,
however, the SFG spectra of the tetraols in contact with the fused silica windows (ex-
cept for the tetraol 6 vapor) exhibit significant SFG signal intensity at 2900 cm−1, which
is where methine stretches have been reported to occur (Buck and Himmelhaus, 2001;10

Lu et al., 2005). Finally, we find that the SFG spectra obtained from the fused silica
surface in contact with the room temperature equilibrium vapor pressure above a drop
of tetraol 5 are about two to three times higher in intensity than those obtained from
tetraol 6. This finding could be due to a less ordered interfacial structure in terms of the
methyl and methylene oscillators, or due to a lower vapor pressure of the syn- (5) vs.15

the anti-tetraol (6).

3.2.3 Comparison to synthetic and field-derived SOA particle material

In this section, we compare the SFG spectra obtained from epoxides (1–4) and tetraols
(5 and 6) to those obtained from synthetic and field-derived SOA particle material. We
report and discuss a possible match in the SFG spectra obtained from one of the model20

compounds and the synthetic SOA particle samples, which allows for an improved
understanding of what functional groups may be present at the surfaces of the SOA
particles. Furthermore, comparing the particle spectra with those obtained from the
gas and condensed phase samples yields information on the molecular environment
of the functional groups that may be present on the particle surfaces.25

Our previously published work reported that the SFG spectra obtained from fused
silica windows in contact with the equilibrium room-temperature vapor pressures of α-
pinene, β-pinene, limonene, isoprene, cis-2-pentene, n-hexene, n-pentene, cyclohex-
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ene, and cyclopentene did not agree with those obtained from the AMAZE-08 particle
samples or the synthetic isoprene-derived SOA particle samples prepared at the HEC
(Ebben et al., 2011b). In the context of our current work, Figs. 2 and 3 show that the
vibrational SFG spectra of the epoxides and tetraols studied here do not match those
obtained from the surfaces of field-derived SOA particles collected during AMAZE-5

08 either. Figure 2a, however, shows some reasonable agreement between the SFG
spectra obtained from the vapor phase/window interface of epoxide 1 and the syn-
thetic SOA particle material/window interface. Most importantly, this compound is the
only one whose 2952 cm−1 peak position matches that of the synthetic SOA parti-
cle material, which occurs at 2955 cm−1, and whose methyl and methylene symmetric10

C–H stretches at 2880 cm−1 and 2850 cm−1, respectively, are also reasonably well
matched. An even better match is found for the SFG spectrum of the spin-coated
trans-β-IEPOX/window interface and the synthetic SOA particle material/window in-
terface. In contrast to the results obtained from epoxide 1, epoxides 2, 3, and 4 at the
vapor/window interfaces exhibit SFG peak positions at 2941, 2945, and 2940 cm−1,15

respectively, and these frequency positions do not agree with those obtained from the
synthetic or the natural isoprene-derived SOA material. This result suggests that the
surface of spin-coated epoxide 1 is a reasonable representation of the surfaces of the
isoprene-derived SOA particles, at least as probed by SFG in the C–H stretching re-
gion.20

Figure 3 shows that the analogous comparison between the SFG spectra obtained
from tetraols 5 and 6 and the synthetic and field-derived SOA particle samples does not
result in a reasonable match in the asymmetric C–H stretching region near 2955 cm−1

except for perhaps the case of the vapor/window interface of tetraol 6. The symmetric
C–H stretching region, however, is not well matched. We conclude that the SFG spectra25

of the fused silica windows containing the condensed phase, i.e. spin-coated, tetraols
do not match those obtained from the synthetic or field-derived SOA material.
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4 Spectral fitting and molecular orientation analysis

One benefit of SFG is an exquisite sensitivity to molecular orientation at interfaces.
However, the orientation of the oscillators that produce SFG signals may change based
on what phase state they are in (Wei et al., 2001). By utilizing the ssp and ppp polariza-
tion combinations via the polarization intensity ratio method (Buchbinder et al., 2011;5

Wang et al., 2005a; Moad and Simpson, 2004), the tilt angle of the C3v symmetry axis
and the associated distribution width of the methyl group of trans-β-IEPOX (epoxide 1)
with respect to the surface normal were predicted. This molecule was chosen because
the spectra of this molecule provide the best match to isoprene-derived SOA under
both vapor and spin-coated conditions. Briefly, each spectrum was fit with a combina-10

tion of in-phase and out-of-phase Lorentzian peaks, representing the symmetric and
asymmetric C–H stretching vibrational modes of the one methyl and the two methylene
groups, as well as Fermi resonances that may be present (see details of the fitting
procedures and outcomes in the Supplement). The fits show that the SFG responses
are due to the asymmetric and symmetric methyl stretches and a methyl Fermi res-15

onance and not due to the asymmetric and symmetric methylene stretches (or their
Fermi resonance).

As shown in the Supplement, spectral fitting yielded a point estimate and standard er-
ror for the amplitudes of the methyl symmetric stretch, located near 2880 cm−1, for each
polarization combination. Based on the spectral fits to the experimental SFG spectra,20

we determined a point estimate and standard error, in parentheses, of the ppp/ssp am-
plitude ratio of 0.31(5). In a separate step, theoretical values of χppp/χssp, where χ
is the second order susceptibility of the system under investigation for each of the two
polarization combinations, were computed for a range of molecular tilt angles based on
the optical properties of the system and assuming monomodal Gaussian distributions25

ranging from 1 to 40◦ (at full width half maximum). These theoretical ratios are plotted
as a function of tilt angle (Fig. 4). The set of angles for which the theoretical values
for each orientation distribution overlap with the experimentally determined values is
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then the range of molecular tilt angles of the methyl group with respect to the surface
normal. Further information on this method of analysis is provided in the Supplement.

Assuming a 1◦ distribution, which corresponds to all of the methyl C3v axes being
aligned to within 1◦ of one another, the tilt angle would be 40◦ from the surface nor-
mal (Fig. 5). Including wider orientation distribution functions opens up this cone of tilt5

angles to a range of 27–52◦ for vapor phase epoxide, and tilt angles from 0–90◦ are
possible when the Gaussian distribution width is broadened to 40◦ full width half max
(FWHM).

The second radial plot indicates possible tilt angles for the C3v axis of the methyl
group in spin-coated epoxide 1. Based on the spectral fits to the experimental SFG10

spectra, we determined a point estimate and standard error of the ppp/ssp amplitude
ratio of 0.39(9). The standard error for this point estimate encompasses all theoreti-
cally possible tilt angles, but the point estimate itself results in tilt angles ranging from
53–65◦. The tilt angles obtained for the methyl group of epoxide 1 in the condensed
phase are comparable, albeit somewhat larger, to those obtained for the vapor/fused15

silica case. This result indicates that the title angle of the methyl group in trans-β-
IEPOX (1) depends only weakly on the phase state. We conclude from this result that
the phase state which trans-β-IEPOX (1) is in might influence the SFG spectra by
influencing the orientation distribution of oscillators other than the methyl symmetric
stretch. Such an influence of phase state on the SFG spectra is indeed observed for20

the molecules probed here, including trans-β-IEPOX (1). We then conclude that the
spectral, as opposed to orientational, analysis discussed in Sect. 3.2.3 suggests that if
synthetic isoprene-derived SOA particle material is in fact well represented by trans-β-
IEPOX (1), its methyl group is likely to be in an environment resembling a condensed
phase, rather than a vapor phase.25

Based on the radial plots and on observations from the spectral fits of our SFG
data, we gain additional insight into the orientation of trans-β-IEPOX (1) at the fused
silica surface. The absence of symmetric and asymmetric methylene contributions in
the spectral fits (vide supra and Supplement) may indicate that the two methylene

29826

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/13/29811/2013/acpd-13-29811-2013-print.pdf
http://www.atmos-chem-phys-discuss.net/13/29811/2013/acpd-13-29811-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
13, 29811–29843, 2013

Synthesis and
coherent vibrational
laser spectroscopy

C. J. Ebben et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

groups are trans-configured to one another, so that their SFG responses cancel out
through destructive interference. The rigid carbon backbone of this molecule, shown in
Fig. 5, would allow for the existence of a strong coupling mechanism for the vibrational
coherences probed by SFG. Similar long-range coupling and phase interference was
recently reported for a nonlinearly active chromophore selectively placed at various5

positions along a DNA helix (Doughty et al., 2013). It is also possible that the symmetric
stretching modes are oriented parallel to the surface, so as not to be probed using the
ssp polarization combination, and that the resulting asymmetric stretches of the two
methylene groups in trans-β-IEPOX (1) are out of phase from one another (Fig. 5).

Based on this discussion, we hypothesize that the epoxide oxygen atom is oriented10

toward the silica surface, allowing for hydrogen bonding interactions between the epox-
ide and SiOH groups present on the silica surface. As shown in Fig. 5, this arrangement
is consistent with a 40◦ tilt angle of the methyl group with respect to the surface normal.

Given that the carbon atoms forming the backbone of this molecule are held rigidly
in place by the presence of the epoxide ring, only the alcohol groups and their associ-15

ated methylene groups can rotate freely. We propose that the hydroxyl group located
on the carbon atom further away from the methyl group (viz. Figure 5) is rotated to-
ward the surface, so as to reduce steric hindrance between the methylene and the
methyl groups. This arrangement would also allow for hydrogen bonding interactions
between the SiOH groups and the oxygen from the OH group, in addition to that of20

the epoxide. If the hydroxyl group on the carbon atom adjacent to the methyl group
were to be oriented toward the surface as well, the methylene groups would be trans-
configured (consistent with the absence of methylene stretches in the SFG spectra),
and H-bonding interactions of the molecule with the surface SiOH groups would be
maximized.25

A thorough structural and orientational analysis was not carried out for epoxides 2,
3, and 4 or for tetraols 5 and 6. As noted in Sects. 3.2.1 and 3.2.2, we propose that
mismatches between the spectra of these compounds and that of isoprene-derived
SOA particles may result from a lack of surface activity of these molecules. However,
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we cannot rule out that these mismatches may result from differences in orientation of
the surface oscillators of these molecules under the phase conditions studied here.

5 Implications for atmospheric chemistry and conclusions

While it is impossible from our study to definitely determine whether the epoxide or
tetraol compounds prepared and studied here are part of isoprene-derived SOA par-5

ticles, our results can be summarized as follows: the SFG spectra obtained from syn-
thetic isoprene-derived SOA particle material are reasonably well reproduced by spin-
coated trans-β-IEPOX (1) and to a lesser degree by the vapor phase of trans-β-IEPOX
(1) and also anti-2-methyltetraol (6) in contact with a fused silica window. The obvious
mismatch of the SFG spectra obtained from the synthetic SOA particle material and10

the cis-β-IEPOX (2), δ-IEPOX (3), α-IEPOX (4), and syn-2-methyltetraol (5) samples,
in vapor or spin-coated form, indicates that if these species are in fact present in the
SOA material, they are not SFG active (SFG signal intensities vanish in centrosymmet-
ric environments under conditions where molecular orientation distributions average
to zero) (Boyd, 2003; Shen, 1984). We therefore conclude that cis-β-IEPOX (2), δ-15

IEPOX (3), α-IEPOX (4), and syn-2-methyltetraol (5), and possibly anti-2-methyltetraol
(6), if indeed part of the synthetic SOA material prepared at the HEC or collected dur-
ing AMAZE-08, are likely to be located in the bulk of the particles and not at their
surfaces. Under low relative humidity conditions, for which SOA particle material has
been reported to be solid, (Nelson et al., 2001; Huang et al., 2008) these bulk-localized20

species may therefore not be available for chemical reactions. However, in the absence
of a complete orientation analysis of the molecules studied here, we cannot rule out
completely that the mismatches between the SFG spectra of the molecules other than
trans-β-IEPOX and isoprene-derived SOA material are due to changes in molecular
orientation.25

The compounds discussed in this work will allow us to test the following hypothesis:
is SOA particle formation possible, and are the climate-relevant properties of thusly
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formed SOA particles impacted when using the first- and second-generation oxidation
products described here as opposed to plain terpenes? Compounds 1–6 should have
sufficiently high enough vapor pressures for this experiment (Handbook of Chemistry
and Physics, 1997). Testing this hypothesis will advance our mechanistic information
regarding the formation of SOA particles, specifically during the stages that take the5

molecular precursors towards the particle phase. This proposed experiment is similar
to current chamber studies that begin with one or more terpenes or their derivatives in
the presence of one or more oxidants (see, for instance, Prenni et al., 2009; Kiendler-
Scharr et al., 2009) followed by chemical and property analysis of the particle phase
formed in the chamber, but will vastly increase the chemical diversity and O/C ratios10

of the molecular precursors through the power of synthetic organic chemistry. Such
experiments will allow us to test whether SOA particle formation that began with a given
terpene precursor involves one type of molecular species or if multiple species act
in concert. The rates of the two pathways just described differ by their order, which
can be quantified and be of high value to modeling efforts aimed at understanding15

and predicting SOA particle formation (Riipinen et al., 2011). Access to the synthetic
compounds described here will thus enable us to “fast-forward” through SOA particle
formation chemistry and to quantify the relationship between the climate-properties of
the SOA particles formed from molecular precursors with varying O/C ratio.

Supplementary material related to this article is available online at20

http://www.atmos-chem-phys-discuss.net/13/29811/2013/
acpd-13-29811-2013-supplement.pdf.
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Correction to Fig. 3, page 30: “syn” and “anti” in the figure caption should be italicized. 

 

Correction to Fig. 4 AND Fig. 5, page 31 and 32: in the figure caption “trans” should be 

italicized and beta symbol should not be. 
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Fig. 1. Chemical structures of the isoprene-derived oxidation products synthesized and ana-
lyzed in this work.
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Fig. 2. ssp-Polarized SFG spectra of vapor-phase (left) and spin-coated (right) epoxides in
contact with fused silica and comparison to isoprene-derived SOA particles (blue) and SOA
particles collected in the central Amazon Basin (green). From top: α-IEPOX (4), δ-IEPOX (3),
cis-β-IEPOX (2), trans-β-IEPOX (1), isoprene-derived SOA, and natural SOA from the central
Amazon Basin. Gray vertical lines indicate (from right) CH3 asymmetric, CH3 symmetric, and
CH2 symmetric stretches. Spectra are offset for clarity.
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Fig. 3. ssp-Polarized SFG spectra of vapor-phase (left) and spin-coated (right) 2-methyltetraols
in contact with fused silica and comparison to isoprene-derived SOA particles (blue) and SOA
particles collected in the central Amazon Basin (green). From top: syn-2-methyltetraol (5), anti-
2-methyltetraol (6), isoprene-derived SOA, and natural SOA from the central Amazon Basin.
Gray vertical lines indicate CH3 asymmetric, CH3 symmetric, and CH2 symmetric stretches.
Spectra are offset for clarity.
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Figure 4. 
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Fig. 4. Radial plots indicating methyl C3v tilt angle as a function of Appp/Assp amplitude ratio
of the methyl symmetric stretching mode for vapor (left) and spin-coated (right) trans-β-IEPOX
(1) calculated as described in the text. Solid red curves indicate the experimentally determined
ratio point estimates, and dashed red curves indicate the standard errors of these ratios. Gray
curves indicate theoretically calculated monomodal Gaussian orientation distributions of widths
ranging from 1 to 40◦.
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Figure 5. 
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Fig. 5. Proposed model of trans-β-IEPOX (1) molecular orientation on a surface. The sur-
face normal is located along the z-axis, with a 40◦ methyl tilt angle. The rigid backbone of the
molecule due to the epoxide ring is indicated by a thick gray line.
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