- Improvement and Further Development in CESM/CAM5: Gas-Phase Chemistry and Inorganic Aerosol Treatments
 Jian He¹ and Yang Zhang^{1,*}
 ¹Air Quality Forecasting Laboratory, Department of Marine, Earth, and Atmospheric Sciences,
- 5 6

7

¹Air Quality Forecasting Laboratory, Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, NC, 27695, USA

8 Abstract: Gas-phase chemistry and subsequent gas-to-particle conversion processes such as new 9 particle formation (J), condensation, and thermodynamic partitioning have large impacts on air 10 quality, climate, and public health through influencing the amounts and distributions of gaseous 11 precursors and secondary aerosols. Their roles in global air quality and climate are examined in 12 this work using the Community Earth System Model version 1.0.5 (CESM1.0.5) with the Community Atmosphere Model version 5.1 (CAM5.1) (referred to as CESM1.0.5/CAM5.1). 13 14 CAM5.1 includes a simple chemistry that is coupled with a 7-mode prognostic Modal Aerosol 15 Model (MAM7). MAM7 includes classical homogenous nucleation (binary and ternary) and 16 activation nucleation (empirical first-order power law) parameterizations, and a highly-simplified 17 inorganic aerosol thermodynamics treatment that only simulates particulate-phase sulfate and 18 ammonium. In this work, a new gas-phase chemistry mechanism based on the 2005 Carbon 19 Bond Mechanism for Global Extension (CB05 GE) and several advanced inorganic aerosol 20 treatments for condensation of volatile species, ion-mediated nucleation (IMN), and explicit 21 inorganic aerosol thermodynamics for sulfate, ammonium, nitrate, sodium, and chloride have 22 been incorporated into CESM/CAM5.1-MAM7. Comparing to the simple gas-phase chemistry, 23 CB05 GE can predict many more gaseous species, and thus could improve model performance 24 for PM_{2.5}, PM₁₀, PM components, and some PM gaseous precursors such as SO₂ and NH₃ in several regions, as well as aerosol optical depth (AOD) and cloud properties (e.g., cloud fraction 25

^{*} Email: <u>yang zhang@ncsu.edu</u>, Phone: (919)-515-9688

26 (CF), cloud droplet number concentration (CDNC), and shortwave cloud forcing (SWCF)) on 27 globe. The modified condensation and aqueous-phase chemistry could further improve the 28 predictions of additional variables such as HNO₃, NO₂, and O₃ in some regions, and new particle 29 formation rate (J) and AOD over globe. IMN can improve the predictions of secondary PM_{2.5} 30 components, PM_{2.5}, and PM₁₀ over Europe, as well as AOD and CDNC over globe. The explicit 31 inorganic aerosol thermodynamics using ISORROPIA II improves the predictions of all major 32 PM_{2.5} components and their gaseous precursors in some regions, as well as downwelling 33 shortwave radiation, SWCF, and cloud condensation nuclei at a supersaturation of 0.5% over 34 globe. For simulations of 2001-2005 with all the modified and new treatments, the improved model predicts that on a global average, SWCF increases by 2.7 W m⁻², reducing NMBs of 35 36 SWCF from -5.4% to 1.2%. Uncertainties in emissions can explain largely the inaccurate 37 predictions of precursor gases (e.g., SO₂, NH₃, and NO) and primary aerosols (e.g., black carbon 38 and primary organic matter). Additional factors leading to discrepancies between model 39 predictions and observations include assumptions associated with equilibrium partitioning for 40 fine particles assumed in ISORROPIA II, irreversible gas/particle mass transfer treatment for 41 coarse particles, uncertainties in model treatments such as dust emissions, secondary organic 42 aerosol formation, multiple-phase chemistry, cloud microphysics, aerosol-cloud interaction, dry 43 and wet deposition, and model parameters (e.g., accommodation coefficients and prefactors of 44 the nucleation power law), as well as uncertainties in model configuration such as the use of a 45 coarse grid resolution.

46

Keywords: CESM/CAM5.1, CB05_GE, New particle formation, Aerosol thermodynamics, Ionmediated nucleation, ISORROPIA II, Earth system modeling

49

50 **1. Introduction**

51 Atmospheric gases and aerosols play important roles in atmosphere and Earth system due 52 to their ability to alter the Earth's radiation balance. Atmospheric chemistry determines the 53 formation of ozone (O_3) and fine particular matter $(PM_{2,5})$ through affecting the distribution of 54 oxidants and their gaseous precursors. Different chemical reactions and kinetic parameters can 55 lead to differences in the predictions of gases, secondary aerosols, new particle formation rate 56 (J), as well as climatic variables such as cloud condensation nuclei (CCN), cloud droplet number 57 concentration (CDNC), and radiative forcing (Faraji et al., 2008; Zhang et al., 2012a). Meanwhile, climate change can strongly influence atmospheric chemistry and air quality. 58 59 Aerosol can influence the Earth's radiative balance by directly scattering and absorbing radiation and indirectly affecting cloud properties through acting as CCN and ice nuclei (IN). 60 61 Therefore, it is important to accurately simulate aerosol size distribution, chemical composition, 62 and properties, which can determine the magnitude of aerosol radiative forcing (Koloutsou-63 Vakakis et al., 1998). Aerosol and its influence on climate have been included in many global 64 climate models (GCMs) such as the Community Climate System Model (CCSM) (Collins et al., 2006), the 5th generation of global climate model modified from European Centre for Medium-65 Range Weather Forecasts in Hamburg (ECHAM5) (Stier et al., 2005), and Earth system models 66 67 such as the Community Earth System Model (CESM) (Ghan et al., 2012; Liu et al., 2012), the 68 Integrated Global System Model (IGSM) (Dutkiewicz et al., 2005; Sokolov et al., 2005), and the 69 Earth System Model (ESM) (Dunne et al., 2012). However, due to the complexity of aerosol 70 microphysical processes and their interactions with cloud processes, it remains a challenge to 71 accurately represent those properties and processes in GCMs.

72	Inorganic aerosols comprise 25-50% of fine aerosol mass (Heintzenberg, 1989), which
73	mainly includes sulfate (SO_4^{2-}) , ammonium (NH_4^+) , nitrate (NO_3^-) , chloride (Cl^-) , and sodium
74	(Na ⁺). Major gas-to-particle conversion processes of inorganic aerosols include condensation,
75	nucleation, and thermodynamics. An important factor that determines the condensation of gases
76	is the mass accommodation coefficient (α), which can be measured through laboratory
77	experiments. The measured α values, however, are subject to large uncertainty and may vary in
78	several orders of magnitudes under different laboratory conditions. To simulate aerosol
79	condensational growth, a constant value of α is therefore often assumed in GCMs, which is a
80	source of uncertainty in model predictions.
81	Homogeneous nucleation of H_2SO_4 vapor produces new particles that can grow to form
82	CCN. Different nucleation parameterizations are used in GCMs or global aerosol models. For
83	example, Sihto et al. (2006) derived empirical power laws with the first- or second-order
84	dependencies of new particle formation rates (J) on H ₂ SO ₄ vapor concentration from
85	observations based on cluster-activation or barrierless kinetic mechanisms, which have been used
86	in the Community Atmosphere Model (CAM) (Wang and Penner, 2009), the Global-through-
87	Urban Weather Research and Forecasting model with Chemistry (GU-WRF/Chem) (Zhang et al.,
88	2012b), and Global Model of Aerosol Processes (GLOMAP) (Spracklen et al., 2006). An ion-
89	mediated nucleation (IMN) model was developed to calculate J based on ambient atmospheric
90	conditions, H ₂ SO ₄ vapor concentrations, ionization rate, and surface area of preexisting particles.
91	It has been used in GEOS-Chem (Yu et al., 2008), CAM (Yu et al., 2012), and GU_WRF/Chem
92	(Zhang et al., 2012b). Different nucleation parameterizations lead to significant differences in J
93	predictions by regional and global models (Zhang et al., 2010) and CCN/CDNC (Zhang et al.,

94 2012b; Yu et al., 2012). Limited observations make it difficult to validate predicted J values and
95 appropriateness of various parameterizations.

96 A number of thermodynamic aerosol modules have been developed to understand physical and 97 chemical properties of inorganic aerosols. For example, EQUISOLV II (Jacobson, 1999) has 98 been used in a one-way nested (from global to local scales) gas, aerosol, transport, radiation, 99 general circulation, mesoscale, and ocean model (GATOR-GCMOM) (Jacobson, 2010). 100 EQUISOLV II uses analytical equilibrium iteration and mass flux iteration to solve equilibrium 101 problems (Jacobson, 1999), which requires relatively large computational cost. SCAPE2 is used 102 in the California Institute of Technology (CIT) model (Meng et al., 1998). ISORROPIA (Nenes 103 et al., 1998) has been used in several global models such as GEOS-Chem (Bey et al., 2001), the 104 GISS Caltech (Liao et al., 2003), and the GU-WRF/Chem (Zhang et al., 2012b) and regional 105 models such as the Community Multiscale Air Quality model (CMAQ) (Byun and Schere, 2006) 106 and the Comprehensive Air Quality Model with Extensions (CAMx) (ENVIRON, 2010). An 107 updated version, ISORROPIA II (Fountoukis and Nenes, 2007), has also been implemented in 108 recent versions of CMAQ (e.g., CMAQ v4.7-Dust (Wang et al., 2012) and CMAQ v5.0 (Appel et 109 al., 2013)), GEOS-Chem (Fountoukis and Nenes, 2007), and ECHAM5 with MESSy 110 Atmospheric Chemistry and Global Modal-aerosol eXtension (EMAC/GMXe) (Metzger et al., 111 2011). The Multicomponent Equilibrium Solver for Aerosols (MESA) (Zaveri et al., 2005) has 112 been used in the mesoscale WRF/Chem (Fast et al., 2006). These modules assume that particles 113 simulated in a given particle size range have the same composition (i.e., internal mixture). 114 Different aerosol thermodynamic models can lead to different aerosol predictions (Nenes et al., 115 1998; Zhang et al., 2000; Zaveri et al., 2005). Zhang et al (2000) reported average absolute 116 differences of 7.7% - 12.3% in total PM predictions between different thermodynamic modules

under 400 test conditions but the differences could be as large as 68% under some cases (e.g., 117 118 high nitrate/chloride and low/medium relative humidity (RH)). Fountoukis and Nenes (2007) 119 found the largest discrepancies between ISORROPIA II and SCAPE2 in water concentration 120 predictions exist under low RH conditions (RH \leq 60%), primarily from differences in the 121 treatment of water uptake and solid state composition. The 3-D atmospheric models with these 122 modules include explicit thermodynamic treatments for sulfate, ammonium, nitrate, sodium, and 123 chloride. The equilibrium assumption, however, is not valid under some conditions (e.g., coarse 124 particles and cooler conditions) (Meng and Seinfeld, 1996). Kinetic approaches are therefore 125 needed to treat gas/particle mass transfer under such conditions. Kinetic approaches, on the 126 other hand, are computationally expensive (Zhang et al., 2004; Hu et al., 2008) and have only 127 been implemented in a few 3-D models (e.g., Meng and Seinfeld, 1996; Jacobson, 2005; Zhang 128 and Wexler, 2006; Zaveri et al., 2008). A hybrid approach that assumes equilibrium for fine 129 particles and solves gas/particle mass transfer for coarse particles has been thus developed, 130 which provides the best compromise between numerical accuracy and computational efficiency 131 (Capaldo et al., 2000; Kelly et al., 2010). A simple approach for gas/particle mass transfer used 132 in some GCMs, such as CAM5 is to treat sulfate and ammonium only with a full neutralization (the NH_4^+/SO_4^{2-} molar ratio of 2 for a mode) through an irreversible condensation. 133 134 In this work, a comprehensive gas-phase chemical mechanism and detailed inorganic

136 version 5.1 (CAM5.1) in the CESM version 1.0.5 (CESM1.0.5). Several modifications are also

aerosol treatments for nucleation and aerosol thermodynamics are incorporated into CAM

137 made to the existing treatments such as condensation and aqueous-phase chemistry. The

135

138 objectives are to improve the representations of gas-phase chemistry and inorganic aerosol

139 treatments in CESM/CAM5.1, and reduce associated uncertainties. The improved model with

140 enhanced capabilities can be applied for decadal simulations to study interactions among

141 atmospheric chemistry, aerosols, and climate change.

142

143 **2. Model Development and Improvement**

CESM is a fully-coupled global Earth system model, which includes land, ocean,
atmosphere, and sea ice components. The atmosphere component used in this study is CAM5.1.
Existing and new model treatments related to this study are described in this section. Further
details on CAM5.1 can be found at http://www.cesm.ucar.edu/models/cesm1.0/cam/.

148

149 2.1 Existing Gas-Phase Chemistry and Aerosol Treatments in CESM/CAM5.1

150 CAM5.1 uses a simple gas-phase chemistry for sulfur species, which includes 1 151 photolytic reaction and 7 kinetic reactions among 6 gas-phase species (i.e., hydrogen peroxide 152 (H₂O₂), sulfuric acid (H₂SO₄), sulfur dioxide (SO₂), dimethylsulfide (DMS), ammonia (NH₃), 153 and semi-volatile organic gas (SOAG)). A more comprehensive gas-phase mechanism with 40 154 photolytic reactions and 172 kinetic reactions among 103 species, i.e., the Model of OZone and 155 Related chemical Tracers version 4 (MOZART-4) of Emmons et al. (2010), has been 156 incorporated into the official released CAM5.1. It was only coupled with the bulk aerosol 157 module (BAM) in CAM5.1 implemented in CESM 1.0.5 that is used in this work (It was coupled 158 with MAM in CESM v1.1). In addition to BAM, CAM5.1 contains the modal aerosol model 159 (MAM) that is based on modal representations of aerosols. In this study, MAM is used because it 160 can represent more accurate size distributions as compared to BAM. There are two versions of 161 MAM, one with seven lognormal modes (MAM7), and the other with three lognormal modes 162 (MAM3) (Liu et al., 2012), and both are coupled with the simple gas-phase chemistry in the

163 default model. MAM7 is used in this study because it contains explicit treatments for ammonium 164 and size distributions for dust, sea-salt, and primary carbon compared to MAM3. MAM7 explicitly treats sulfate, ammonium, sea-salt, dust, BC, POM, and SOA. It simulates 165 166 condensational growth of aerosol, nucleation, coagulation, dry deposition, wet removal, and 167 water uptake. Condensation is simulated based on a kinetic approach, in which MAM7 treats 168 H₂SO₄, NH₃, and methanesulfonic acids (MSA) as completely non-volatile species and treats 169 SOAG as a volatile species, using a constant accommodation coefficient of 0.65 for all these 170 condensing species based on Adams and Seinfeld (2002). NH₃ condensation stops when the NH_4^+/SO_4^{2-} molar ratio of a particle mode reaches 2 (i.e., fully neutralized by SO_4^{2-} ions). The 171 172 net uptake rate, Inet, due to gas to particle mass transfer for each species to each mode is 173 simulated as,

$$I_{net} = \int dx \frac{dN}{dx} I_{cond} \tag{1}$$

$$I_{cond} = 2 \times \pi \times D_g \times D_p \times F(Kn, \alpha)$$

$$(2)$$

$$F(Kn,\alpha) = \frac{0.75 \times (1+Kn)}{Kn \times \left(\frac{1+Kn}{\alpha} + 0.283\right) + 0.75}$$
(3)

175 where D_p is the particle diameter; *x* is the logarithmic diameter of particle, = $ln(D_p)$; dN/dx is the 176 log-normal particle number density distribution; I_{net} is the gas condensation rate; *Kn* is the 177 Knudsen number; α is the accommodation coefficient of condensable vapor; D_g is the gas 178 diffusivity, and $F(Kn, \alpha)$ is the Fuchs-Sutugin correction factor that describes the resistance to 179 uptake caused by gas-phase diffusion. Equation (1) is solved using the Gauss-Hermite quadrature 180 of order 2. Based on equation (3), as α approaches zero, $F(Kn, \alpha)$ approaches zero. Consequently, 181 I_{cond} (i.e., the uptake rate) approaches zero in equation (1).

182	There are three nucleation parameterizations in MAM7. The empirical power law of
183	Wang and Penner (2009) (WP09) is used in the planetary boundary layer (PBL), which includes
184	a first-order dependence on H_2SO_4 vapor with a prefactor of 1×10^{-6} . The binary H_2SO_4 - H_2O
185	homogeneous nucleation of Vehkamaki et al. (2002) (VE02) and ternary H_2SO_4 -NH ₃ -H ₂ O
186	homogeneous nucleation of Merikanto et al. (2007) (ME07) are used above PBL. MAM7 also
187	only considers the neutralization of SO_4^{2-} by NH_4^+ during condensational growth. A more
188	detailed description of MAM can be found in Liu et al. (2012).
189	
190	2.2 New and Modified Model Treatments Implemented in This Work
191	2.2.1 Gas-Phase Chemical Mechanism
192	Highly simplified gas-phase mechanism as used in default CAM5.1 can result in large
193	uncertainties in the predictions of oxidants and gaseous precursors for secondary aerosols.
194	Therefore, a new gas-phase mechanism, the 2005 Carbon Bond Mechanism for Global Extension
195	(CB05_GE) (Karamchandani et al., 2012) has been implemented into CAM5.1 using the same
196	chemical preprocessor as MOZART-4 (Lamarque et al., 2012) and coupled with both MAM3
197	and MAM7. CB05_GE was developed to simulate major chemical reactions for global-through-
198	urban applications as illustrated in Zhang et al. (2012b). A more detailed description of
199	CB05_GE can be found in Karamchandani et al. (2012). In this study, gas precursors for SOA in
200	CB05_GE are mapped to SOAG to make it compatible in MAM7. As the first study of
201	CESM/CAM5.1 with CB05_GE, this work focuses on the impact of gas-phase chemistry. The
202	heterogeneous chemistry on the surface of aerosol is turned off. CB05_GE implemented in
203	CESM/CAM5 contains a total of 273 reactions including 50 photolytic reactions and 223 kinetic

reactions among 93 gas-phase species in this study. The gas-phase chemical system is solved
using an implicit backward Euler method.

206

207 2.2.2 Ion-mediated nucleation parameterization

208 Ions generated by cosmic radiation and natural radioactive decay have been studied for a 209 long time as an important source to enhance nucleation (Raes et al., 1986). An IMN model is 210 developed by Yu (2010) (Yu10) for H₂SO₄-H₂O system, and explicitly solves the dynamic 211 equations in terms of temperature, RH, H₂SO₄ vapor concentration, ionization rate, and surface 212 area of preexisting particles. Different from classic binary nucleation theory, which is based on 213 the minimization of changes in Gibbs free energy (Seinfeld and Pandis, 2006), IMN is based on a 214 kinetic model that considers the interactions among ions, neutral and charged clusters, vapor 215 molecules, and preexisting particles (Yu, 2010). The global ionization rates due to cosmic rays 216 are calculated based on the schemes given in Usoskin and Kovaltsov (2006) and the contribution 217 of radioactive materials from soil to ionization rates is parameterized based on the profiles given 218 in Reiter (1992). To reduce the computing cost using IMN in 3-D models, Yu et al. (2008) 219 developed lookup tables with simple interpolation subroutines to calculate nucleation rates under 220 typical atmospheric conditions. In this work, IMN based on YU10 is implemented into MAM7 221 and combined with default nucleation parameterizations (VE02, ME07, and WP09) in order to 222 improve the J predictions and aerosol number concentrations in upper troposphere. The J value 223 above PBL is taken as the maximum value among predictions from IMN (YU10) and 224 homogeneous nucleation (VE02 or ME07), and the J value within PBL is taken as the maximum 225 value among predictions from IMN (YU10), homogeneous nucleation (VE02 or ME07), and the 226 first-order parameterization (WP09).

227

228 2.2.3 Inorganic Aerosol Thermodynamics

229 Gas-particle partitioning is an important process in the formation and evolution of 230 secondary aerosols. Several factors affect gas-particle partitioning, such as temperature, RH, 231 saturation vapor pressures of species, the physical state of the condensed-phase, and the 232 interactions among aerosol components (Zuend et al., 2010). Most models focus on inorganic 233 aerosols. Fountoukis and Nenes (2007) developed a computationally-efficient thermodynamics equilibrium model, ISORROPIA II, for the magnesium (Mg²⁺) - potassium (K⁺) - calcium (Ca²⁺) 234 - NH_4^+ - Na^+ - SO_4^{2-} - NO_3^{-} - Cl^- - H_2O aerosol system. An important difference between 235 236 ISORROPIA II and most other thermodynamics equilibrium models is that ISORROPIA II simulates crustal species, such as Mg^{2+} , K^+ , and Ca^{2+} , which are important constituents of 237 238 atmospheric aerosols, in particular, mineral dust. Therefore, to explicitly simulate aerosol 239 thermodynamics, ISORROPIA II has been implemented into MAM7 and applied for 240 accumulation, Aitken, fine sea-salt, and fine dust modes to explicitly simulate thermodynamics of SO_4^{2-} , NH_4^+ , NO_3^- , CI^- , and Na^+ as well as the impact of crustal species associated with fine 241 dust modes on aerosol thermodynamics. The concentrations of K⁺, Ca²⁺, and Mg²⁺ as the input 242 for ISORROPIA II are calculated from dust concentrations, using the mass ratios of 1.022×10^{-3} , 243 1.701×10^{-3} , and 7.084×10^{-4} , respectively (Van Pelt and Zobeck, 2007). The resulted 244 245 concentrations of aerosol components from ISORROPIA are mapped back to fine aerosol modes 246 based on their mass ratios to the total mass over all fine modes at the previous time step. 247 Aerosol thermodynamics involving coarse particles (in coarse sea-salt and dust modes) is 248 currently not treated explicitly in this work, given the high computational cost (by at least a

factor of 3) for solving the non-equilibrium system involving coarse particles. Instead, the simple

kinetic approach used in the default CAM5.1 is used to simulate the condensation of inorganic gases onto coarse modes (see section 2.2.4). For fine mode particles, before thermodynamic calculation using ISORROPIA II, the condensation and nucleation processes are simulated to allow a more realistic allocation of gaseous H_2SO_4 between these two competing processes. Such a treatment for fine mode particles is similar to the kinetic approach used in regional air quality models, except that the condensation is assumed to be irreversible with lower limit values of mass accommodation coefficients in this work.

257 2.2.4 Modifications of Existing Aerosol Treatments

MAM 7 does not treat NO_3^- and it treats NaCl as one species. In this work, MAM7 is modified to explicitly simulate NO_3^- , Cl⁻, and Na⁺ using a similar method to the condensation of H₂SO₄ and NH₃. NO₃⁻ and Cl⁻ are simulated in all modes except for primary carbon mode. Na⁺ is simulated in sea-salt modes. The source of Na⁺ is calculated based on the mass ratio of Na and Cl from sea-salt emissions. The source of Cl⁻ includes sea-salt emissions, and the condensation of HCl resulted from HCl emissions and gas-particle partitioning of total chloride.

264 Species-dependent accommodation coefficients are used for H₂SO₄, NH₃, HNO₃, and 265 HCl, with the values of 0.02, 0.097, 0.0024, and 0.005 (Zhang et al., 1998; Sander et al., 2002), 266 respectively. Since by default the model treats the condensation of inorganic volatile gas species 267 as irreversible process (no evaporation) (see equation (1)), the lower limit values of mass 268 accommodation coefficients are used for these species to represent their net fluxes from the gas-269 phase to the liquid/solid phases. Such lower limit values correspond to uptake coefficients, which 270 represent the net fluxes and are smaller than mass accommodation coefficients. To ensure 271 electroneutrality in each mode after kinetically condensing H₂SO₄, NH₃, HNO₃, and HCl at 272 different condensation (or uptake) rates, the condensation of NH₃ will stop when the mole

concentration of cations (i.e., NH_4^+) is equal to sum of those of anions (i.e., $[NH_4^+] = 2 \times [SO_4^{2^-}]$ 273 274 $[+[NO_3^-]+[CI^-])$. While such an approach allows the gas/particle portioning of those volatile 275 species over both fine and coarse modes, the irreversible condensation with lower limit mass 276 accommodation coefficients assumed in this work, however, may contribute to model biases in 277 simulating condensation of volatile species on coarse mode particles. A more accurate method 278 (i.e., reversible condensation) should be used for volatile species for future work. The original MAM7 treats $NH_3(g)/NH_4^+$ in cloud water. In this work, the dissolution and dissociation of 279 HNO_3 and HCl to produce NO_3^- and Cl^- in cloud water are added in the model based on Marsh 280 281 and McElroy (1985) and Seinfeld and Pandis (2006), i.e.,

282

283

 $HNO_{3(g)} \rightleftharpoons HNO_{3}(aq) \rightleftharpoons H^{+} + NO_{3}^{-}$ $HCl_{(g)} \rightleftharpoons HCl_{(aq)} \rightleftharpoons H^{+} + Cl^{-}$

The concentration of H^+ (thus the pH value of the solution) is obtained by solving the electroneutrality equation using the bisection method. The aqueous-phase chemical system is solved analytically.

287

288 **3. Model Configurations and Evaluation Protocols**

289 3.1 Model Setup and Simulation Design

Table 1 summarizes the CESM/CAM5.1 simulations that are designed to examine the impacts of individual new and modified treatments on model predictions. The first set of simulations includes two simulations with the same default MAM7 coupled with different gasphase mechanisms: one uses the simple gas-phase chemistry (MAM_SIM) with a total of 37 prognostic species and one uses the CB05_GE (MAM_CB05_GE) with a total of 127 prognostic 295 species. A comparison of the two simulations provides an estimate of the impacts of gas-phase 296 chemical mechanisms. The second set of simulations consists of five simulations that use the 297 same CB05 GE gas-phase mechanism but with modified and new aerosol treatments 298 individually and jointly. The first one is MAM CON that uses an explicit treatment for NO₃, Cl., and Na⁺ and species-dependent mass accommodation coefficients for condensation and that 299 300 includes the aqueous-phase chemistry of HNO₃/NO₃⁻ and HCl/Cl⁻. This simulation includes a 301 total of 139 prognostic species. The second one is MAM CON/IMN that uses the same 302 treatments as MAM CON but with IMN as one of the nucleation mechanisms and a prefactor of 1.0×10^{-8} in WP09. The third one is MAM CON/ISO that uses the same treatments as 303 304 MAM CON but with ISORROPIA II for aerosol thermodynamics assuming metastate 305 equilibrium (i.e., liquid only). The fourth one is MAM NEWA that uses the same treatments as MAM CON but with all new and modified aerosol treatments and a prefactor of 1.0×10^{-9} for 306 307 WP09. The fifth one is MAM NEWB that uses the same treatments as MAM NEWA, but with 308 ISORROPIA II assuming a stable condition (i.e., solid and liquid coexist). A comparison of 309 MAM CB05 GE with MAM CON indicates the impact of modified condensation and aqueous-310 phase chemistry. A comparison of MAM CON/IMN, MAM CON/ISO, and MAM NEWA with 311 MAM CON indicates the impacts of IMN, ISORROPIA II, and combined new and modified 312 aerosol treatments, respectively. Comparison of MAM NEWB with MAM NEWA indicates the impacts of thermodynamic conditions on gas-aerosol partitioning. The 3rd set of simulation 313 314 includes one simulation using the same configuration as MAM NEWA but with adjusted 315 emissions (MAM NEW/EMIS). Its comparison with MAM NEWA indicates the impacts of uncertainties in emissions on model predictions. The 4th set of simulation includes one simulation 316 317 using the same configuration as MAM SIM but with prescribed SST for a 5-yr period during

318 2001-2005 (MAM_SIM_5Y), and two simulations both using the same configuration as 319 MAM_NEW/EMIS for 2001-2005, but one with prescribed SST (MAM_NEW_5YA), and the 320 other in a fully-coupled mode (MAM_NEW_5YB).

321 All these simulations use the same approach for photolytic rates calculations based on 322 Lamarque et al. (2012), the same aqueous-phase chemistry of Barth et al. (2000), and the same 323 physical options as those in MAM SIM. Major physical options include the cloud microphysics 324 parameterization of Morrison and Gettelman (2008), the moisture PBL scheme of Bretherton and 325 Park (2009), the shallow convection scheme and deep convection scheme of Park and Bretherton 326 (2009) and Zhang and McFarlane (1995), respectively, the aerosol activation parameterization of 327 Abdul-Razzak and Ghan (2000), and the Rapid Radiative Transfer Model for GCMs (RRTMG) 328 of Iacono et al. (2003, 2008) for long and short-wave radiation. The land surface processes are 329 simulated by the Community Land Model (CLM) of Lawrence et al. (2011) in CESM that is 330 coupled with CAM5.1.

331 All simulations except for MAM SIM 5Y and MAM NEW 5YA are performed with 332 fully-coupled CESM1.0.5 with standard B 1850-2000 CAM5 CN configuration, which 333 represents 1850 to 2000 transient conditions and includes all active components in CESM with 334 biogeochemistry in the land model. MAM SIM 5Y and MAM NEW 5YA are performed with 335 standard F AMIP CAM5 configuration, which uses a climatological dataset for SST provided 336 by NCAR for ocean model. The simulations are conducted for the full-year of 2001 and 2001-2005 at a horizontal resolution of $0.9^{\circ} \times 1.25^{\circ}$ and a vertical resolution of 30 layers for CAM5.1. 337 338 The initial conditions for ice and ocean models are from CESM default settings. The initial 339 conditions for the land model are based on the output from the NCAR's CESM/CAM4 B 1850-340 2000 CN simulation. The initial conditions for CAM5 are derived from a 10-yr (1990-2000)

341	CAM5 standalone simulation with the MOZART chemistry provided by NCAR. A 1-year
342	(January 1-December 31, 2000) CESM/CAM5 simulation using NCAR's CESM B_1850-
343	2000_CAM5_CN component set is performed as spinup to provide the initial conditions for
344	meteorological variables and chemical species that are treated in both MOZART and CB05_GE.
345	An additional 3-month (October 1-December 31, 2000) CESM/CAM5 simulation based on a 10-
346	month (January-October, 2000) CESM/CAM5 output using initial conditions from NCAR's
347	CESM B_1850-2000_CAM5_CN is performed as spinup to provide initial conditions for
348	chemical species that are treated in CB05_GE but not in MOZART. All production simulations
349	of 2001 are from January 1 - December 31, 2001 and those of 2001-2005 are from January 1,
350	2001- December 31, 2005. The offline anthropogenic emissions used in all simulations except
351	for MAM_NEW/EMIS are taken from Zhang et al. (2012b) (see Table 2 of Zhang et al. (2012b)
352	for the sources of those anthropogenic emissions). Anthropogenic emissions used in
353	MAM_NEW/EMIS are adjusted emissions based on those of Zhang et al. (2012b), with
354	adjustment factors of 0.7, 0.5, and 1.2 for SO ₂ over CONUS, Europe, and Asia, respectively, and
355	1.2 for NH ₃ , BC, and organic carbon (OC), and 1.3 for carbon monoxide (CO) over all three
356	regions. Those emissions are adjusted based on the comparison with the emission inventories
357	from the Representative Concentration Pathways (RCPs), the MOZART version 4 (MOZART-
358	4), the Reanalysis of the TROpospheric chemical composition (RETRO), the Global Fire
359	Emissions Database (GFED) version 2, and preliminary evaluation of CESM/CAM5.1 with
360	modified and new gas and aerosol treatments using available observations. The online emissions
361	include biogenic volatile organic carbon (Guenther et al., 2006), mineral dust (Zender et al.,
362	2003), and sea-salt (Martensson et al., 2003).

364 3.2 Available Measurements for Model Validation

365 A number of observational datasets from surface networks and satellites are used for 366 model evaluation. They are summarized along with the variables to be evaluated in Table A1 in 367 the supplementary material. Global surface networks include the Baseline Surface Radiation 368 Network (BSRN) and the National Oceanic and Atmospheric Administration Climate 369 Diagnostics Center (NOAA/CDC). The satellite datasets include the Moderate Resolution 370 Imaging Spectroradiometer (MODIS), the Clouds and Earth's Radiant Energy System (CERES), 371 the Total Ozone Mapping Spectrometer/the Solar Backscatter UltraViolet (TOMS/SBUV), the 372 Measurements Of Pollution In The Troposphere (MOPITT), and the Global Ozone Monitoring 373 Experiment (GOME). Other satellite-based data include the MODIS-derived CDNC from 374 Bennartz (2007) (BE07). 375 Regional observational networks include the Clean Air Status and Trends Network 376 (CASTNET), the Interagency Monitoring of Protected Visual Environments (IMPROVE), and 377 the Speciation Trends Network (STN) over CONUS; the European Monitoring and Evaluation 378 Program (EMEP), the Base de Données sur la Qualité de l'Air (BDQA), and the European air 379 quality database (AirBase) over Europe; the Ministry of Environmental Protection of China 380 (MEP of China), the National Institute for Environmental Studies of Japan (NIES of Japan), and 381 Taiwan Air Quality Monitoring Network (TAQMN) over East Asia. The observational data for 382 particle formation rate J is compiled from Kulmala et al. (2004) and Yu et al. (2008), which 383 include land-, ship-, and aircraft-based measurements. 384

385 3.3 Evaluation Protocol

386	The protocols for performance evaluation include spatial distributions and statistics,
387	following the approach of Zhang et al. (2012b). The analysis of the performance statistics will
388	focus on mean bias (MB), normalized mean bias (NMB), normalized mean error (NME), and
389	root mean square error (RMSE). The radiative variables are evaluated annually, including
390	downwelling shortwave radiation (SWD) and downwelling longwave radiation (LWD) from
391	BSRN; outgoing longwave radiation (OLR) from NOAA/CDC; shortwave cloud forcing
392	(SWCF) from CERES; cloud fraction (CF), aerosol optical depth (AOD), cloud optical thickness
393	(COT), cloud water path (CWP), precipitating water vapor (PWV), and CCN from MODIS; as
394	well as CDNC from BE07. Chemical concentrations evaluated include seasonal and annual
395	averaged concentrations of CO, O ₃ , SO ₂ , NH ₃ , NO ₂ , HNO ₃ , PM, and its major components (i.e.,
396	SO_4^{2-} , NO_3^{-} , and NH_4^{+} , BC, OC, total carbon (TC) for CONUS and Europe). The chemical
397	observations over East Asia are very limited, and they only include surface concentrations of CO,
398	SO ₂ , NO ₂ , O ₃ , and PM ₁₀ . Column concentrations of tropospheric CO and NO ₂ , and tropospheric
399	O ₃ residual (TOR) are evaluated for globe.
400	All observational data used for evaluating 2001 simulations are based on 2001 only
401	except for particle formation rates (J) that are based on different years compiled from Kulmala et
402	al. (2004) and Yu et al. (2008). All observational data used for evaluating 2001-2005 simulations
403	are based on 2001-2005.
404	
405	4. Model Evaluation for MAM_SIM Based on Original Model Treatments

Tables 2 and 3 show MBs and NMBs of radiative/cloud and chemical predictions,
respectively. The model performance of the baseline simulation, MAM_SIM, is discussed below,
and that for all other simulations will be discussed in section 5.

409 As shown in Table 2, radiative variables such as LWD and SWD are underpredicted by 3.4 W m⁻² (\sim -1.1%) and 2.0 W m⁻² (\sim -1.1%), respectively, whereas OLR and SWCF are 410 overpredicted by 8.8 W m⁻² (~ 4.1%) and 3.2 W m⁻² (~ 7.9%) respectively. Cloud variables such 411 412 as CF and PWV are slightly underpredicted, whereas COT, CWP, column CCN at a 413 supersaturation of 0.5% (CCN5), and CDNC are largely underpredicted, with NMBs of -77.8% 414 to -55.6%, which is likely due to the limitations in the current model treatments of cloud 415 microphysics and aerosol-cloud interactions in CAM5.1. 416 AOD is also underpredicted by 36.1%, which is likely due to inaccurate predictions of 417 aerosol concentrations and uncertainties in the assumed hygroscopicity of aerosol components in 418 the calculation of optical properties and water uptake. For example, as shown in Table 3, PM_{25} 419 concentrations over CONUS and Europe, and PM₁₀ concentrations over CONUS, Europe, and 420 East Asia are underpredicted, with NMBs of -67.5% to -31.8%, which is due to the inaccurate predictions of SO_4^{2-} , NH_4^+ , and organic aerosols, and missing major inorganic aerosol species 421 422 such as nitrate and chloride. The concentrations of BC, OC, and TC are underpredicted (by \sim 423 50%), which is likely due to the uncertainties in the BC and primary OC emissions as well as 424 treatments for SOA formation. In particular, the SOA treatment used in CAM5.1 is based on a 425 highly-simplified aerosol yield approach with a single lumped semi-volatile organic gas (i.e., 426 SOAG). For gaseous species, SO₂ concentrations over CONUS and Europe are significantly overpredicted by 10.3 μ g m⁻³ (~ 264.8%) and 6.6 μ g m⁻³ (~ 97.5%), respectively, whereas SO₂ 427 concentrations over East Asia are largely underpredicted by 7.9 μ g m⁻³ (by ~63.0%). NH₃ 428 429 concentrations over Europe are also largely underpredicted by 82.0%. These large biases in SO₂ and NH₃ are likely due in part to the uncertainties in the emissions of SO₂ and NH₃, which in 430 turn affect the predictions of SO_4^{2-} and NH_4^+ . The J values in PBL are highly underpredicted by 431

432 99.6%, which is mainly due to the inaccurate calculation of H_2SO_4 vapor concentration that 433 participates in the nucleation and uncertainties in the nucleation parameterizations used in the 434 default CESM/CAM5.1.

435

436 5. Sensitivity Simulations

437 5.1 Impacts of New Gas-Phase Chemistry

438 Compared to simple gas-phase chemistry, many more gaseous species and chemical 439 reactions simulated in CB05 GE can affect secondary aerosol formation through gas-to-particle 440 mass transfer and aqueous-phase chemistry and affect climatic variables through chemistry feedbacks to the climate system. Figure 1a shows the absolute differences of H_2O_2 , SO_2 , $SO_4^{2^2}$, 441 442 and SOA between MAM CB05 GE and MAM SIM. MAM CB05 GE treats more gaseous 443 species and chemical reactions than MAM SIM, leading to large changes in the concentrations 444 of gaseous and PM species. Compared with MAM SIM, MAM CB05 GE predicts higher H₂O₂ by 0.4 ppb, SO₂ by 7.3 ppt, SO₄²⁻ by 0.01 μ g m⁻³, and SOA by 0.06 μ g m⁻³ in terms of global 445 446 mean. Those changes are mainly caused by different gas-phase chemical mechanisms used in MAM SIM and MAM CB05 GE. While MAM CB05 GE explicitly simulates OH, HO₂, NO₃, 447 and O₃, MAM SIM uses climatology data for these species. OH simulated by MAM CB05 GE 448 is lower than that prescribed by MAM SIM by up to 2.8×10^6 molecules cm⁻³, or higher by up to 449 3.0×10^6 molecules cm⁻³ in different regions (Figure not shown), with a higher global mean by 450 451 MAM CB05 GE. MAM SIM includes the production of H₂O₂ from the self-destruction of HO₂ 452 and the loss of H_2O_2 through its photolytic reaction and its reaction with OH. Higher H_2O_2 in 453 MAM CB05 GE is mainly due to greater production of H₂O₂ from additional chemical reactions (e.g., OH+OH) than loss of H_2O_2 through the reactions of OH + H_2O_2 , O + H_2O_2 , Cl + 454

455 H_2O_2 , and $Hg + H_2O_2$. Different predictions in H_2O_2 can in turn affect OH mixing ratios in 456 MAM CB05 GE but not in MAM SIM. In addition, the photolytic reactions of VOCs (e.g., 457 HCHO, peroxyacyl nitrates (PAN), and peroxyacetic and higher peroxycarboxylic acids (PACD)) 458 and other gases (e.g., HNO₃, HONO, HNO₄, HOCl, and HOBR) treated in MAM CB05 GE can 459 produce OH. Figure 1b shows the absolute differences between the mixing ratios of major 460 oxidants predicted from MAM CB05 GE and climatology values used in MAM SIM. The 461 global mean mixing ratios of oxidants are higher in MAM CB05 GE than climatology data in 462 MAM SIM, leading to more oxidation of VOCs and therefore more SOA in MAM CB05 GE. 463 Higher O₃ predicted from MAM CB05 GE over most of the domain is mainly due to more O₃ 464 precursors (e.g., NO₂ and VOCs) treated in the model. Despite higher OH mixing ratios in 465 MAM CB05 GE, many gaseous species such as NO_x, SO₂, HNO₃, HONO, and other VOCs are 466 oxidized by OH to form secondary inorganic and organic aerosols. Those oxidation reactions 467 compete for limited OH, leading to less oxidation of SO₂, thus higher SO₂ mixing ratios over 468 most land areas by MAM CB05 GE. Lower SO₂ mixing ratios over the oceanic areas in MAM CB05 GE is due to the combined effects of less production of SO₂ from lower DMS 469 470 mixing ratios (due to increased OH levels) and greater SO_2 oxidation from higher OH mixing 471 ratios.

The changes in the concentrations of PM and its components are due to the change in the mixing ratios of gaseous precursors. CB05_GE contains more photolytic reactions, which affect the mixing ratios of OH, SO₂, and H₂SO₄, and subsequently the concentration of SO₄²⁻ through condensation and homogeneous nucleation. Higher SO₂ mixing ratios in MAM_CB05_GE result in more H₂SO₄ thus more SO₄²⁻. For example, both SO₂ mixing ratios and SO₄²⁻ concentrations are higher over eastern China in MAM_CB05_GE. More SO₄²⁻ over the oceanic areas is mainly

478	due to more oxidation of SO_2 by OH. Due to the simplification of aerosol thermodynamics in
479	default MAM7, the concentrations of SO_4^{2-} can affect the concentrations of NH_4^+ directly and
480	therefore NH_3 mixing ratios and PM number concentrations (PM_{num}). For example, the increase
481	of $\mathrm{SO_4}^{2\text{-}}$ results in an increase in $\mathrm{NH_4}^+$ and PM_{num} , and a decrease in $\mathrm{NH_3}$. The increase of $\mathrm{SO_4}^{2\text{-}}$
482	and PM_{num} can increase AOD, CF, COT, CWP, PWV, and CDNC and therefore affect radiation
483	by increasing LWD and SWD (Figures not shown, see changes in performance statistics of these
484	affected variables in Table 2). The increase of SOA is due to the inclusion of more gaseous
485	precursor emissions (e.g., isoprene, terpene, xylene, and toluene) in MAM_CB05_GE, which
486	contribute to SOAG and thus SOA through gas-to-particle conversion.
487	Figure 2 shows the spatial distributions of CO, O ₃ , NO ₂ , HNO ₃ , hydrochloric acid (HCl),
488	and isoprene (ISOP) that can be predicted by MAM_CB05_GE but not by MAM_SIM. CO
489	mixing ratio is higher in most Asia, central Africa, South Africa, and eastern U.S., which is
490	mainly due to higher CO emissions in those regions and the production of CO from the
491	photolytic reactions of VOCs (e.g., formaldehyde, acetaldehyde, and isoprene). Higher O ₃
492	mixing ratios in the northern hemisphere than southern hemisphere are mainly due to much
493	higher mixing ratios of O ₃ precursors. Higher O ₃ mixing ratios over Mediterranean Sea are
494	mainly due to the transport of O ₃ and its precursors from source regions and less deposition onto
495	ocean surface. Higher O ₃ mixing ratios over Tibet are mainly due to the stratospheric influences
496	from high altitude and no titration of O_3 due to low NO mixing ratios (< 0.2 ppb) in this region.
497	Higher mixing ratios of NO ₂ over most Asia, eastern U.S, Europe, and Central Africa are mainly
498	due to higher NO_x emissions over those regions, which also result in higher HNO_3 in those
499	regions. Higher mixing ratios of HCl over Europe, India, and East Asia are mainly due to the
500	higher anthropogenic HCl emissions in those regions. In addition, MAM_CB05_GE includes

oceanic emissions of HCl, leading to higher HCl over ocean. Higher isoprene mixing ratios over
South Africa, central Africa, and Oceania are mainly due to higher isoprene emissions in those
regions, which also contribute to the formation of SOA in those regions.

504 The aforementioned changes in the concentrations of gaseous species and PM due to new 505 gas-phase chemistry implemented in the model and its feedbacks to radiation through the climate 506 system result in a change in predicted cloud properties and radiation balance that in turn affect 507 the predictions of all chemical species during subsequent time steps. As a consequence of 508 interwoven changes due to complex feedback mechanisms, the two simulations perform 509 differently, with noticeable improvement by MAM CB05 GE. As shown in Table 2, compared 510 with MAM SIM, MAM CB05 GE reduces MB of LWD by 17.6%, OLR by 8.0%, CF by 511 28.6%, COT by 1.0%, PWV by 28.0%, AOD by 5.5%, and CDNC by 1.8%, leading to 0.3-2.2% 512 absolute reduction in their NMBs. Although MAM CB05 GE increases MB of SWD by 26.2%, 513 the increases in their NMBs are only 1.2%. As shown in Table A1 in the supplementary material, 514 the changes in most cloud and radiative variables between MAM SIM and MAM CB05 GE are 515 statistically significant. As shown in Table 3, MAM CB05 GE also reduces MBs of SO₂ by 2.5% and PM₁₀ by 8.1% over East Asia, NH₃ by 1.3% and SO₄²⁻ by 12.5% over Europe, OC by 516 517 11.1%, TC by 8.3%, and PM_{2.5} by 3.3% over CONUS, leading to 0.8-6.5% absolute reductions 518 in NMBs. Despite the model improvement by CB05 GE, large biases still remain for some 519 chemical species. For example, CO over East Asia is largely underpredicted with an NMB of -520 82.1% (see Table 3), which results from the uncertainties in the CO emissions over East Asia. 521 However, the column CO over globe is predicted very well, with an NMB of -5.7%. Large biases 522 in SO₂ predictions over CONUS, Europe, and East Asia are mainly due to the uncertainties in the 523 SO₂ emissions over those regions. Large biases in O₃ over Europe are likely due to the

525 over Europe. In particular, the large underpredictions in NO₂ concentrations (likely due to the 526 uncertainties in the NO_x emissions and overpredictions in radiation, see section 5.5 for more 527 detailed discussions) indicate insufficient NO_x for titration of O_3 , leading to a large 528 overprediction in O₃ concentrations in Europe. The large biases in HNO₃ are due to no treatment 529 for gas-particle partitioning in both simulations. 530 531 5.2 Impacts of Condensation and Aqueous-Phase Chemistry 532 The mass accommodation coefficient (α) for H₂SO₄ vapor is subject to considerable 533 uncertainty. The default condensation module with a default α value of 0.65 gives a very low 534 concentration of H₂SO₄, resulting in very low nucleation rates and aerosol number 535 concentrations. Considering that the original model treats H₂SO₄ and NH₃ condensation as an 536 irreversible process, the default α value of 0.65 for H₂SO₄ and NH₃ is reduced to 0.02 and 0.097, 537 respectively, based on Zhang et al. (1998). This change in α value provides sufficient H₂SO₄ and NH₃ for nucleation with a typical H₂SO₄ concentration range of $10^6 \sim 10^8$ molecules cm⁻³. 538 539 Because HNO₃ and HCl are semi-volatile species, the lower limits of α (0.0024 and 0.005, 540 respectively) based on Sander et al. (2002) are selected for their irreversible condensation process. NH_4^+ from NH_3 condensation will be constrained by the available SO_4^{2-} , NO_3^- , and 541 542 condensed Cl⁻ to neutralize the system. 543 Figure 3 shows the absolute differences of NH₃, SO₂, HNO₃, HCl, H₂SO₄, total 544 particulate ammonium (TNH₄), total particulate sulfate (TSO₄), total particulate nitrate (TNO₃), 545 and total particulate chloride (TCL) in all the modes except primary carbon mode, and PM_{2.5}

uncertainties in the O_3 precursor emissions (e.g., NO_x) and inaccurate predictions of radiation

524

between MAM_CON and MAM_CB05_GE in June, July, and August (JJA), 2001. Due to the

547 inclusion of HNO₃ and HCl condensation in MAM CON, the concentrations of HNO₃ and HCl decrease by 0.1 ppb (\sim 72%) and 0.097 ppb (\sim 84%), respectively. NO₃⁻ is not simulated in the 548 549 original model and the concentration of NO₃ is assumed as zero in MAM CB05 GE. Therefore, 550 the concentration of NO₃⁻ increases due to the condensation of HNO₃ in MAM CON. The 551 concentration of TCL in MAM CB05 GE is calculated from the mass ratio of chloride in sea-552 salt. Over land, TCL increases significantly due to the condensation of HCl to form Cl⁻. The 553 change of TCL over ocean is mainly due to the change of sea-salt emissions. The changes of SO₂ 554 mixing ratios are mainly due to the differences in mixing ratios of species in sulfur chemistry in 555 the two simulations. For example, compared to MAM CB05 GE, the increase of SO₂ over 556 eastern U.S. in MAM CON is likely due to less SO₂ oxidation in clouds (Figure not shown), 557 which results from lower CF. The decrease of SO₂ mixing ratios over most oceanic areas is likely 558 due to the combined effects of DMS oxidation and SO₂ oxidations in MAM CON. More SO₂ can result in more H_2SO_4 and therefore more SO_4^{2-} through condensation and homogeneous 559 560 nucleation of H_2SO_4 . The changes in H_2SO_4 concentrations are the results of changes of SO_2 561 mixing ratios. The mass accommodation coefficient of H₂SO₄ is reduced significantly (by a 562 factor of 32.5), allowing more H_2SO_4 to participate in binary/ternary homogeneous nucleation and produce more secondary SO_4^{2-} , improving predictions of SO_4^{2-} over CONUS but degrading 563 the performance of SO_4^{2-} over Europe (see Table 3). Although the mass accommodation 564 565 coefficient of NH_3 is reduced significantly (by a factor of 67), more available NH_3 can participate in the ternary homogeneous nucleation and produce secondary NH_4^+ . Meanwhile, the secondary 566 NH_4^+ formed from NH₃ condensation is also constrained by available SO₄²⁻, NO₃⁻, and 567 condensed Cl⁻. As a result, the concentrations of NH₃ decrease and those of NH₄⁺ increase. Due 568 569 to more available H_2SO_4 participating in the nucleation, J has been improved significantly,

570	reducing the NMB from -99.5% to -12.8%. With an inclusion of the dissolution and dissociation
571	of HNO ₃ and HCl in cloud water, more NH ₃ is required to dissolve to maintain cation-anion
572	equilibrium in the cloud water, which further reduces the mixing ratios of NH ₃ , HNO ₃ , and HCl.
573	As shown in Table 3, compared with MAM_CB05_GE, MAM_CON gives better
574	performance against observations in terms of CO, NO ₂ , O ₃ , HNO ₃ , PM _{2.5} , and PM ₁₀ over Europe,
575	CO and PM ₁₀ over East Asia, O ₃ , HNO ₃ , SO ₄ ²⁻ , NH ₄ ⁺ , BC, OC, TC, and PM _{2.5} over CONUS, and
576	column CO, column NO ₂ , TOR, and J over globe. As also shown in Table 2, the improved
577	chemical predictions improve the predictions of OLR, SWCF, CF, COT, CWP, AOD, and CDNC.
578	As shown in Table A1, the changes in most cloud /radiative variables between MAM_CB05_GE
579	and MAM_CON are statistically significant, indicating the significant impacts of the modified
580	condensation and aqueous-phase chemistry treatments on radiation. Treating condensation and
581	aqueous-phase chemistry of HNO_3 and HCl enables an explicit simulation of NO_3^- and Cl^- in
582	MAM7. However, the mass concentrations of SO ₂ remain significant overpredictions, with
583	NMBs of 301.2% for CONUS, and 123.0% for Europe, mainly because of the uncertainties in
584	SO ₂ emissions over those regions. Due to the simplified irreversible treatment for gas
585	condensation, the mass concentrations of SO_4^{2-} , NH_4^+ , NO_3^- , and Cl^- are overpredicted, although
586	the lower limit of mass accommodation coefficient for each precursor is used in MAM_CON. As
587	shown in Table 3, the concentrations of SO_4^{2-} , NH_4^+ , NO_3^- , and Cl ⁻ from MAM_CON are
588	overpredicted by 1.7%, 20.0%, 198.2%, and 359.9%, respectively, for CONUS, and 40.3%,
589	85.0%, 67.8%, and 102.8%, respectively, for Europe. The large NMBs of NO_3^- and Cl^- in
590	MAM_CON are due to the small observed values for NO $_3^-$ (i.e., 1.0 µg m ⁻³ over CONUS and 2.0
591	$\mu g~m^{\text{-3}}$ over Europe) and Cl ⁻ (i.e., 0.1 $\mu g~m^{\text{-3}}$ over CONUS and 0.7 $\mu g~m^{\text{-3}}$ over Europe), the

592	uncertainties in treating HNO3 and HCl as non-volatile species using their lower limits of
593	accommodation coefficients, and lack of treatments for NO ₃ ⁻ and Cl ⁻ thermodynamics.

594

595 5.3 Impacts of New Particle Formation

596 Figure 4 shows the annual-mean vertical distributions of particle formation rate (J) values 597 and aerosol number concentrations, and simulated J values averaged between the ground level 598 and 1000-m overlaid with observations within the same layers. In MAM CON/IMN, IMN is 599 combined with three default nucleation parameterizations to predict J throughout the atmosphere. 600 In MAM CON, J over ocean is overpredicted by factors of 5-50, despite a seeming good NMB 601 of -12.8% in the globe mean (see Table 3). J values at several sites over land are underpredicted 602 by factors of 1-10, which compensates the large overpredictions at most sites over ocean. The 603 large underpredictions at those sites are likely due to the uncertainties in SO₂ emissions and 604 nucleation parameterizations, and the missing species that may have participated in nucleation. 605 For example, several other species may contribute to the new particle formation, including 606 methanesulfonic acid (van Dingenen and Raes, 1993), hydrochloric acid (Arstila et al., 1999), 607 organic compounds (Berndt, et al., 2013), iodine-containing compounds (Hoffmann et al., 2001), 608 and amines (Berndt et al., 2013). Limited observations also introduce some uncertainties in the 609 model validation. The overprediction of J over ocean is mainly due to the use of the prefactor of 1×10^{-6} in WP09. This prefactor is derived from limited in-situ measurements (Sihto et al., 2006). 610 611 It can vary by up to 3-4 orders of magnitude based on measurements in different areas and 612 seasons (Zhang et al., 2010), introducing a large uncertainty for its application to the global scale. In MAM CON/IMN, a prefactor of 1×10^{-8} is used in WP09 in PBL over the globe, which 613 614 then decreases J and aerosol number concentrations in PBL (see Figure 4). J in PBL is very

sensitive to the prefactor in WP09, and the uncertainty of the prefactor can result in a large bias
in predictions of J and aerosol number in PBL. With the implementation of IMN, J values in the
troposphere increase by factors of 2-10, which in turn increase the aerosol number concentrations
in the troposphere. Due to a stronger radiation in the upper layer, more available ions can
contribute to the new particle formation, therefore increasing the aerosol number concentrations
in the middle/upper troposphere and lower stratosphere by factors of 2-4.

621 Figure 5 shows the absolute differences of PM2.5, AOD, column CCN5, CF, SWCF, and 622 SWD between MAM CON and MAM CON/IMN for 2001. Aerosol number can directly affect 623 CCN, which can affect cloud formation and properties as well as radiation. Changes of PM 624 concentrations also have impacts on AOD, CCN, CF, COT, and SWCF through both aerosol 625 direct and indirect effects. As a net result of all those interwoven changes initially triggered by 626 the increase of aerosol number concentrations in troposphere/stratosphere, AOD and column CCN5 increase by 0.004 (or by 3.3%) and 2.1×10^7 cm⁻² (or by 11.9%), respectively, and SWCF 627 and SWD decrease by 0.1 W m⁻² (or by 0.2%) and 0.8 W m⁻² (or by 0.5%), respectively, in terms 628 629 of global mean. As shown in Table A1, the changes in SWD, AOD, and cloud variables such as 630 column CCN5, CDNC, and COT between MAM CON and MAM CON/IMN are statistically 631 significant, indicating the significant impacts of IMN on aerosol number concentration and cloud 632 prediction.

633 Compared with MAM_CON, IMN (MAM_CON/IMN) improves the predictions of SO_2 , 634 NO_3^- , and $PM_{2.5}$ over CONUS, SO_2 , $SO_4^{2^-}$, NH_4^+ , NO_3^- , CI^- , $PM_{2.5}$, and PM_{10} over Europe, PM_{10} 635 over East Asia (see Table 3). The improved performance in aerosol concentrations and increased 636 aerosol numbers in the troposphere and lower stratosphere contribute to the improved 637 performance of aerosol and cloud parameters, with increased AOD, CCN, and CDNC, and

638 consequently increased CF, COT, CWP, and SWCF, as shown in Table 2. However, there are still 639 large biases for some chemical species predictions. For example, CO mixing ratio is 640 underpredicted over East Asia, which is mainly due to the uncertainty in CO emissions in this 641 region. Large biases in SO₂ predictions over CONUS, Europe, and East Asia are mainly due to 642 the uncertainties in SO₂ emissions in those regions. Large biases in NO₂ and HNO₃ predictions 643 over Europe are mainly due to the uncertainties in NO_x emissions and inaccurate predictions of 644 radiation over this region. The performance of J degrades with NMBs from -21.8% to -49.6% in 645 the globe, which is due to the use of a smaller prefactor of WP09 in MAM CON/IMN than in 646 MAM CON. J in PBL is very sensitive to the prefactor in WP09. Although the prediction of J 647 over ocean in PBL has been improved in MAM CON/IMN, J over land areas in PBL is largely 648 underpredicted by factors of 1-100, resulting in degraded J performance in terms of globe mean. 649 The underprediction of J over land in PBL is likely due to the uncertainties in the nucleation 650 parameterizations (e.g., the missing species as mentioned previously). Large NMBs still remain 651 for COT, CWP, and CCN, indicating the uncertainties in the treatments of related atmospheric 652 processes such as cloud microphysics and aerosol-cloud interactions.

653

654 5.4 Impacts of Gas-Aerosol Partitioning

The inclusion of ISORROPIA II changes the mass concentrations of major $PM_{2.5}$ species and their gaseous precursors. Changes in PM concentrations then affect predictions of cloud variables and therefore radiation. Changes of radiation can also affect SO₂ oxidation by OH, which affects H₂SO₄ concentrations. Figure 6 shows the absolute differences of H₂SO₄, fine particulate sulfate (SO4f), NH₃, fine particulate ammonium (NH4f), HNO₃, fine particulate nitrate (NO3f), HCl, and fine particulate chloride (CLf) for summer 2001 between MAM_CON

661	and MAM_CON/ISO. Similar plots for winter (December, January, and February (DJF)) 2001
662	are shown in Figure A1. Compared to MAM_CON, MAM_CON/ISO gives higher H_2SO_4
663	mixing ratios but lower SO4f concentrations. SWD increases with the global mean of 8.9 W m^{-2}
664	(~ 5.8%) in MAM_CON/ISO, which allows more production of OH from photolytic reactions of
665	VOCs, HONO, HNO ₃ , HNO ₄ , H_2O_2 , HOCl, and HOBr, and therefore enhanced oxidation of SO_2
666	to form H_2SO_4 . As shown in Figure 6, the mixing ratios of H_2SO_4 either increase up to 0.76 ppt
667	or decrease as large as 1.14 ppt, leading to a net increase of 0.002 ppt in terms of global mean.
668	The mass concentration of SO4f is mainly affected by H_2SO_4 condensation. Although the mixing
669	ratios of H_2SO_4 increase with the global mean change of 0.002 ppt, SO4f concentrations decrease
670	with the global mean of 0.02 μ g m ⁻³ , which are mainly due to less condensation of H ₂ SO ₄ under
671	higher temperature conditions. In summer, the increase or decrease of H_2SO_4 can result in an
672	increase or a decrease of SO4f (e.g., over most oceanic areas). However, the decrease of SO4f
673	with the increase of H_2SO_4 over the India Ocean is mainly due to less H_2SO_4 condensation. For
674	the regions where SO4f increases over land, the increase of SO4f is due to more oxidation of SO_2
675	by OH. Compared to MAM_CON, the concentrations of NH ₃ , HNO ₃ , and HCl increase
676	significantly over most land areas, whereas NH4f, NO3f, and Clf decrease significantly over
677	most land areas in MAM_CON/ISO. Such changes can be explained based on the chemical
678	regimes and their spatial distributions as shown in Figure A2. Compared to MAM_CON, the
679	prediction of SWD in MAM_CON/ISO is improved with the NMB decreasing from -6.5% to -
680	2.2%. The predictions of involved species such as NH_4^+ , NO_3^- , and Cl^- are improved
681	significantly by 13.6%~345.4%, although there is a slight degradation in the predictions of SO_4^{2-}
682	and O_3 over CONUS, CO, O_3 , $PM_{2.5}$, and PM_{10} over Europe, PM_{10} over East Asia, and column
683	CO, NO ₂ , TOR, and J over globe. MAM_CON/ISO improves the predictions of HNO ₃ , NH ₄ ⁺ ,

684	NO ₃ ⁻ , Cl ⁻ , BC, OC, TC, and PM _{2.5} over CONUS, SO ₂ , NH ₃ , NO ₂ , SO ₄ ²⁻ , NH ₄ ⁺ , NO ₃ ⁻ , and Cl ⁻
685	over Europe, and CO and SO ₂ over East Asia, which leads to improved performance in SWD,
686	column CCN5, and SWCF over globe, as shown in Table 3. As shown in Table A1, the changes
687	in most radiative and cloud variables between MAM_CON and MAM_CON/ISO are statistically
688	significant, indicating the significant impacts of ISORROIA II on the predictions of radiation,
689	aerosol, and cloud. ISORROPIA II calculates gas-aerosol partitioning under different
690	atmospheric conditions, significantly improving predictions of major gas precursor (e.g., HNO ₃)
691	over CONUS and secondary aerosols (e.g., NO ₃ ⁻ and Cl ⁻) over CONUS and Europe. Large
692	decreases in the concentrations of NO_3^- and Cl^- result in a decrease in NH_4^+ , $PM_{2.5}$, and PM_{10} ,
693	thus decreasing CCN, CDNC, AOD, and the absolute value of SWCF.
694	MAM_CO/ISO assumes metastable conditions (i.e., assuming all salts in an aqueous
695	solution), which may introduce errors in gas/particle partitioning. The validity of this assumption
696	is examined by taking the absolute differences of the concentrations of major inorganic gas and
697	aerosol species between metastable (MAM_NEWA) and stable (MAM_NEWB) conditions (i.e.,
698	Figure A3). Compared with MAM_NEWA, the global average changes predicted by
699	MAM_NEWB are within 5% for most gaseous and aerosol species over non-desert/arid regions,
700	indicating that the assumption of metastable conditions is not a significant sources of uncertainty
701	in this work. However, the irreversible gas-to-particle mass transfer treatment for coarse
702	particles can potentially overpredict the concentrations of coarse particles (e.g., overpredictions
703	of Cl ⁻ and NO ₃ ⁻ over Europe).
704	

705 5.5 Overall Impacts of All New and Modified Model Treatments

706	Compared to MAM_CB05_GE, the simulations with modified or new aerosol treatments
707	(MAM_CON, MAM_CON/IMN, MAM_CON/ISO, MAM_NEWA) slightly degrade the
708	prediction of LWD (increasing NMB from -0.9% to -1.4%), but improve the predictions of OLR
709	CF, COT, and CWP slightly (with 0.6% - 10.4% decreases in their NMBs) and CDNC
710	significantly (reducing NMBs from -57.5% up to -13.4%). Although the CCN predictions are
711	somewhat degraded in MAM_CON and MAM_CON/IMN, they are improved significantly in
712	MAM_CON/ISO and MAM_NEWA (reducing NMBs from -61.6% to 1.8-6.3%). As shown in
713	Table A2, changes in most radiative and cloud variables between MAM_SIM and MAM_NEWA
714	are statistically significant, indicating the significant impacts of new and modified treatments on
715	predictions of radiation and cloud. Among all new and modified model treatments, the new gas-
716	phase chemistry simulates more gaseous species and improves the predictions of NH3 over
717	Europe, $PM_{2.5}$ over CONUS and PM_{10} over East Asia. The modified condensation and aqueous-
718	phase chemistry simulate more aerosol species (NO ₃ ⁻ and Cl ⁻) and improve the prediction of
719	HNO ₃ . MAM_CON also improves J in the PBL due to more available H_2SO_4 involving in the
720	homogeneous nucleation using an accommodation coefficient of 0.02 for H_2SO_4 condensation,
721	and improves the predictions of CDNC and AOD significantly. MAM_CON/IMN increases
722	PM_{num} above PBL and $PM_{2.5}$ and PM_{10} over Europe and improves the prediction of $PM_{2.5}$ over
723	CONUS and Europe. MAM_CON/ISO improves the predictions of HNO ₃ , NH ₄ ⁺ , PM _{2.5} , NO ₃ ⁻ ,
724	and Cl ⁻ over CONUS, NO ₃ ⁻ and Cl ⁻ over Europe, and CCN over globe, and improves the
725	predictions of SWCF most (with an NMB of 1.6%).
726	Large biases in some variables remain in MAM_NEWA due to uncertainties in model

728 emission scheme, cloud microphysics, aerosol activation, SOA formation, and dry and wet

727

inputs (e.g., meteorology and emissions) and model treatments (e.g., multi-phase chemistry, dust

729 deposition). The large NMBs of CO and SO₂ over East Asia, SO₂, NH₃, and NO₂ over Europe, 730 SO₂, and BC over CONUS are likely due to the uncertainties of emissions and the interpolation 731 of emissions from a fine-grid scale in the original emission inventories (e.g., county-based 732 emissions over CONUS) to a large-grid scale used in this work, which can result in large NMBs in secondary aerosols (e.g., $SO_4^{2^-}$, NH_4^+ , NO_3^- , thus PM_{25} and PM_{10}). Heterogeneous reactions 733 734 are not included in this work, which may help explain to some extent less oxidation and 735 underpredictions for PM species predictions (e.g., sulfate and nitrate) and overpredictions for 736 gaseous species. The large NMB of O₃ predictions over Europe in MAM NEWA (with an NMB 737 of 62.7%) is mainly due to a lack of NO_x titration (as indicated by large underpredictions in NO_2) 738 and more production of O_3 from the photolytic reaction of NO_2 resulted from overpredictions of 739 SWD particularly in autumn and winter. Table 4 shows the seasonal statistics for O₃, NO₂, and 740 HNO₃ over Europe in MAM NEWA. During autumn and winter, O₃ is overpredicted by about 741 100% ~ 140%, whereas NO₂ is underpredicted by about -85% ~ -20%, indicating insufficient NO_x for titration of O₃ titration. SWD is overpredicted by 45.0 W m⁻² (or by 58.4%), favoring the 742 743 photolytic reactions of NO₂ to produce O_3 . Due to the uncertainties in the NO_x emissions, NO₂ is 744 underpredicted, causing less NO_2 to be oxidized to produce HNO_3 , which results in an underprediction of HNO₃ in winter. In autumn, SWD is overpredicted by 42.8 W m⁻² (or by 745 746 37.9%). However, in autumn, although NO₂ is underpredicted due to the uncertainties in the NO_x 747 emissions, HNO₃ mixing ratios are overpredicted. SWD is stronger in autumn than in winter, and 748 mixing ratios of OH are higher due to photolytic reactions of overpredicted O_3 and additional 749 photolytic reactions of VOCs. Therefore, OH can oxidize NO_2 to produce HNO₃, resulting in the 750 overprediction of HNO₃. Simple aqueous-phase chemistry is included in this work, which could 751 result in high uncertainty in predicting aerosols in clouds. Decreased aerosol number

concentrations can result in a decrease of CCN and AOD directly. The underpredictions of
CDNC are likely due to uncertainties in the model treatments for aerosol activation and cloud
microphysics, which then result in large NMBs in COT and CWP. The large biases in OC and TC
indicate the uncertainties in the emissions of BC and primary OC, and the treatments for SOA
formation. The large NMB in particle formation rate J is likely due to uncertainties in model
inputs (e.g., SO₂ emissions) and model treatments (e.g., the accommodation coefficient of H₂SO₄
and missing participants in the current nucleation schemes).

759

760 5.6 Impacts of Adjusted Emissions

761 The evaluation and analyses of MAM NEWA indicate that some large biases are caused 762 by inaccuracies in the emissions of CO, SO₂, BC, OC, and NH₃. The sensitivity simulation with 763 adjusted emissions of CO, SO₂, BC, OC, and NH₃ (MAM NEW/EMIS) is performed to further 764 look into such impacts. For example, with 30% increase in CO emissions and 20% increase in 765 NH₃ emissions over Europe, the NMBs of surface concentrations of CO and NH₃ change from-766 3.4% to 12.1%, -84.3% to -77.5%, respectively. On a global scale, the increased CO emissions 767 result in 3.0% absolute reduction in the NMB of column CO. The 30% reduction in SO₂ 768 emissions and 20% increase in OC and BC emissions over CONUS result in 139.6%, 8.6%, and 769 24.9% absolute reduction in their NMBs. The 30% increase in CO emissions and 20% increase in SO₂ over East Asia result in 3.3% and 7.8% absolute reduction in their NMBs. 770 771 As shown in Table 3, compared with MAM NEWA, MAM NEW/EMIS shows an improved performance in the concentrations of SO₂, HNO₃, SO₄²⁻, NH₃, and NH₄⁺ over Europe, 772 773 SO₂, HNO₃, BC, OC, TC, NO₃⁻, and Cl⁻ over CONUS, CO and SO₂ over Asia, and column CO

over globe. However, it degrades to some extent the performance of SO_4^{2-} and NH_4^+ over

775	CONUS, $PM_{2.5}$ and PM_{10} over Europe, PM_{10} over Asia, and J over globe. Decreased SO_2
776	emissions over CONUS result in a decrease of H_2SO_4 and therefore a decrease of SO_4^{2-} . Based
777	on aerosol thermodynamic treatments, decreased SO_4^{2-} will result in decreased NH_4^+ . Therefore,
778	$PM_{2.5}$ and PM_{10} decrease as well. Adjusted emissions can affect secondary aerosol formations
779	and therefore radiative variables can be affected due to the direct and indirect effects of aerosols.
780	As shown in Table 2, compared with MAM_NEWA, MAM_NEW/EMIS reduces MB of LWD
781	by 9.3%, SWD by 37.5%, and CF by 18.9%, leading to 0.1% - 1.6% absolute reduction in their
782	NMBs. This illustrates the sensitivity of radiation to the perturbations in emissions through
783	chemistry feedbacks to the climate system. As shown in Table A1, only column CCN5 and AOD
784	are significantly different between MAM_NEWA and MAM_NEW/EMIS, indicating the
785	impacts of emissions are more significant on predictions of gas and aerosol than radiative
786	variables.
787	
788	6. Evaluation of the Five-Year Simulations
789	6.1. Performance Evaluation
790	Tables 5 and 6 show the statistical performance for radiative/cloud variables and
791	chemical predictions, respectively, from the 5-yr simulations using three different configurations
792	Compared with MAM SIM 5Y, MAM NEW 5YA improves the predictions of aerosol and

cloud variables such as AOD, COT, CWP, CCN5, and CDNC (with 4.8% to 23.4% absolute

reduction in their NMBs), and radiative variables such as SWD, LWD, OLR, and SWCF (with

- 795 0.4-4.2% absolute reduction in their NMBs). MAM_NEW_5YA also shows slight improvement
- for the predictions of SO_4^{2-} and BC over CONUS and SO_2 over East Asia (with 0.3-2.3%)
- absolute reduction in their NMBs), but moderate-to-large improvements for the predictions of

798	OC, TC, and $PM_{2.5}$ over CONUS, PM_{10} over East Asia, and SO ₂ , $PM_{2.5}$, and PM_{10} over Europe
799	(with 5.2-20.1% absolute reduction in their NMBs). Compared to TOR calculated based on O_3
800	climatology used in MAM_SIM_5Y, TOR predicted from MAM_NEW_5YA is slightly
801	improved with 1.2%, 1.3%, and 0.3 absolute reduction in its NMB, NME, and RMSE,
802	respectively. Evaluation of major radiative/cloud variables and chemical predictions are also
803	conducted for June, July, and August (JJA) of 2001-2005, which is shown in Tables A3 and A4
804	in the supplementary material. Compared with full 5-year (2001-2005) average, the simulation
805	for JJA gives similar predictions for chemical species but better model predictions for radiation
806	(e.g., LWD, SWD, and OLR) and cloud (e.g., COT, CWP, column CCN5, and CDNC) variables.
807	Tables 5 and 6 also show the performance of MAM_NEW_5YB in which CAM5 is fully
808	coupled with land, ocean, and ice models. The performance is overall similar for all radiative
809	variables and most chemical species between MAM_NEW_5YA and MAM_NEW_5YB (most
810	within 5% differences in the absolute values of their NMBs). The performance of HNO ₃ over
811	CONUS and Europe, NH_4^+ , NO_3^- , and Cl^- over Europe, PM_{10} over Europe and East Asia is
812	improved appreciably (with 4.2-17.9% reduction in the absolute values of their NMBs), and that
813	of SO ₂ over CONUS and Europe and NH_4^+ , NO_3^- , and Cl^- over CONUS degrades appreciably
814	(with 4.3-8.5% increase in the absolute values of their NMBs). Those changes are mainly due to
815	the interactions among Earth's components, particularly at the interface of earth components
816	(e.g., air-sea, air-land, and sea-ice interfaces) and feedbacks to the climate system, which in turn
817	affects gaseous and aerosol concentrations in the coupled system.
818	Large biases remain for some variables in MAM_NEW_5YA and MAM_NEW_5YB due
819	to uncertainties in model inputs (e.g., meteorology and emissions) and model treatments (e.g.,

820 multi-phase chemistry, dust emission scheme, cloud microphysics, aerosol activation, SOA

formation, and dry and wet deposition), which have been illustrated in Section 5.5. Large biases in Cl⁻ predictions over Europe are likely due to the combined effects of a low concentration of observed Cl⁻, uncertainties in HCl emissions, and inaccurate predictions of coarse Cl⁻ in the model since ISORROPIA II is only implemented for fine particles. Uncertainties in the mass accommodation coefficients of volatile gas species can also result in uncertainties in predictions of condensable gases.

827

828 6.2 Impact of New and Modified Treatments on 5-year (2001-2005) Simulations

Figure 7 shows the absolute differences of surface SO₂, NH₃, SO₄²⁻, NH₄⁺, TC, PM_{2.5}, 829 PM₁₀, J, and aerosol number (PM_{num}) and Figure 8 shows the absolute differences of radiative 830 831 variables between MAM SIM 5Y and MAM NEW 5YA. The new and modified model 832 treatments in MAM NEW 5YA cause changes in the concentrations of PM and precursor gases, 833 which affect radiative variables through aerosol direct and indirect effects. The changes in 834 radiative variables in turn affect gas-phase chemistry and aerosol processes. As shown in Figure 835 7, the difference of SO_2 between the two simulations varies from -1.7 to 3.8 ppb, with a global 836 mean difference of 4.2 ppt. The decrease of SO₂ over most oceanic area is mainly due to the decrease of DMS resulted from less oxidation by OH radicals. The increase of SO_4^{2-} over East 837 838 Asia and eastern U.S. drives more NH_3 from gas-phase to particulate phase to form NH_4^+ through thermodynamic equilibrium, increasing the concentrations of NH_4^+ over these regions. 839 However, the concentrations of SO_4^{2-} decrease over Europe due in part to less oxidation of SO_2 . 840 841 Despite such a decrease, the concentrations of NH_4^+ are higher over Europe due to the 842 neutralization of NH₃ by Cl⁻ and NO₃⁻ that are treated in MAM NEW 5YA but not treated in in MAM SIM 5Y. Compared with MAM SIM 5Y, J from MAM NEW 5YA increases over 843

globe with a global mean difference of $0.066 \text{ cm}^{-3} \text{ s}^{-1}$, due to the use of a lower mass 844 accommodation coefficient of H₂SO₄ in MAM NEW 5YA, resulting in more available H₂SO₄ 845 846 vapor participating in nucleation. The increases in J result in an increase in aerosol mass and number concentrations and thus higher concentrations of PM2.5 and PM10 (which improve 847 848 appreciably their performance, see Table 5). 849 As shown in Figure 8, compared with MAM SIM 5Y, AOD increases by 0.007, column CCN5 increases by 3.8×10^7 cm⁻², and CDNC increases by 16.1 cm⁻³ in MAM NEW 5YA. 850 Higher PM_{num} in MAM NEW 5YA allows more aerosol to grow into the CCN size, leading to 851 852 higher CCN in MAM NEW 5YA. Higher aerosol concentrations in MAM NEW 5YA result in 853 higher AOD. The increased aerosol number and mass concentration result in an increase in the 854 predictions of cloud variables through the aerosol-cloud interactions. For example, with all the modified and new treatments, COT increases by 0.8, CWP increases by 4.1 g m⁻², and PWV 855 856 increases by 0.026 cm on global average. Due to the aerosol direct and indirect effects, the difference in simulated SWD varies from -19.3.0 to 10.4 W m^{-2} and decreases by 3.4 W m^{-2} (~ 857 2.0%) on a global average. The difference in LWD varies from -4.2 to 8.5 W m⁻² and increases by 858 1.0 W m^{-2} (~ 0.4%) on a global average (Figure not shown). The difference in SWCF varies from 859 -8.4 to 17.9 W m⁻², with a net increase of 2.7 W m⁻² (~ 6.4%) on a global average. The absolute 860 861 differences of surface chemical species and major cloud/radiative variables for JJA average of 862 2001-2005 are shown in Figures A4 and A5 in the supplementary material. Compared with 5-863 year average, the absolute changes of most radiative variables are smaller in JJA. The absolute 864 changes of PM₁₀ are smaller in JJA, which is mainly due to the dust events during other months 865 (e.g., March-May over East Asia).

867 6.3 Global Burden Analysis

868 Table 7 shows the simulated global burdens of major gas and aerosol species for 2001-869 2005. The global burdens of most gaseous precursors of aerosol are higher in MAM NEW 5YA 870 than MAM SIM 5Y (except for NH₃), due mainly to the incorporation of ISORROPIA II in 871 MAM NEW 5YA. The global burden of tropospheric O_3 is higher in MAM NEW 5YA than 872 MAM SIM 5Y, which is due to higher mixing ratios of O₃ precursors (e.g., NO₂ and VOCs) that 873 are simulated in MAM NEW 5YA. The global burdens of most gas species are comparable with 874 previous studies (Horowitz et al. 2006; Lamarque et al., 2006; Williams et al., 2009; Liu et al., 875 2012) with absolute differences of less than 20%. One exception is H_2SO_4 , which is higher by a 876 factor 5 in MAM NEW 5YA than in MAM SIM 5Y. The higher burden of H_2SO_4 in 877 MAM NEW 5YA is likely due to the less condensation of H₂SO₄ resulted from the use of a lower mass accommodation coefficient. SO_4^{2-} burden is higher by 8.3% in MAM NEW 5YA 878 879 than MAM SIM 5Y, which is likely due to greater SO₂ oxidation in MAM NEW 5YA. Higher SO_4^{2-} burden results from higher SO₂ burden. Higher SO₂ burden leads to more SO₂ to be 880 oxidized to produce $SO_4^{2^2}$, which overweighs the impacts from less H₂SO₄ condensation due to 881 lower mass accommodation coefficient. More SO₄²⁻ result in more NH₄⁺. The burdens of BC and 882 883 POM are lower by 16.5% and 23.8%, respectively, in MAM NEW 5YA than in MAM SIM 5Y, 884 which is likely due in part to greater dry deposition fluxes and in part to a slower primary carbon 885 aging rate resulted from reduced condensation of gas species in MAM NEW 5YA. 886 Condensation onto the primary carbon mode produces aging of the particles in this mode. A 887 lower accommodation coefficient is used in MAM NEW 5YA, which results in less 888 condensation. Therefore, the fraction of aged particles has decreased. The global burdens of most aerosol species are in the range of previous studies. For example, global burdens of SO_4^{2-} and 889

890	NH_4^+ from MAM_SIM_5Y and MAM_NEW_5YA are 23.4% and 17.0%, respectively, and
891	16.7% and 12.5%, respectively, lower than Liu et al. (2012), which is likely because
892	MAM_SIM_5Y contains no SO_4^{2-} emissions but Liu et al. (2012) included additional SO_4^{2-}
893	emissions of 1.66 Tg S yr ⁻¹ . Higher SO_4^{2-} emission leads to more SO_4^{2-} concentrations thus more
894	$\mathrm{NH_4^+}$ in Liu et al. (2012). Compared with Horowitz et al. (2006), global burdens of BC and OC
895	from MAM_NEW_5YA are lower by 72.9% and 52.3%, respectively. Compared with Liu et al.
896	(2012), MAM_NEW_5YA gives comparable BC and POM burdens but much lower SOA (by a
897	factor of 3.0). Compared with Textor et al. (2006), POM burden is a factor of 3.5 lower in
898	MAM_NEW_5YA. The lower BC, OC, POM, and SOA burdens are likely due to the
899	uncertainties in the BC and OC emissions used as well as differences in the model treatments for
900	SOA formation and POM aging.

901

902 7. Conclusions and Future work

903 In this work, a new gas-phase chemistry mechanism and several advanced inorganic 904 aerosol treatments have been incorporated into CESM/CAM5.1-MAM7. These include (1) the 905 CB05 GE gas-phase chemical mechanism coupled with MAM7; (2) the condensation and 906 aqueous-phase chemistry involving HNO₃/ NO₃⁻ and HCl/ Cl⁻; (3) an ion-mediated nucleation 907 (IMN) parameterization for the new particle formation from ions, (4) an inorganic thermodynamic module, ISORROPIA II, that explicitly simulates thermodynamics of $SO_4^{2^2}$, 908 NH₄⁺, NO₃⁻, Cl⁻, and Na⁺ as well as the impact of crustal species, such as Ca²⁺, K⁺, and Mg²⁺, on 909 910 aerosol thermodynamics. CB05 GE with new and modified inorganic aerosol treatments in 911 MAM7 simulates 139 species with 273 chemical reactions, which is more accurate than simple 912 gas chemistry coupled with default MAM7. Seven 1-yr simulations for 2001 and three 5-yr

simulations for 2001-2005 with different model configurations are performed to evaluate the
capabilities of the original and improved CESM/CAM5 and the mechanisms underlying
differences among model predictions.

916 Comparing to the simple gas-phase chemistry, the 2001 simulation with CB05 GE can 917 predict many more gaseous species, and give improved performance for predictions of organic carbon and PM_{2.5} over CONUS, NH₃ and SO₄²⁻ over Europe, SO₂ and PM₁₀ over East Asia, and 918 919 cloud properties such as CF, CDNC, and SWCF. MAM CON simulates NO₃⁻ and Cl⁻, which are 920 important inorganic aerosols. With species-dependent accommodation coefficients for gas 921 condensation, more H_2SO_4 can participate in homogeneous nucleation, resulting in the 922 improvement of predictions of PM_{2.5}, PM₁₀, J, CDNC, and SWCF. IMN can increase the 923 predictions of J and PM_{num} in the upper atmosphere and thus improve the predictions of AOD, 924 CCN, and cloud properties, and SWCF over globe, PM_{2.5} over CONUS and Europe, PM₁₀ over 925 Europe and East Asia, and PM composition over Europe. The 2001 simulation with ISORROPIA 926 II can improve the predictions of major gas and aerosol species significantly, including HNO_3 , NH₄⁺, NO₃⁻, Cl⁻, BC, OC, TC, and PM₂ 5 over CONUS, SO₂, NH₃, NO₂, SO₄²⁻, NH₄⁺, NO₃⁻, and 927 928 Cl⁻ over Europe, and CO and SO₂ over East Asia. Such improvements lead to improved 929 predictions of SWD, SWCF, and CCN5 over globe. The 2001 simulation with the new and 930 modified inorganic aerosol treatments appreciably improve the predictions of OLR, CF, COT, CWP, PWV, CCN, CDNC, SWCF, J over globe, and HNO₃, NH₄⁺ (CONUS), PM₂₅, and PM₁₀. 931 932 The 2001 sensitivity simulation with adjusted emissions further improves model predictions of 933 CO and SO₂ over East Asia, SO₂, HNO₃, NO₃⁻, Cl⁻, BC, OC, and TC over CONUS, SO₂, NH₃, NH4⁺, HNO3, NO3⁻, and Cl⁻ over Europe, and column CO and SWD over globe. The change of 934 935 emissions can affect primary gaseous precursors directly, and secondary gaseous species

indirectly through gas-phase chemistry. Meanwhile, secondary aerosols can be affected by

937 gaseous precursors, and therefore have impacts on cloud properties as well as direct and indirect

938 effects on radiation. Reducing the uncertainty of emissions can thus help reduce the model biases

939 significantly.

940 The comparison of the 5-yr simulations with prescribed SST shows that

941 MAM_NEW_5YA with CB05_GE can appreciably improve the predictions of AOD, COT, CWP,

942 CCN5, CDNC, SWD, LWD, OLR, and SWCF on global scale and OC, TC, and PM_{2.5} over

943 CONUS, PM₁₀ over East Asia, and SO₂, PM_{2.5}, and PM₁₀ over Europe. The performance is

944 overall similar for all radiative variables and most chemical species between MAM_NEW_5YA

945 with prescribed SST and MAM_NEW_5YB in a fully-coupled mode.

946 In addition to uncertainties in emissions, additional uncertainties exist in the model 947 treatments. For example, the large biases in the predictions of O₃ over Europe and East Asia are 948 mainly due to insufficient NO_x titration resulting from the uncertainties in the NO_x emissions. 949 The large biases in PM_{10} over East Asia and Europe may be mainly due to the inaccurate 950 predictions of dust. The large bias in Cl⁻ over Europe may be due to the inaccurate predictions of 951 HCl and coarse Cl⁻, resulted from the irreversible condensation of HCl over coarse mode 952 particles, and the uncertainty in the mass accommodation coefficient of HCl used. A reversible 953 condensation treatment should be used for volatile species in the future, which can more 954 accurately simulate the gas/particle partitioning of those volatile species over coarse mode 955 particles. Assumptions associated with equilibrium partitioning for fine particles such as 956 metastable conditions may be responsible for biases over desert/arid regions under low RH 957 conditions. In the default and modified nucleation treatments, it only considers H₂SO₄, NH₃, 958 H₂O, and ions involving in the new particle formation. Missing species (e.g., organics, iodine

959 compounds, and DMS) may also contribute to the new particle formation. Uncertainties in 960 treating organic gas-aerosol partitioning may contribute to the inaccurate predictions of SOA, 961 OC, TC, and PM. The large biases in CDNC, COT, and LWP indicate the uncertainties in cloud 962 microphysics schemes and aerosol-cloud interaction parameterizations, which also limit the 963 ability of climate and Earth system models to quantify aerosol indirect effects (Stephens, 2005; 964 Gettelman et al., 2008). In addition to uncertainties in the model treatments, uncertainties in the 965 model simulation settings such as the use of a coarse grid resolution and a large model time step 966 of 1800 seconds for solving the chemical system in this work may contribute to the model biases. 967 The representations of some of the aforementioned uncertain processes in CESM/CAM5.1 are 968 being further improved by the authors' group. Decadal simulations using improved 969 CESM/CAM5.1 will be conducted in the future to study the interactions among atmospheric 970 chemistry, aerosol, and climate change and reduce associated uncertainties.

971

972 Acknowledgments

973 This work is sponsored by the U.S. NSF EaSM program AGS-1049200. The authors would like 974 to thank Fangqun Yu for providing the IMN scheme, Athanasios Nenes for providing 975 ISORROPIA II, Xiaohong Liu for providing a version of MAM7 that works in CAM5.0 and 976 CAM5.1, Ralf Bennartz and John Rausch for providing CDNC data, Steve J. Ghan and Richard 977 C. Easter for insightful discussions, and Shuai Zhu, a former postdoc researcher of the air quality 978 forecasting laboratory at NCSU for early work on the incorporation of CB05 GE and its 979 coupling with MAM3. The authors would also like to thank the four reviewers for their valuable 980 suggestions that help improve the technical quality of this work. MODIS data and CERES data 981 are provided by NASA via http://ladsweb.nascom.nasa.gov and

- 982 http://ceres.larc.nasa.gov/order_data.php, respectively. Other surface network data were
- 983 downloaded from their respective web sites. We would like to acknowledge high-performance
- 984 computing support from Yellowstone (ark:/85065/d7wd3xhc) provided by NCAR's
- 985 Computational and Information Systems Laboratory, sponsored by the U.S. National Science
- 986 Foundation.
- 987

988 References

- Abdul-Razzak, H. and Ghan, S. J.: A Parameterization of Aerosol Activation, Part 2: Multiple
 Aerosol Types, J. Geophys. Res., 105, 6837-6844, 2000.
- Adams, P. J. and Seinfeld, J. H.: Predicting global aerosol size distributions in general circulation
 models, J. Geophys. Res., 107(D19), 4370, doi:10.1029/2001JD001010, 2002.
- Appel, K.W., Pouliot, G. A., Simon, H., Sarwar, G., Pye, H. O. T., Napelenok, S. L., Akhtar, F.,
 and Roselle, S. J.: Evaluation of dust and trace metal estimates from the Community
 Multiscale Air Quality (CMAQ) model version 5.0, Geosci. Model Dev., 6, 883-899, 2013.
- Arstila, H., Korhonen, P., and Kulmala, M.: Ternary nucleation: Kinetics and application to
 water-ammonia-hydrochloric acid system, J. Aerosol Sci., 30, 131-138, doi:10.1016/S00218502(98)00033-0, 1999.
- Barth, M. C., Rasch, P. J., Kiehl, J. T., Benkovitz, C. M., and Schwartz, S. E.: Sulfur chemistry in
 the National Center for Atmospheric Research Community Climate Model: Description,
 evaluation, features and sensitivity to aqueous chemistry, J. Geophys. Res., 105, 1387-1415,
 2000.
- Berndt, T., Sipilä, M., Stratmann, F., Petäjä, T., Vanhanen, J., Mikkilä, J., Patokoski, J., Taipale,
 R., Lee Mauldin III, R., and Kulmala, M.: Enhancement of atmospheric H₂SO₄/H₂O
 nucleation: organic oxidation products versus amines, Atmos. Chem. Phys. Discuss., 13,
 16301-16335, doi:10.5194/acpd-13-16301-2013, 2013.
- Bennartz, R.: Global assessment of marine boundary layer cloud droplet number concentration
 from satellite, J. Geophys. Res., 112, D02201, doi: 10.1029/2006JD007547, 2007.
- Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q., Lui, H. Y.,
 Mickley, L. J., and Schultz, M. G.: Global modeling of tropospheric chemistry with
 assimilated meteorology: Model description and evaluation, J. Geophys. Res., 106(D19),
 23073-23095, 2001.
- Bretherton, C. S. and Park, S.: A new moist turbulence parameterization in the community
 atmosphere model, J. Climate, 22, 3422-3448, 2009.

- 1015 Byun, D. W. and Schere, K. L.: Review of the governing equations, computational algorithms,
- and other components of the Models-3 Community Multiscale Air Quality (CMAQ)
 Modeling System, Appl. Mech. Rev., 59, 51-77, 2006.
- Capaldo, K. P., C. Pilinis, and S. N. Pandis: A computationally efficient hybrid approach for
 dynamic gas/aerosol transfer in air quality models, Atmos. Environ., 34, 3617–3627, 2000.
- Collins, W. D., Bitz, C. M., Blackmon, M. L., Bonan, G. B., Bretherton, C. S., Carton, J. A.,
 Chang, P., Doney, S. C., Hack, J. J., Henderson, T. B., Kiehl, J. T., Large, W. G., McKenna, D.
 S., Santer, B. D., and Smith, R. D.: The Community Climate System Model version3
 (CCSM3), J. Clim., 19, 2122-2143, doi:10.1175/JCLI3761.1, 2006.
- Dunne, J. P., John, J. G., Adcroft, A. J., Griffies, S. M., Hallberg, R. W., Shevliakova, E.,
 Stouffer, R. J., Cooke, W., Dunne, K. A., Harrison, M. J., Krasting, J. P., Malyshev, S. L.,
 Milly, P. C. D., Phillipps, P. J., Sentman, L. T., Samuels, B. L., Spelman, M. J., Winton, M.,
 Wittenberg, A. T., and Zadeh, N.: GFDL's ESM2 global coupled climate-carbon earth system
 models. Part I: Physical formulation and baseline simulation characteristics, J. Climate, 25,
 6646-6665, 2012.
- Dutkiewicz, S., Sokolov, A. P., Scott, J., and Stone, P. H.: A Three-Dimensional Ocean-Seaice Carbon Cycle Model and its Coupling to a Two-Dimensional Atmospheric Model: Uses in
 Climate Change Studies. MIT JPSPGC Report 122, May, 47 p, 2005.
- Emmons, L. K., Walters, S., Hess, P. G., Lamarque, J.-F., Pfister, G. G., Fillmore, D., Granier, C.,
 Guenther, A., Kinnison, D., Laepple, T., Orlando, J., Tie, X., Tyndall, G., Wiedinmyer, C.,
 Baughcum, S. L., and Kloster, S.: Description and evaluation of the Model for Ozone and
 Related chemical Tracers, version 4 (MOZART-4), Geosci. Model Dev., 3, 43-67,
 doi:10.5194/gmd-3-43-2010, 2010.
- ENVIRON: Comprehensive Air Quality Model with extensions User's Guide, Novato,California, USA, 5.3 edn., 2010.
- Faraji, M., Kimura, Y., McDonald-Buller, E., and Allen, D.: Comparison of the carbon bond and
 SAPRC photochemical mechanisms under conditions relevant to southeast Texas, Atmos.
 Environ., 42, 5821–5836, doi:10.1016/j.atmosenv.2007.07.048, 2008.
- Fast, J. D., Gustafson Jr., W. I., Easter, R. C., Zaveri, R. A., Barnard, J. C., Chapman, E. G.,
 Grell, G. A., and Peckham, S. E.: Evolution of ozone, particulates, and aerosol direct radiative
 forcing in the vicinity of Houston using a fully coupled meteorology-chemistry-aerosol
 model, J. Geophys. Res., 111, D21305, doi:10.1029/2005JD006721, 2006.
- 1048Fountoukis, C and Nenes, A.: ISORROPIA II: a computationally efficient thermodynamic1049equilibrium model for K^+ Ca^{2+} - Mg^{2+} - NH_4^+ - Na^+ - SO_4^{2-} - NO_3^- - Cl^- + H_2O aerosols, Atmos.1050Chem. Phys., 7, 4639–4659, doi:10.5194/acp-7-4639-2007, 2007.
- Gettelman, A., Morrison, H., and Ghan, S. J.: A new two-moment bulk stratiform cloud
 microphysics scheme in the community atmosphere model, version 3 (CAM3). Part II:
 Single-column and global results, J. Climate, 21(15), 3660-3679, 2008.

- Ghan, S. J., and Zaveri, R. A.: Parameterization of optical properties for hydrated internally
 mixed aerosol, J. Geophys. Res., 112, D10201, doi:10.1029/2006JD007927,2007.
- Ghan, S. J., Liu, X., Easter, R. C., Zaveri, R., Rasch, P. J., and Yoon, J.-H.: Toward a minimal
 representation of aerosols in climate models: comparative decomposition of aerosol direct,
 semidirect, and indirect radiative forcing, J. Climate, 25, 6461-6476, 2012.
- Guenther A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.: Estimates of
 global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and
 Aerosols from Nature), Atmos. Chem. Phys., 6, 3181-3210, 2006.
- Heald, C. L., Henze, D. K., Horowitz, L. W., Feddema, J., Lamarque, J.-F., Guenther, A., Hess, P.
 G., Vitt, F., Seinfeld, J. H., Goldstein, A. H., and Fung, I.: Predicted change in global
 secondary organic aerosol concentrations in response to future climate, emissions, and land
 use change, J. Geophys. Res., 113, D05211, doi:10.1029/2007JD009092, 2008.
- 1066 Heintzenberg, J.: Fine particles in the global troposphere, A review. Tellus, 41B, 149-160, 1989.
- Hoffmann, T., O'Dowd, C. D., and Seinfeld, J. H.: Iodine oxide homogeneous nucleation: An
 explanation for coastal new particle production, Geophys. Res. Lett., 28(10), 1949-1952,
 2001.
- Horowitz, L. W.: Past, present, and future concentrations of tropospheric ozone and aerosols:
 methodology, ozone evaluation, and sensitivity to aerosol wet removal, J. Geophys. Res., 111,
 D22211, doi:10.1029/2005JD006937, 2006.
- Hu, X.-M., Y. Zhang, M. Z. Jacobson, and C. K. Chan: Coupling and evaluating gas/particle mass
 transfer treatments for aerosol simulation and forecast, J. Geophys. Res., 113, D11208,
 doi:10.1029/2007JD009588, 2008.
- Iacono, M. J., Delamere, J. S., Mlawer, E. J., and Clough, S. A.: Evaluation of upper tropospheric
 water vapor in the NCAR Community Climate Model (CCM3) using modeled and observed
 HIRS radiances, J. Geophys. Res., 108(D2), 4037, doi:10.1029/2002jd002539, 2003.
- Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough S. A., and Collins, W. D.:
 Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative
 transfer models, J. Geophys. Res., 113(D13), D13103, doi:10.1029/2008jd009944, 2008.
- Jacobson, M. Z.: Studying the effect of calcium and magnesium on size-distributed nitrate and
 ammonium with EQUISOLV II, Atmos. Environ., 33, 3635-3649, 1999.
- Jacobson, M. Z.: Short-term effects of Controlling Fossil-Fuel Soot, Biofuel Soot and Gases, and
 Methane on Climate, Arctic Ice, and Air Pollution Health, J. Geophys. Res., 115, D14209,
 doi:10.1029/2009JD013795, 2010.
- Jacobson, M. Z. (2005), A solution to the problem of nonequilibrium acid/base gas-particle transfer at
 long time step, Aerosol Sci. Technol., 39, 92–103.

- Karamchandani, P., Zhang, Y., Chen, S.-Y., and Balmori-Bronson, R.: Development of an
 extended chemical mechanism for global-through-urban applications, Atmospheric Pollution
 Research, 3, 1-24, 2012.
- Kelly, J. T., P. V. Bhave, C. G. Nolte, U. Shankar, and K. M. Foley: Simulating emission and chemical evolution of coarse sea-salt particles in the Community Multiscale Air Quality (CMAQ) model, Geosci. Model Dev., 3, 257–273, 2010.
- 1095 Kim, Y., Sartelet, K., and Seigneur, C.: Formation of secondary aerosols: impact of the gas-phase
 1096 chemical mechanism, Atmos. Chem. Phys., 11, 583-598, doi:10.5194/acp-11-583-2011,
 1097 2011a.
- Koloutsou-Vakakis S., Rood, M. J., Nenes, A., and Pilinis, C.: Modeling of aerosol properties
 related to direct climate forcing, J. Geophys. Res., 103(D14), 17009-17032, doi:
 10.1029/98JD00068, 1998.
- Kulmala, M., Vehkamaki, H., Petaja, T., Dal Maso, M., Lauri, A., Kerminen, V.-M., Birmili, W.,
 and McMurry, P.: Formation and growth rates of ultrafine atmospheric particles: A review of
 observations, J. Aerosol Sci., 35, 143-176, 2004.
- Lamarque, J.-F., Kiehl, J. T., Hess, P. G., Collins, W. D., Emmons, L. K., Ginoux, P., Luo, C., and
 Tie, X. X.: Response of a coupled chemistry-climate model to changes in aerosol emissions:
 global impact on the hydrological cycle and the tropospheric burdens of OH, ozone, and NOx,
 J. Geophys. Res., 32, L16809, doi:10.1029/2005GL023419, 2005.
- Lamarque, J. F., Emmons, L. K., Hess, P. G., Kinnison, D. E., Tilmes, S., Vitt, F., Heald, C. L.,
 Holland, E. A., Lauritzen, P. H., Neu, J., Orlando, J. J., Rasch, P. J., and Tyndall, G. K.:CAMchem: description and evaluation of interactive atmospheric chemistry in CESM, Geosci.
 Model Dev., 5, 369-411, doi:10.5194/gmd-5-369-2012, 2012.
- Lawrence, D. M., Oleson, K. W., Flanner, M. G., Thornton, P. E., Swenson, S. C., Lawrence, P.
 J., Zeng, X., Yang, Z.-L., Levis, S., Sakaguchi, K., Bonan, G. B., and Slater, A. G.:
 Parameterization improvements and functional and structural advances in version 4 of the
 Community Land Model, J. Adv. Model. Earth Syst., 3, Art. 2011MS000045, 27 pp, doi:
 10.1029/2011MS000045, 2011.
- Liao, H., Adams, P. J., Chung, S. H., Seinfeld, J. H., Mickley, L. J., and Jacob, D. J.: Interactions
 between tropospheric chemistry and aerosols in a unified general circulation model, J.
 Geophys. Res., 108(D1), 4001, doi:10.1029/2001JD001260, 2003.
- Liu, X., Easter, R. C., Ghan, S. J., Zaveri, R., Rasch, P., Shi, X., Lamarque, J.-F., Gettleman, A.,
 Morrison, H., Vitt, F., Conley, A., Park, S., Neale, R., Hannay, C., Ekman, A. M. L., Hess, P.,
 Mahowald, N., Collins, W., Iacono, M.J., Bretherton, C. S., Flanner, M. G., and Mitchell,
 D.L.: Toward a minimal representation of aerosols in climate models: description and
 evaluation in the Community Atmosphere Model CAM5, Geosci. Model Dev., 5, 709-739,
- 1125 2012.
- Marsh, A. R. W., and McElory, W. J.: The dissociation constant and Henry's law constant of HCl
 in aqueous solution, Atmos. Environ., 19, 1075-1080, 1985.

- Martensson, E. M., Nilsson, E. D., deLeeuw, G., Cohen, L. H., and Hansson, H. C.: Laboratory
 simulations and parameterization of the primary marine aerosol production, J. Geophys. Res.,
 108(D9), 4297, doi:10.1029/2002JD002263, 2003.
- Meng, Z. and Seinfeld, J. H.: Time scales to achieve atmospheric gas-aerosol equilibrium for
 volatile species, Atmos. Environ., 30, 2889-2900, 1996.
- Meng, Z, Dabdub, D., and Seinfeld, J.H.: Size- and chemically-resolved model of atmospheric
 aerosol dynamics. J. Geophys. Res., 103, 3419-3435, 1998.
- Merikanto, J., Napari, I., Vehkamaki, H., Anttila, T., and Kulmala, M.: New parameterization of
 sulfuric acid-ammonia-water ternary nucleation rates at tropospheric conditions, J. Geophys.
 Res., 112, D15207, doi: 10.1029/2006JD007977, 2007.
- Morrison, H. and Gettelman, A.: A new two-moment bulk stratiform cloud microphysics scheme
 in the community atmosphere model, version 3 (CAM3). Part I: Description and numerical
 tests, J. Climate, 21(15), 3642-3659, 2008.
- Nenes, A., Pandis, S.N., and Pilinis, C.: ISORROPIA: A new thermodynamic equilibrium model
 for multiphase multicomponent inorganic aerosols, Aquatic Geochemistry, 4, 123-152, 1998.
- Olerud, D. and Sims, A. (2004). MM5 2002 Modeling in Support of VISTAS (Visibility
 Improvement State and Tribal Association of the Southeast), Report, Baron Advanced
 Meteorological Systems, LLC, Raleigh, NC, August.
- Park, S. and Bretherton, C. S.: The university of Washington shallow convection and moist
 turbulence schemes and their impact on climate simulations with the community atmosphere
 model, J. Climate, 22, 3449-3469, 2009.
- Raes, F., Augustin, J., and Vandingenen, R.: The role of ion-induced aerosol formation in the
 lower atmosphere, J. Aerosol Sci., 17, 466-470, doi: 10.1016/0021-8502(86)90135-7, 1986.
- 1151 Reiter, R.: Phenomena in atmospheric and environmental electricity, Elsevier, New York, 1992.
- Sander S. P., Friedl, R. R., Golden, D. M., Kurylo, M. J., Huie, R. E., Orkin, V. L., Moortgat, G.
 K., Ravishankara, A. R., Kolb, C. E., Molina, M. J., and Finlayson-Pitts, B. J.: Chemical
 Kinetics and Photochemical Data for Use in Atmospheric Studies, National Aeronautics and
 Space Administration, Jet Propulsion Laboratory California Institute of Technology Pasadena,
 California, 2003.
- Seinfeld, J. H. and Pandis, S. N.: Atmospheric chemistry and physics: From air pollution to
 climate change, 2 ed., John Wiley & Sons, Inc, 2006.
- Sihto, S. L., Kulmala, M., Kerminen, V. M., Maso, M. D., Petaja, T., Riipinen, I., Korhonen, H.,
 Arnold, F., Janson, R., Boy, M., Laaksonen, A., and Lehtinen, K. E. J.: Atmospheric sulphuric
 acid and aerosol formation: implications from atmospheric measurements for nucleation and
 early growth mechanisms, Atmospheric Chemistry and Physics, 6, 4079-4091, 2006.
- Sokolov, A. P., Schlosser, C. A., Dutkiewicz, S., Paltsev, S., Kicklighter, D., Jacoby, H. D., Prinn,
 R. G., Forest, C. E., Reilly, J. M., Wang, C., Felzer, B., Sarofim, M. C., Scott, J., Stone, P. H.,

- Melillo, J. M., and Cohen, J.: The MIT Integrated Global System Model (IGSM) Version 2:
 Model Description and Baseline Evaluation. MIT JPSPGC Report 124, July, 40 p, 2005.
- Spracklen, D. V., Carslaw, K. S., Kulmala, M., Kerminen, V.-M., Mann, G. W., and Sihto, S.-L.:
 The contribution of boundary layer nucleation events to total particle concentrations on
 regional and global scales, Atmos. Chem. Phys., 6, 5631-5648, 2006.
- Stephens, G. L.: Cloud feedbacks in the climate system: A critical review, J. Climate, 18(2), 237273, 2005.
- Stier, P., Feichter, J., Kinne, S., Kloster, S., Vignati, E., Wilson, J., Ganzeveld, L., Tegen, I.,
 Werner, M., Balkanski, Y., Schulz, M., Boucher, O., Minikin, A., and Petzold, A.: The aerosolclimate model ECHAM5-HAM, Atmos. Chem. Phys., 5, 1125-1156, doi:10.5194/acp-5-11252005, 2005.
- Textor, C., Schulz, M., Guibert, S., Kinne, S., Balkanski, Y., Bauer, S., Berntsen, T., Berglen, T.,
 Boucher, O., Chin, M., Dentener, F., Diehl, T., Easter, R., Feichter, H., Fillmore, D., Ghan, S.,
- 1178 Ginoux, P., Gong, S., Grini, A., Hendricks, J., Horowitz, L., Huang, P., Isaksen, I., Iversen, I.,
- 1179 Kloster, S., Koch, D., Kirkevag, A., Kristjansson, J. E., Krol, M., Lauer, A., Lamarque, J. F.,
- Liu, X., Montanaro, V., Myhre, G., Penner, J., Pitari, G., Reddy, S., Seland, Ø., Stier, P.,
- 1181Takemura, T., and Tie, X.: Analysis and quantification of the diversities of aerosol life cycles
- 1182 within AeroCom, Atmos. Chem. Phys., 6, 1777–1813, doi:10.5194/acp-6-1777-2006, 2006.
- Tsigaridis. K., Krol, M., Dentener, F. J., Balkanski, Y., Lathiere, J., Metzger, S., Hauglustaine, D.
 A., and Kanakidou, M.: Change in global aerosol composition since preindustrial times,
 Atmos. Chem. Phys., 6, 5143-5162, 2006.
- Usoskin, I. G. and Kovaltsov, G. A.: Cosmic ray induced ionization in the atmosphere: full
 modeling and practical applications, J. Geophys. Res., 111, D21206,
 doi:10.1029/2006JD007150, 2006.
- van Dingenen, R. and Raes, F.: Ternary nucleation of methane sulphonic acid, sulphuric acid and
 water vapour, J. Aerosol Sci., 24, 1-17, doi:10.1016/0021-8502(93)90081-J, 1993.
- Van Pelt, R. S. and Zobeck, T. M.: Chemical constituents of fugitive dust, Environ. Monit.
 Assess., 130, 3-16, doi:10.1007/s10661-006-9446-8, 2007.
- Vehkamaki, H., Kulmala, M., Napari, I., Lehtinen, K. E. J., Timmreck., C., Noppel, M., and
 Laaksonen, A.: an improved parameterization for sulfuric acid-water nucleation rates for
 tropospheric and stratospheric conditions, Journal of Geophysical Research-Atmospheres,
 107(D22), 4622, doi:10.1029/2002JD002184, 2002.
- Wang, M. and Penner, J. E.: Aerosol indirect forcing in a global model with particle nucleation,
 Atmos. Chem. Phys., 9, 239-260, 2009.
- Wang, K., Zhang, Y., Nenes, A., and Fountoukis, C.: Implementation of dust emission and
 chemistry into the Community Multiscale Air Quality modeling system and initial application
 to an Asian dust storm episode, Atmos. Chem. Phys., 12, 10209-10237, doi:10.5194/acp-1210209-2012, 2012.

- Williams, J. E., Scheele, M. P., van Velthoven, P. F. J., Cammas, J.-P., Thouret, V. Galy-Lacaux,
 C., and Volz-Thomas, A.: The influence of biogenic emissions from Africa on tropical
 tropospheric ozone during 2006: a global modeling study, Atmos. Chem. Phys., 9, 5729-5749,
 2009.
- Yu, F.: From molecular clusters to nanoparticles: Second generation ion-mediated nucleation
 model, Atmos. Chem. Phys., 6, 5193-5211, 2006.
- Yu, F.: Ion-mediated nucleation in the atmosphere: Key controlling parameters, implications, and
 look-up table, J. Geophys. Res., 115, D03206, doi: 10.1029/2009JD012630, 2010.
- Yu, F., Luo, G., Liu, X., Easter, R. C., Ma, X., and Ghan, S. J.: Indirect radiative forcing by ionmediated nucleation of aerosol, Atmos. Chem. Phys., 12, 11451-11463, 2012.
- Yu, F., Wang, Z., Luo, G., and Turco, R. P.: Ion-mediated nucleation as an important global
 source of tropospheric aerosols, Atmos. Chem. Phys., 8, 2537-2554, 2008.
- Zaveri, R. A., Easter, R. C., and Peters, L. K.: A computationally efficient multicomponent
 equilibrium solver for aerosols (MESA), J. Geophys. Res., 110, D24203, doi:
- 1217 10.1029/2004JD005618, 2005.
- Zender, C. S., Bian, H., and Newman, D.: The mineral Dust Entrainment And Deposition
 (DEAD) model: Description and 1990s dust climatology, J. Geophys. Res., 108(D14), 4416,
 doi: 10.1029/2002JD002775, 2003.
- I221 Zhang, G. J., and McFarlane, N. A.: Sensitivity of climate simulations to the parameterization of
 cumulus convection in the Canadian Climate Centre general circulation model, Atmosphere Ocean, 33, 407-446, 1995.
- Zhang, K. M., and A. S. Wexler: An Asynchronous Time-Stepping (ATS) integrator for atmospheric
 applications: Aerosol dynamics, Atmos. Environ., 40, 4574–4588, 2006.
- Zaveri, R. A., R. C. Easter, J. D. Fast, and L. K. Peters: Model for Simulating Aerosol Interactions and Chemistry (MOSAIC), J. Geophys. Res., 113, D13204, doi:10.1029/2007JD008782, 2008.
- Zhang, Y., Bischof, C. H., Easter, R. C., and Wu, P.-T.: Sensitivity analysis of a mixed-phase
 chemical mechanism using automatic differentiation, J. Geophys. Res., 103 (D15), 18,95318,979, 1998.
- Zhang, Y., Seigneur, C., Seinfeld, J. H., Jacobson, M., Clegg, S. L., Binkowski, F. S.: A
 comparative review of inorganic aerosol thermodynamic equilibrium modules: similarities,
 differences, and their likely causes, Atmos. Environ., 34, 117-137, 2000.
- 1234 Zhang, Y., Pun, B., Vijayaraghavan, K., Wu, S.-Y., Seigneur, C., Pandis, S. N., Jacobson, M. Z.,
- 1235 Nenes, A., and Seinfeld, J. H.: Development and application of the Model of Aerosol Dynamics,
- 1236 Reaction, Ionization, and Dissolution (MADRID), J. Geophys. Res., 109, D01202,
- 1237 doi:10.1029/2003JD003501, 2004.

- Zhang, Y., McMurry, P. H., Yu, F., and Jacobson, M. Z.: A comparative study of nucleation
 parameterizations: 1. Examination and evaluation of the formulations, J. Geophys. Res., 115,
 D20212, doi: 10.1029/2010JD014150, 2010.
- Zhang, Y., Chen, Y., Sarwar, G., and Schere, K.: Impacts of gas-phase mechanisms on weather
 research forecasting model with chemistry (WRF/Chem) predictions: Mechanism
 implementation and comparative evaluation, J. Geophys. Res., 117, D01301, doi:
 10.1020/2011/D015775, 2012c
- 1244 10.1029/2011JD015775, 2012a.
- Zhang, Y., Karamchandani, P., Glotfelty, T., Street, D. G., Grell, G., Nenes, A., Yu, F., and
 Bennartz, R.: Development and initial application of the global-through-urban weather
 research and forecasting model with chemistry (GU-WRF/Chem), J. Geophys. Res., 117,
 D20206, doi:10.1029/2012JD017966, 2012b.
- Zuend, A., Marcolli, C., Peter, T., and Seinfeld, J. H.: Computation of liquid-liquid equilibria and
 phase stabilities: implications for RH-dependent gas/particle partitioning of organic-inorganic
- 1251 aerosols, Atmos. Chem. Phys., 10, 7795-7820, doi:10.5194/acp-10-7795-2010, 2010.

	Table 1. Simulation design an	d purposes
Run Index	Model Configuration	Purpose
MAM_SIM	Simple gas-phase chemistry coupled with default MAM7	A baseline run for the 1 st set of simulations (see text)
MAM_CB05_GE	CB05_GE coupled with default MAM7	Differences of MAM_SIM and MAM_CB05_GE indicate the impacts of gas-phase chemical mechanisms
MAM_CON	Same as MAM_CB05_GE, but with explicit treatments for NO ₃ ⁻ , Cl ⁻ , and Na ⁺ ; HNO ₃ and HCl condensation and aqueous-phase chemistry; species-dependent accommodation coefficients	A baseline run for the 2 nd set of simulations; differences of MAM_SIM and MAM_CB05_GE indicate the impact of modified condensation and aqueous-phase chemistry treatments
MAM_CON/IMN	Same as MAM7_CON, but combine IMN with modified default nucleation parameterizations with a prefactor of 1.0×10^{-8}	Differences of MAM_CON and MAM_CON/IMN indicate the impacts of IMN and the lower prefactor for WP09
MAM_CON/ISO	Same as MAM7_CON, but with ISORROPIA II for aerosol thermodynamics under metastable conditions	Differences between MAM_CON and MAM_IMN/ISO indicate the impacts of explicit aerosol thermodynamics
MAM_NEWA	Same as MAM7_CON, but with all modified and new treatments and using a prefactor of 1.0×10^{-9} for default nucleation parameterization	Differences between MAM_CB05_GE and MAM_NEWA indicate the impacts of all new and modified treatments for inorganic aerosols
MAM_NEWB	Same as MAM_NEWA, but with ISORROPIA II under stable condition	Differences between MAM_NEWA and MAM_NEWB indicate the impacts of thermodynamic conditions on gas-aerosol partitioning
MAM_NEW/EMIS	Same as MAM7_NEW, but with adjusted emissions of SO ₂ , NH ₃ , BC, POM, and CO over CONUS, Europe, and East Asia	Differences between MAM_NEWA and MAM_NEW/EMIS indicate the impact of emissions
MAM_SIM_5Y	Same as MAM_SIM, but with prescribed SST for 2001-2005	A baseline run for 4 th set of simulations
MAM_NEW_5YA	Same as MAM_NEW/EMIS, but with prescribed SST for 2001-2005	Differences between MAM_SIM_5Y and MAM_NEW_5YA indicate the indicate the impacts of all new and modified treatments for inorganic aerosols
MAM_NEW_5YB	Same as MAM_NEW/EMIS, but with fully-coupled model for 2001-2005	Difference between MAM_NEW_5YB and MAM_NEW_5YA indicate the impacts of processes from component models in the fully- coupled Earth system

	I					Simulations			
Species/Variables	Dataset	Obs.	MAMSIM	MAM_ CB05 GE	MAM_ CON_	MAM_ CON/IMN	MAM_ CON/ISO	MAM_ NEWA_	MAM NEW/EMIS
T W/D /W/2\a	DCDM	3 616	309.2/	309.6/	308.4/	308.0/	308.3/	308.7/	309.1/
	NNCO	C.71C	-3.4/-1.1°	-2.9/-0.9	-4.2/-1.3	-4.5/-1.4	-4.2/-1.3	-3.8/-1.2	-3.5/-1.1
CUVD (W/2)b	DCDM	C 101	179.2/	177.0/	169.4/	170.2/	177.3/	174.5/	177.0/
	NNCO	101.2	-2.0/-1.1	-4.2/-2.3	-11.8/-6.5	-11.0/-6.1	-3.9/-2.2	-6.8/-3.7	-4.2/-2.3
OID /W2)	-NOAA-	7 7 FC	223.2/	222.4/	219.3/	219.3/	220.7/	221.2/	221.2/
	CDC	4 14.4	8.8/4.1	8.1/3.8	4.9/2.3	4.9/2.3	6.2/2.9	6.9/3.2	6.9/3.2
CW/CF (W/ m-2)	CEPES	11.0	-37.8/	-38.4/	-43.2/	-43.3/	-40.4/	-40.7/	-40.5/
	CENED	-41.0	-3.2/-7.9	-2.7/-6.5	2.2/5.3	2.3/5.6	-0.7/-1.6	-0.4/-0.9	-0.6/-1.4
CE (07)	SICOM	0 77	65.6/	65.9/	67.5/	67.6/	66.4/	66.5/	/9.99
	CITOM	6.00	-1.4/-2.0	-1.0/-1.5	0.5/0.8	0.7/1.0	-0.5/-0.8	-0.4/-0.6	-0.3/-0.5
TOD	SICOM	- 7	6.9/	7.1/	8.7/	8.8/	7.7/	1.T.T	7.7/
701	SIUUM	1/.1	-10.2/-59.5	-10.1/-58.8	-8.4/-49.2	-8.3/-48.4	-9.4/-55.1	-9.4/-54.9	-9.4/-55.2
			33.0/	33.5/	42.3/	42.7/	36.4/	36.5/	36.2/
$CWP (g m^{-2})$	MODIS	148.1	-115.1/	-114.7/	-105.8/	-105.4/	-111.7/	-111.7/	-111.9/
			-77.7	-77.4	-71.4	-71.2	-75.4	-75.4	-75.5
			1.9/	1.9/	1.9/	1.9/	1.9/	1.9/	1.9/
PWV (cm)	MODIS	1.9	$-2.5 \times 10^{-2}/$	-1.8×10^{-2}	-3.3×10^{-2}	-3.9×10 ⁻² /	-1.8×10 ⁻² /	$-1.4 \times 10^{-2}/$	-1.2×10^{-2}
			-1.3	6.0-	-1.7	-2.0	-0.9	-0.7	-0.6
			9.8×10^{-2}	1.0×10^{-1}	1.2×10^{-1}	1.3×10^{-1}	1.0×10^{-1}	1.0×10^{-1}	1.0×10^{-1}
AOD	MODIS	1.5×10^{-1}	$-5.5 \times 10^{-2}/$	-5.2×10^{-2}	-3.0×10^{-2}	-2.6×10^{-2}	-5.3×10^{-2}	-5.0×10^{-2}	-5.2×10^{-2}
			-36.1	-33.9	-19.8	-17.1	-34.4	-32.9	-34.0
			5.8×10^7	5.2×10^7	$1.8{ imes}10^{8}$	$2.0{ imes}10^8/$	9.1×10^7	$8.5 \times 10^{7/}$	$8.2 \times 10^7/$
COLULIIII CCINO (Acean) (cm ⁻²)	MODIS	2.4×10^{8}	-1.9×10^{8}	-1.9×10^{8}	$-6.7 \times 10^7/$	-4.6×10^7	$-1.5 \times 10^8/$	$-1.6 \times 10^8/$	-1.6×10 ⁸ /
			-76.4	-78.6	-27.5	-18.8	-62.7	-65.3	-66.6
CDNIC (2m-3)	DE07	1 1 1 1	45.5/	46.7/	89.7/	93.1/	65.0/	66.7/	67.0/
	DEUI	1.011	-67.7/-59.9	-66.5/-58.8	-23.4/-20.7	-20.0/-17.7	-48.1/-42.5	-46.4/-41.0	-46.1/-40.8
^a The pair of observat (http://www.pangaea	tion and simula <u>de</u>).	ation is removed	d in the statistic	al calculation if	the observed L	WD value is low	er than 50 W m ⁻	⁴ or higher than	700 W m ^{-z}

(<u>http://www.pangaea.de</u>). [°]The values of modeled results (Sim), MBs, and NMBs are expressed as Sim/MB/NMB.

		TATO OT OT	(TIM) CHIT IIIA	NATINITIAL NIT	TIATATA CENTER TIPATAT				GIIOMMINI	
Species/		1				Simul	ations			
variables ^a	Domain	Obs.	MAM_SIM	MAM_CB05_GE	MAM_CON	MAM_CON/IMN	MAM_CON/ISO	MAM_NEWA	MAM_NEWB	MAM_NEW/ EMIS
00	Europe	123.0	-	112.4/-10.6/-8.6	115.0/-8.0/-6.5	107.9/-15.1/-12.3	114.0-9.0/-7.3	118.8/-4.2/-3.4	113.6/-9.4/-7.6	137.9/14.9/12.1
	East Asia	0.6	-	0.1/-0.5/-82.1	0.1/-0.5/-82.0	0.1/-0.5/-81.8	0.1/-0.5/-81.8	0.1/-0.5/-82.0	0.1/-0.5/-81.7	0.1/-0.5/-78.7
	CONUS	3.9	14.2/10.3/264.8 ^b	14.4/10.5/270.1	15.6/11.7/301.2	15.1/11.2/286.1	15.4/11.5/295.8	15.3/11.4/291.8	15.3/11.4/293.0	9.8/5.9/152.2
\mathbf{SO}_2	Europe	6.8	13.4/6.6/97.5	13.8/7.0/103.2	15.2/8.4/123.0	13.6/6.8/100.3	14.6/7.8/114.7	15.7/8.9/130.7	14.5/7.7/114.0	6.8/0.0/0.3
	East Asia	12.5	4.6/-7.9/-63.0	4.8/-7.7/-61.3	4.8/-7.7/-61.4	4.8/-7.7/-61.8	4.9-7.6/-61.0	4.8/-7.7/-61.2	4.8/-7.7/-61.2	5.8/-6.7/-53.4
NH ₃	Europe	9.4	1.7/-7.7/-82.0	1.8/-7.6/-80.8	1.2/-8.2/-86.8	1.1/-8.3/-87.8	1.4/-8.0/-84.7	1.5/-7.9/-84.3	1.1/-8.3/-84.0	2.1/-7.3/-77.5
UN	Europe	20.2	-	4.6/-15.6/-77.0	5.2/-15.0/-74.1	4.7/-15.5/-76.5	5.0/-15.2/-75.2	5.2/-15.0/-74.1	4.9/-15.3/-75.7	4.9/-15.3/-75.9
2011	East Asia	14.0		1.6/-12.4/-88.4/	1.7/-12.3/-88.0	1.7/-12.3/-88.2	1.6/-12.4/-88.4	1.7/-12.3/-88.3	1.6/-12.4/-88.5	1.7/-12.3/-88.2
	CONUS	34.6	-	44.6/10.0/28.9	42.6/8.0/23.0	42.5/7.9/22.7	44.4/9.8/28.4	44.1/9.5/27.4	43.7/9.1/26.4	44.4/9.8/28.1
03	Europe	53.5		90.2/36.7/68.6	84.4/30.9/57.7	84.5/31.0/58.0	87.6/34.1/63.7	87.0/33.5/62.7	87.7/34.2/63.9	88.4/34.9/65.2
	East Asia	26.4		42.8/16.4/62.2	42.7/16.3/61.7	40.7/14.3/54.3	42.6/16.2/65.9	42.1/15.7/59.6	43.0/16.6/63.0	42.5/16.1/61.2
UNI	CONUS	1.5	-	2.5/1.0/68.1	0.6/-0.9/-60.2	0.6/-0.9/-59.7	1.7/0.2/15.8	1.8/0.3/17.7	1.8/0.3/19.0	1.6/0.1/4.1
HINO3	Europe	0.5	1	1.8/1.3/268.5	0.3/-0.2/-34.1	0.3/-0.2/-35.8	0.9/0.4/86.1	0.9/0.4/83.6	1.0/0.5/103.8	0.9/0.4/73.8
c.O. 2-	CONUS	2.6	2.5/-0.1/-5.1	2.4/-0.2/-7.2	2.6/4.4×10 ⁻² /1.7	2.6/4.2×10 ⁻² /1.6	2.4/-0.2/-7.9	2.4/-0.2/-6.3	2.5/-0.1/-5.5	1.9/-0.7/-28.4
904	Europe	2.2	3.0/0.8/36.5	2.9/0.7/33.1	3.1/0.9/40.3	3.0/0.8/35.8	2.9/0.7/32.6	3.1/0.9/39.4	3.0/0.8/36.8	2.0/-0.2/-7.2
+ 111	CONUS	1.4	1.0/-0.4/-32.1	0.8/-0.6/-39.6	1.7/0.3/20.0	1.7/0.3/19.7	1.3/-0.1/-6.4	1.3/-0.1/-6.5	1.3/-0.1/-4.3	1.2/-0.2/-13.1
1114	Europe	1.2	1.1/-0.1/-9.1	1.0/-0.2/18.3	2.2/1.0/85.0	2.0/0.8/65.7	1.8/0.6/49.4	1.9/0.7/54.8	1.7/0.5/37.7	1.6/0.4/32.5
- ON	CONUS	1.0	-	-	3.0/2.0/198.2	2.9/1.9/192.7	1.0/-4.8×10 ⁻² /-4.8	0.9/-0.1/-9.6	1.0/-2.2×10 ⁻² /-2.1	$1.0/4.0 \times 10^{-3}/0.4$
1003	Europe	2.0	-	-	3.4/1.4/67.8	3.0/1.0/49.4	1.9/-0.1/-4.3	2.0/-4.0×10 ⁻² /-2.0	1.8/-0.2/-12.5	2.1/0.1/5.2
-5	CONUS	0.1	-	-	0.5/0.4/359.9	0.5/0.4/373.1	$0.1/-1.5 \times 10^{-2}/-14.5$	0.1/-1.8×10 ⁻² /-17.5	0.1/-1.5×10 ⁻² /-12.1	$0.1/\text{-}2.8{\times}10^{-3}/\text{-}2.8$
5	Europe	0.7		-	1.4/0.7/102.8	1.3/0.6/89.9	$0.7/2.1 \times 10^{-3}/0.3$	$0.7/1.4 \times 10^{-2}/2.0$	0.6/-0.1/-14.5	$-4.7 \times 10^{-2}/-6.7$
BC	CONUS	0.6	0.3/-0.3/-54.6	0.3/-0.3/-55.8	0.3/-0.3/-54.7	0.3/-0.3/-54.6	0.3/-0.3/-53.8	0.3/-0.3/-54.3	0.3/-0.3/-54.9	0.4/-0.2/-29.4
0C	CONUS	1.1	0.8/-0.3/-22.7	1.0/-0.1/-12.1	1.0/-0.1/-11.4	1.0/-0.1/-11.9	1.0/-0.1/-8.6	1.0/-0.1/-9.1	1.0/-0.1/-11.3	$1.0/5.6 \times 10^{-3}/0.5$
TC	CONUS	2.5	1.3/-1.2/-47.9	1.4/-1.1/-43.1	1.4/-1.1/-42.2	1.4/-1.1/-42.5	1.4/-1.0/-40.9	1.5/-1.0/-41.1	1.4/-1.1/-42.5	1.6/-0.9/-35.0
PM _{2.5}	CONUS	7.9	4.9/-3.0/-37.6	5.0/-2.9/-36.8	9.5/1.6/20.1	6.6/1.3/16.7	7.8/-0.1/-1.7	6.9/-1.0/-13.2	7.2/-0.7/-8.8	6.8/-1.1/-13.5
	Europe	14.5	8.4/-6.1/-41.8	7.9/-6.6/-45.3	13.7/-0.8/-5.5	14.4/-0.1/-0.9	11.0/-3.5/-24.4	11.9/-2.6/-17.7	10.9/-3.6/-24.9	10.6/-3.9/-27.2
PM_{10}	Europe	25.7	17.5/-8.2/-31.8	16.5/-9.2/-35.8	22.5/-3.2/-12.3	23.0/-2.7/-10.5	20.1/-4.8/-18.5	21.4/-4.3/-16.6	20.7/-5.0/-19.4	20.9/-4.8/-18.8
	East Asia	118.5	38.5/-80.0/-67.5	44.9/-73.6/-62.1	55.9/-62.6/-52.8	58.8/-57.7/-48.7	48.5/-70.0/-59.1	65.5/-53.0/-44.7	55.6/-62.9/-53.1	48.2/-70.3/-59.3
Col.CO	Globe	1.3×10^{18}	I	1.2×10 ¹⁸ / 7 4×10 ¹⁶ / 5 7	1.2×10 ¹⁸ / 5 7×10 ¹⁶ / 4 4	1.2×10 ¹⁸ / 6.3×10 ¹⁶ / 4.8	1.2×10 ¹⁸ / 6 4×10 ¹⁶ / 4 0	1.2×10 ¹⁸ / 6 2×10 ^{16/} A 8	1.2×10 ¹⁸ / 5 6×10 ¹⁶ / 4 2	1.3×10 ¹⁸ / 2 2×10 ^{16/1} 8
			:	/.C-/ UI>+./-	+:+-/ 01>/.C-	0. 4 -/ U1×C.0-	-0.4~10 /-4.9	0.4-/ 01^C.0-	C.4-/ UI×U.C-	0.1/ 01^2.2
Col.NO ₂	Globe	4.7×10^{14}	I	6.7×10^{14}	$6.2 \times 10^{14}/$	6.2×10^{14}	6.5×10^{14}	6.5×10^{14}	6.5×10^{14}	$6.5 \times 10^{14}/$
				$1.9 \times 10^{14}/40.5$	$1.4 \times 10^{14}/30.4$	$1.4 \times 10^{14}/30.0$	$1.8 \times 10^{14}/37.5$	$1.8 \times 10^{14}/37.2$	1.8×10 ¹⁴ /37.9	$1.8 \times 10^{14}/37.3$
TOR	Globe	30.3	29.8/-0.5/1.6	29.2/-1.1/-3.7	27.6/-2.7/-9.0	27.4/-2.9/-9.6	28.8/-1.5/-4.9	28.7/-1.6/-5.2	28.6/-1.5/-5.0	28.6-1.5/-4.9
J	Globe	0.6	0.003/-0.6/-99.6	0.1/-0.5/-99.5	0.5/-0.1/-12.8	0.3/-0.3/-49.6	0.8/0.2/36.1	0.3/-0.3/-53.1	0.3/-0.3/-51.7	0.3/-0.3/-62.0
^a The units are ($\frac{1}{2}$	CO, ppb (over E	Europe) and pr	om (over East Asia)	SO ₂ , ppb (over East A	sia) and µg m ⁻³ (over (CONUS and Europe);	O ₃ , ppb (over CONUS	5) and μg m ⁻³ (over Ei	rrope); column CO a	nd NO ₂ , molecules
cm ^{-*} ; TUR, DL	J; J, cm ^{-z} s ⁻ . All	other concent	rations are in μg m ^z	. The values of model	ed results (Sim), MBS.	, and NMBs are expre	ssed as Sim/MB/NMB	~		
					40					

Table 3 Mean Bias (MB) and Normalized Mean Bias (NMB in %) of Chemical Predictions for the 2001 Simulations

	5	2)	5 0	I	
	Network		Obs (µg m ⁻³)	Sim (µg m ⁻³)	MB/NMB
				75.2	37.5/99.6 ^a
	Airbase	NO ₂	26.0	7.6	-18.4/-70.9
	DDOA	O ₃	31.0	74.2	43.2/139.2
Winter	BDQA	NO ₂	30.6	5.6	-25.0/-81.9
winter		O ₃	50.7	75.7	25.0/49.3
	EMEP	NO ₂	9.0	8.3	-0.7/-7.8
		HNO ₃	0.5	0.5	-4.9×10 ⁻³ /1.0
	Airthaga	O ₃	63.1	100.8	37.7/59.7
	Alfoase	NO ₂	20.0	4.6	-15.4/-77.1
	DDO A	O ₃	59.6	98.9	39.3/65.9
Spring	BDQA	NO ₂	23.6	3.1	-20.5/-87.0
		O ₃	75.0	101.9	26.9/35.9
	EMEP	NO ₂	5.9	4.9	-1.0/-17.2
		HNO ₃	0.4	0.9	0.5/144.5
	Airhaga	O ₃	64.9	93.5	28.6/44.0
	Allbase	NO ₂	16.2	4.4	-11.8/-72.8
	PDOA	O ₃	64.5	94.5	30.0/46.5
Summer	BDQA	NO ₂	18.7	3.6	-15.1/-80.9
		O ₃	72.2	91.2	19.0/26.3
	EMEP	NO ₂	4.7	4.4	-0.3/-6.2
		HNO ₃	0.5	1.3	0.8/169.6
	Airbase	O ₃	40.5	79.5	39.0/96.4
	Allbase	NO ₂	21.7	5.3	-16.4/-75.6
	BDOV	O ₃	35.7	80.9	45.2/126.5
Autumn	АУЧИ	NO ₂	24.8	3.7	-21.1/-85.2
		O ₃	51.7	78.2	26.5/51.2
	EMEP	NO ₂	6.6	5.2	-1.4/-21.1
		HNO ₃	0.6	0.9	0.3/45.0

Table 4. The observed values and the mean bias (MB) and normalized mean bias (NMB, in %) of predictions of O₃ NO₂, and HNO₃ mixing ratios over Europe in MAM_NEWA

^aThe values of MBs and NMBs are expressed as MB/NMB.

T Snecies/Variables	able 5. Statistical Dataset	Performanc	e of Radiative/Cloud Prediction:	is (Average of the 5-yr (2001-2) Simulations	005) Simulations)
			MAM_SIM_5Y	MAM_NEW_SYA	MAM_NEW_5YB
LWD (W $m^{-2})^a$	CERES	307.6	302.9/-4.7/-1.5/2.9/11.6°	303.9/-3.6/-1.1/2.8/11.3	304.4/-3.1/-1.0/2.9/11.3
$SWD (W m^{-2})^b$	CERES	163.9	169.9/5.9/3.6/7.0/14.1	166.5/2.5/1.5/6.5/13.8	167.0/3.1/1.9/6.7/13.7
OLR (W m ⁻²)	NOAA-CDC	215.9	222.5/6.6/3.1/3.5/8.9	220.7/4.8/2.2/3.4/9.1	221.4/5.5/2.6/3.5/9.0
SWCF (W m ⁻²)	CERES	-41.0	-38.8/2.2/-5.4/-21.5/12.0	-41.5/-0.5/1.2/-21.4/12.5	-40.8/0.2/-0.5/-22.2/12.4
CF (%)	MODIS	67.1	66.6/-0.6/-0.8/15.2/13.3	67.3/0.2/0.3/14.7/13.0	66.6/-0.6/-0.9/15.5/13.7
COT	MODIS	17.3	7.1/-10.3/-59.3/70.2/15.1	7.9/-9.4/-54.5/65.7/14.6	7.8/-9.6/-55.2/65.6/14.5
$CWP (g m^{-2})$	MODIS	86.0	38.2/-47.8/-55.5/55.7/52.9	43.2/-42.8/-49.8/50.0/49.2	43.4/-42.6/-49.5/49.7/49.2
PWV (cm)	MODIS	1.93	1.96/0.03/1.5/11.6/0.3	1.99/0.06/2.9/10.9/0.3	1.97/0.04/1.8/13.8/0.3
AOD	MODIS	0.2	0.1/-0.07/-44.1/54.5/0.1	0.1/-0.06/-39.2/51.3/0.1	0.1/-0.06/-36.3/49.5/0.1
Column CCN5 (ocean) (cm ⁻²)	SIGOM	2.5×10 ⁸	5.3×10 ⁷ /-1.9×10 ⁸ / -78.6/78.6/5.7×10 ⁸	$8.6 \times 10^7/1.6 \times 10^8/$ -65.2/65.2/5.5×10 ⁸	8.6×10 ⁷ /1.6×10 ⁸ / -65.3/65.3/5.5×10 ⁸
$CDNC (cm^{-3})$	BE07	112.6	44.2/-68.3/-60.7/61.6/84.3	69.2/-43.4/-38.6/44.2/66.8	68.8/-43.8/-38.9/45.5/67.9
^a The pair of observation (http://www.pangaea.de) ^b The pair of observation :	and simulation is re and simulation is re	smoved in the moved in the	statistical calculation if the observestatistical calculation if the observe	ved LWD value is lower than 50 W i ed SWD value is lower than -10 or	n ⁻² or higher than 700 W m ⁻² nigher than 3000 W m ⁻²
(http://www.pangaea.de) °The values are expressed error (%6); RMSE: root m	l as Sim/MB/NMB, ean squared error.	NME/RMSE	. Sim: simulated values; MB: mean	n bias; NMB: normalized mean bias	(%); NME: normalized mean

Species/				Simulations	
variables ^a	Domain	Obs.	MAM_SIM_5Y	MAM_NEW_5YA	MAM_NEW_5YB
СО	East Asia	562.0	-	139.7/-422.3/-75.1/75.1/451.8 ^b	137.0/-425.0/-75.6/75.6/454.0
	CONUS	3.4	9.6/6.2/183.9/184.6/9.9	10.1/6.7/198.8/199.1/10.6	10.3/6.9/203.1/203.5/10.9
SO ₂	Europe	6.6	6.0/-0.6/-9.3/73.3/7.9	6.6/-0.06/-0.9/77.2/8.3	6.2/-0.4/-5.5/74.6/8.0
	East Asia	3.4	3.4/0.04/1.1/76.0/5.0	3.4/0.01/0.4/76.2/5.0	3.4/-0.05/-1.6/73.1/4.8
NH ₃	Europe	6.3	3.0/-3.3/-52.0/81.0/25.3	2.4/-3.9/-61.3/79.7/25.3	2.4/-3.9/-62.0/79.3/25.3
NO	Europe	23.5	-	5.8/-17.7/-75.4/76.5/21.5	5.5/-18.0/-76.7/77.7/21.7
NO ₂	East Asia	13.5	-	2.3/-11.2/-83.3/83.3/12.2	2.3/-11.2/-83.6/83.6/12.2
	CONUS	35.1	-	43.9/8.8/25.1/27.3/11.3	44.1/9.0/25.7/27.7/11.6
O ₃	Europe	52.7	-	86.6/33.9/64.5/64.6/36.4	89.2/36.5/69.3/69.4/38.8
	East Asia	27.4	-	45.6/18.2/66.4/66.4/19.2	45.5/18.1/66.0/66.0/19.1
	CONUS	1.4	-	1.6/0.2/16.3/39.5/0.7	1.6/0.2/12.1/38.2/0.7
HNO ₃	Europe	0.7	-	1.0/0.3/45.8/83.5/0.8	1.0/0.3/37.9/79.8/0.8
SO 2-	CONUS	2.6	2.3/-0.3/-13.4/26.9/1.0	2.3/-0.3/-13.1/23.0/0.8	2.3/-0.3/-12.8/24.2/0.9
504	Europe	2.3	2.3/-0.04/-1.9/37.3/1.4	2.0/-0.3/-11.1/34.1/1.3	2.0/-0.3/-13.0/35.5/1.4
NII ⁺	CONUS	1.2	0.9/-0.3/-20.8/33.4/55.0	1.5/0.3/22.2/43.2/0.8	1.5/0.3/26.4/44.3/0.8
NH ₄	Europe	1.0	0.8/-0.2/-16.8/36.9/0.5	1.6/0.6/62.8/68.7/0.9	1.5/0.5/53.8/60.3/0.8
NO -	CONUS	1.1	-	1.6/0.5/41.3/85.4/1.4	1.6/0.5/49.8/90.2/1.5
NU ₃	Europe	1.8	-	2.3/0.5/30.3/51.1/1.2	2.2/0.4/24.7/47.0/1.1
CI	CONUS	0.1	-	0.1/3.1×10 ⁻³ /2.7/105.8/0.4	0.1/8.7×10 ⁻³ /7.8/110.1/0.4
U.	Europe	0.3	-	2.4/2.1/681.2/681.2/2.9	2.3/2.0/663.3/663.6/2.8
BC	CONUS	0.4	0.3/-0.1/-17.9/44.4/0.3	0.3/-0.1/-15.6/44.0/28.2	0.3/-0.1/-17.7/44.3/0.2
OC	CONUS	1.2	0.9/-0.3/-23.2/59.3/1.0	1.1/-0.1/-7.7/56.7/1.0	1.1/-0.1/-11.0/54.3/0.9
ТС	CONUS	3.1	1.4/-1.7/-54.4/62.8/2.8	1.7/-1.4/-45.7/57.1/2.6	1.6/-1.5/-47.1/57.1/2.7
PM _{2.5}	CONUS	8.8	7.2/-1.6/-17.9/37.0/4.3	9.2/0.4/4.1/33.5/3.9	8.7/-0.1/-1.1/29.4/3.6
	Europe	14.6	6.7/-7.9/-53.9/54.6/10.6	9.7/-4.9/-33.8/37.6/8.6	10.0/-4.6/-31.7/36.1/8.4
PM ₁₀	Europe	26.3	15.1/-11.2/-42.6/46.8/15.9	18.7/-7.6/-28.8/36.1/13.9	19.9/-6.4/-24.4/33.5/13.1
	East Asia	107.9	45.4/-62.5/-58.0/59.3/70.7	52.5/-57.4/-53.2/54.2/66.0	57.8/-50.1/-46.5/50.0/61.6
Col.CO	Globe	1.4×10^{18}	_	1.3×10^{18} /- 1.4×10^{17} /	1.2×10^{18} /- 1.5×10^{17} /
	01000	1.4/10	_	-10.2/16.5/3.1×10 ¹⁷	-11.0/17.2/3.2×10 ¹⁷
Col.NO ₂	Globe	5.3×10 ¹⁴	-	8.4×10 ¹⁴ /3.1×10 ¹⁴ /	8.3×10 ¹⁴ /3.0×10 ¹⁴ /
				59.2/70.0/5.4×10 ¹⁴	57.6/69.2/5.4×10 ¹⁴
TOR	Globe	30.4	29.9/-0.5/1.6/16.3/6.1	30.5/0.1/0.4/15.0/5.8	29.9/-0.5/-1.7/16.4/6.1

Table 6. Statistical Performance of Chemical Predictions (Average of from the 5-yr (2001-2005) Simulations)

^aThe units are CO, ppm (over East Asia); SO₂, ppb (over East Asia) and µg m⁻³ (over CONUS); O₃, ppb (over CONUS) and µg m⁻³ (over Europe); column CO and NO₂, molecules cm⁻²; TOR, DU. All other concentrations are in µg m⁻³. ^bThe values are expressed as Sim/MB/NME/RMSE. MB: mean bias; NMB: normalized mean bias (%); NME: normalized

mean error (%); RMSE: root mean square error.

	5111	luiations	
	MAM_SIM_5Y	MAM_NEW_5YA	Previous studies
Tropospheric CO (Tg) ^a	N.A. ^c	322.06	337-354 ^d
Tropospheric O ₃ (DU) ^a	29.7 °	30.5	34.04 ^e
Tropospheric O ₃ (Tg) ^a	324.14 °	332.87	372 ^e
DMS (Tg S)	0.051	0.058	$0.067^{\rm f}$
SO ₂ (Tg S)	0.276	0.281	0.34 ^f
H_2SO_4 (Tg S)	3.8×10 ⁻⁴	1.9×10 ⁻³	4.2×10 ^{-4 f}
Tropognhoria NO ^{a, b}	N A C	0.116 Tg N	7.6×10^{14}
Tropospileric NO _x	IN.A.	$(8.24 \times 10^{14} \text{ molecules cm}^{-2})$	molecules cm ^{-2 g}
NOy (Tg N) ^b	N.A. ^c	3.26	N.A. ^c
NH3 (Tg N)	0.074	0.059	0.064 ^f
VOCs (Tg C) ^b	N.A. ^c	7.63	N.A. ^c
Tropospheric HCHO (Tg C) ^a	N.A. ^c	0.391	0.335-0.349 ^d
SO_4^{2-} (Tg S)	0.36	0.39	0.84 ^e ,0.47 ^f ,0.66 ^h
$NO_3^{-}(Tg N)$	N.A. ^c	0.11	0.01-0.14 i
NH_4^+ (Tg N)	0.20	0.21	0.24 ^f , (0.27-0.44) ⁱ
$Na^{+}(Tg)$	2.93	3.04	2.98 ^e , (0.38-5.19) ⁱ
Cl ⁻ (Tg)	4.52	4.47	4.60^{e} , $(0.59-8.02)^{i}$
BC (Tg)	0.091	0.076	0.28 ^e , 0.093 ^f
OC (Tg)	0.45	0.61	1.28 ^e
POM (Tg)	0.63	0.48	0.68 ^f , 1.70 ^h
SOA (Tg)	N.A. ^c	0.38	1.15 ^f , 0.59 ^j
Dust (Tg)	25 78	26 43	$24.7^{\rm f}$ (7.9-35.9) ⁱ

Table 7. Global Burdens of Major Gaseous and Aerosol Species from the 5-yr (2001-2005) Simulations

^a CESM/CAM5 simulations use 30 model layers, with atmospheric pressures from ~1000 mb (layer 30) to ~3 mb (layer 1). Troposphere refers to model layers below tropopause height.

^b $NO_x = NO + NO_2$; $NO_y = NO_x$ + nitrogen trioxide (NO_3) + dinitrogen pentoxide (N_2O_5) + nitrous acid (HONO) + nitric acid (HNO_3) + pernitric acid (HNO_4) + peroxyacyl nitrate (PAN) + $\geq C_3$ peroxyacyl nitrate (PANX) + other organic nitrate (NTR); VOCs-volatile organic compounds including acetaldehyde (ALD2), carboxylic acid(AACD), long-chain alkanes (ALKH), Cresol and higher phenols (CRES), ethene (ETH), ethane (ETHA), ethanol (ETOH), formaldehyde (FORM), internal olefinic carbon bond (IOLE), methanol (MEOH), olefinic carbon bond (OLE), paraffin carbon bond (PAR), polycyclic aromatic hydrocarbons (PAH), toluene (TOL), xylene (XYL), isoprene (ISOP), and terpene (TERP).

 $^{\circ}$ N.A – not available, it refers to the species that are not treated in MAM_SIM_5Y or species having no burden data from previous studies. Tropospheric O₃ burden in MAM_SIM_5Y is from climatology. N.A. in SOA is due to no SOAG emission for MAM_SIM_5Y.

^d Williams et al. (2009)

^e Horowitz et al. (2006)

^f Liu et al. (2012)

^g Lamarque et al. (2006)

^h Textor et al. (2006)

ⁱ Tsigaridis et al. (2006)

^j Heald et al. (2008)

Figure captions

Figure 1a. Absolute differences of H_2O_2 , SO_2 , SO_4^{2-} , and SOA between MAM_CB05_GE and MAM_SIM for 2001.

Figure 1b. Absolute differences between the mixing ratios of surface OH, HO₂, NO₃, and O₃ predicted from MAM_CB05_GE and climatology values used in MAM_SIM for 2001.

Figure 2. Spatial distributions of CO, O₃, NO₂, HNO₃, HCl, and isoprene (ISOP) at surface simulated by MAM CB05 GE for 2001.

Figure 3. Spatial distributions of total ammonium, total sulfate, total nitrate, total chloride, PM_{2.5}, NH₃, SO₂, H₂SO₄, HNO₃, and HCl at surface between MAM_CON and MAM_CB05_GE for summer (June, July, and August (JJA)), 2001.

Figure 4. Vertical distributions of new particle formation rate (J) (row 1) and aerosol number (PM_{num}) (row 3) simulated by MAM_CON/IMN for 2001. The overlay plots in row 2 show the distributions of simulated and observed J in bottom 1000-m in the atmosphere. Circles on overlay plots represent observations for J. Different colors of circles represent different values of J, using the same color scale as simulated J.

Figure 5. Absolute differences of PM_{2.5}, AOD, column CCN5, CF, COT, and SWCF between MAM_CON/IMN and MAM_CON for 2001.

Figure 6. Absolute differences of major PM species and their gas precursors between MAM_CON/ISO and MAM_CON for summer, 2001.

Figure 7. Absolute differences of major aerosol species and their gas precursors, new particle formation rate (J), and aerosol number between MAM_NEW_5YA and MAM_SIM_5Y for 2001-2005.

Figure 8. Absolute differences of major cloud and radiative variables between MAM_NEW_5YA and MAM_SIM_5Y for 2001-2005.

Figure 1a. Absolute differences of H₂O₂, SO₂, SO₄²⁻, and SOA between MAM_CB05_GE and MAM_SIM for 2001.

Figure 2. Surface distribution of CO, O₃, NO₂, HNO₃, HCl, and isoprene (ISOP) in MAM_CB05_GE for 2001.

Figure 3. Surface distribution of total ammonium, total sulfate, total nitrate, total chloride, PM_{2.5}, NH₃, SO₂, H₂SO₄, HNO₃, and HCl between MAM_CON and MAM_CB05_GE for summer (June, July, and August (JJA)), 2001.

Figure 4. Vertical distribution of new particle formation rate (J) and aerosol number (PM_{num}) simulated by MAM_CON/IMN for 2001. The overlay plots show the distribution of J in bottom 1000-m. Circles on overlay plots represent observations for J. Different colors of circles represent different values of J, using the same color scale as simulated J.

Figure 5. Absolute differences of PM_{2.5}, AOD, column CCN5, CF, COT, and SWCF between MAM_CON/IMN and MAM_CON for 2001.

Figure 6. Absolute differences of major PM species and their gas precursors between MAM_CON/ISO and MAM_CON for summer, 2001.

