Aqueous-phase photochemical oxidation and direct photolysis of vanillin-a model compound of methoxy-phenols from biomass burning

Y.J. Li ${ }^{1}$, D.D. Huang ${ }^{1}$, H.Y. Cheung ${ }^{1}$, A.K.Y. Lee ${ }^{2}$ and C.K. Chan ${ }^{1,3}$
${ }^{1}$ Division of Environment, Hong Kong University of Science and Technology, Hong Kong, China
${ }^{2}$ Department of Chemistry, University of Toronto, Toronto, Canada
${ }^{3}$ Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Hong Kong, China
Manuscript submitted to Atmospheric Chemistry and Physics, 10 ${ }^{\text {th }}$, Oct., 2013.
Correspondence to: C.K. Chan (keckchan@ust.hk)

HR-ToF-AMS
CCNc: cloud condensation nuclei counter
SMPS: scanning mobility particle sizer
HR-ToF-AMS: high-resolution time-of-flight aerosol mass spectrometer
HTDMA: hygroscopic tandem differential mobility analyzer
Figure S 1 . Experimental setup for the aqueous-phase reactions.

3 Figure S2. Concentrations of species and ratios of organics to sulfate during control experiments C_1 to C_4 4 (Table 1).

2 Figure S3. Species concentrations and organics to sulfate ratios in experiments A_1 to A_3, and B_1 to B_3.
3 The experimental conditions are specified in each box indicating the experiment number.

3. AMS analysis

3.1 Modification of the fragmentation table

In the default fragmentation table (Allan et al., 2004; Aiken et al., 2007), the signals of ions $\mathrm{H}_{2} \mathrm{O}^{+}$and CO^{+}are related to that of $\mathrm{CO}_{2}{ }^{+}$with coefficients of 0.225 and 1.0 , respectively. These coefficients work well for ambient data, but were found to be somewhat different in laboratory studies (Sun et al., 2010; Chen et al., 2011; Li et al., 2011). Several approaches can be used to obtain more representative coefficients for these ions (Li et al., 2011). Briefly, one can use the particle time-of-flight (pToF) data to exclude signal contribution from gaseous $\mathrm{H}_{2} \mathrm{O}$ and CO (Zhang et al., 2005), and use high-resolution data from W mode to exclude interfering ions such as those from $\mathrm{NH}_{4}{ }^{+}$(Li et al., 2011). For our experiments in which a dryer was used (little contribution from gaseous water) and no excess CO would be generated (as in burning experiments), the pToF correction was not necessary. But the correlations of high-resolution data would be helpful in determining the coefficients. Shown below in Figure S4 are those correlations in different runs of experiments. For $\mathrm{H}_{2} \mathrm{O}^{+}$vs. $\mathrm{CO}_{2}{ }^{+}$, slopes close to unity were determined. But it is believed that approximately half of these $\mathrm{H}_{2} \mathrm{O}^{+}$signals come from strongly bond particulate water, leaving the other half from organics (Chen et al., 2011). Therefore, a factor of 0.5 was applied to these slopes to obtain final coefficients between $\mathrm{H}_{2} \mathrm{O}^{+}$and $\mathrm{CO}_{2}{ }^{+}$. For CO^{+}vs. $\mathrm{CO}_{2}{ }^{+}$, the slopes were directly used as the coefficients. Table S 1 summarizes those coefficients for different runs, with the default values also given for reference.

Figure S4. Relationships of ion signal intensities (kHz) of $\mathrm{H}_{2} \mathrm{O}^{+}$vs. $\mathrm{CO}_{2}{ }^{+}$and CO^{+}vs. $\mathrm{CO}_{2}{ }^{+}$from high-resolution mass spectra obtained in W mode.

Experiment	Default	A_1-A_3	A_4-A_6	A_7-A_8	B_1-B_3	B_4-B_6
Org18/Org44 or $\mathrm{HROrgH}_{2} \mathrm{O}^{+} / \mathrm{HROrgCO}_{2}{ }^{+}$	0.225	0.44	0.57	0.44	0.69	0.72
$\begin{aligned} & \text { Org28/Org44 or } \\ & \mathrm{HROrgCO}^{+} / \mathrm{HROrgCO}_{2}^{+} \end{aligned}$	1.00	0.96	0.92	0.82	1.14	1.23

3.2 Background subtraction

Trace amounts of impurities in water can contribute to organic mass spectra. Although their mass is generally less than 5%, their contribution to specific organic ions in the mass spectra could interfere with real signals from reaction products. For example, the peak at 137 as a tracer of the ring-retaining structure in Figure 2 needs to be scrutinized to make sure it is not from the background. Thus, for mass spectra obtained and shown in Figure 2, background subtraction was performed. Assuming the impurities also evolved during the photochemical oxidation and direct photolysis as did the target reactant, time-specific background subtraction was performed. For example, the mass spectrum obtained at 40 minutes in condition (A) was obtained by subtracting the mass spectrum in experiment A_2 at 40 minutes from a mass spectrum in condition (A) and that in experiment C_1 at 40 minutes from a mass spectrum in condition (A), and so on.

4. Estimation of the $\mathbf{O H}$ radical concentration

During the photochemical oxidation experiments, OH radical was generated by photolysis of $\mathrm{H}_{2} \mathrm{O}_{2}$. To determine the $\mathrm{H}_{2} \mathrm{O}_{2}$ decay rate during photolysis, the $\mathrm{H}_{2} \mathrm{O}_{2}$ concentration was measured by a colorimetric method (Allen et al., 1952). A calibration curve is shown in Figure S5.

The $\mathrm{H}_{2} \mathrm{O}_{2}$ decay rate was determined in "neutral" (ammonium sulfate, 0.1 mM) or acidic (ammonium bisulfate, 0.1 mM) conditions. The decay rate was relatively independent of pH , as suggested by Tan et al. (Tan et al., 2009). From these decay experiments, a decay rate $\left(\mathrm{k}_{\mathrm{obs}}\right)$ of $1.9 \times 10^{-4} \mathrm{~s}^{-1}$ was determined (Figure S6, green dotted curve), which is comparable to that in a previous study (see Table $S 2$) that used the same brand and model of UV lamp (An et al., 2001). However, if this decay rate is taken as the photolysis rate constant (k_{1}, Table S 2), the modeled $\mathrm{H}_{2} \mathrm{O}_{2}$ decay (see below) after taking into account reactions with other reactive oxygen species (such as $\mathrm{OH}, \mathrm{HO}_{2}$ radicals etc., reactions 2-7 in Table S 2) would not match the experimental decay of $\mathrm{H}_{2} \mathrm{O}_{2}$ (see Figure S 6 , red curve). After a few iterations, it was determined that a photolysis rate constant $\left(\mathrm{k}_{1}\right)$ of $1.0 \times 10^{-4} \mathrm{~s}^{-1}$ should be used instead (Figure S6, blue curve).

Rate constants (k_{2} to k_{6}) for reactions of other reactive oxygen species are adopted from the literature as shown in Table S 2 . The rate constant $\left(\mathrm{k}_{7}\right)$ of the oxidation reaction of organics (Org) by OH radicals is assumed to be $1 \times 10^{8} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ (Lee et al., 2012). Reaction rate expressions were thus set up for these reactions. The concentrations of the species $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{HO}_{2}, \mathrm{OH}$, and Org were then solved with the help of the POLYMATH (Willimantic, CT) ordinary differential equation (ODE) solver via two approaches: (1) assuming a pseudo-steady-state for OH radicals, and (2) solving stiff ODEs without a constraint on OH radicals.

For approach (1), the expression for OH concentration is shown in Eq. S 1 and set to 0 .
$\frac{\mathrm{d}[\mathrm{OH}]}{\mathrm{dt}}=2 \times k 1\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]-k 2[\mathrm{OH}]\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]+k 3\left[\mathrm{HO}_{2}\right]\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]-k 5[\mathrm{OH}]\left[\mathrm{HO}_{2}\right]-2 \times k 6[\mathrm{OH}][\mathrm{OH}]-k 7[\mathrm{Org}][\mathrm{OH}]=0$
Thus
$2 \times k 6[\mathrm{OH}]^{2}+\left(k 2\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]+k 5\left[\mathrm{HO}_{2}\right]+k 7[\mathrm{Org}]\right) \times[\mathrm{OH}]-\left(2 \times k 1\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]+k 3\left[\mathrm{HO}_{2}\right]\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]\right)=0$
Eq. S2

Solving this quadratic equation:
$[\mathrm{OH}]=\frac{-\left(k 2\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]+k 5\left[\mathrm{HO}_{2}\right]+\mathrm{k7}[\mathrm{Org}]\right) \pm \sqrt{\left(\mathrm{k2}\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]+k 5\left[\mathrm{HO} \mathrm{O}_{2}\right]+\mathrm{k7}[\mathrm{Org}]\right)^{2}+4 \times 2 \times k 6 \times\left(2 \times k 1\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]+k 3\left[\mathrm{HO}_{2}\right]\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]\right)}}{2 \times 2 \times k 6}$
Eq. S3

The expressions of other species $\left(\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{HO}_{2}\right.$, and Org$)$ are shown as below.
$\frac{\mathrm{d}\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]}{\mathrm{dt}}=-k 1\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]-k 2[\mathrm{OH}]\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]-k 3\left[\mathrm{HO}_{2}\right]\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]+k 4\left[\mathrm{HO}_{2}\right]\left[\mathrm{HO}_{2}\right]+k 6[\mathrm{OH}][\mathrm{OH}]$
$\frac{\mathrm{d}\left[\mathrm{HO}_{2}\right]}{\mathrm{dt}}=k 2[\mathrm{OH}]\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]-k 3\left[\mathrm{HO}_{2}\right]\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]-2 \times k 4\left[\mathrm{HO}_{2}\right]\left[\mathrm{HO}_{2}\right]-k 5[\mathrm{OH}]\left[\mathrm{HO}_{2}\right]$
Eq. S5
$\frac{\mathrm{d}[\mathrm{Org}]}{\mathrm{dt}}=-k 7[\mathrm{Org}][\mathrm{OH}]$
Replacing all the $[\mathrm{OH}]$ in Eq. $\mathrm{S} 4-\mathrm{Eq} . \mathrm{S} 6$ with the positive solution of the quadratic equation for the pseudo-steady-state assumption for OH radicals (Eq. S3), the concentrations of $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{HO}_{2}$, and Org as a function of time were obtained by solving the ODEs (Eq. S4-Eq. S6). The OH concentration was then
back-calculated from Eq. S3. Initial concentrations of 10^{-3} to $10^{-6} \mathrm{M}$ were tested for Org , and the OH concentration ranged from $6.5-7.8 \times 10^{-12} \mathrm{M}$. An OH radical concentration of $7.2 \times 10^{-12} \mathrm{M}$ was then chosen, with the Org concentration of $10^{-4} \mathrm{M}$ (as the initial concentration of VL added).

For approach (2), Eq. S1 and Eq. S4 - Eq. S6 were included in the calculation without any constraint on OH radicals. The set of ODEs was stiff and thus an option of stiff ODE calculation was used in POLYMATH was used to solve the species concentrations of $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{HO}_{2}$, Org , as well as OH , as a function of time. OH concentration was estimated to be $7.0 \times 10^{-12} \mathrm{M}$, showing little difference from that obtained by approach (1).

Figure S 7 shows the OH concentrations estimated by approach (1) with a pseudo-steady-state assumption for OH radicals and approach (2) without any constraint on OH radicals. Two k_{1} values were used for approach (1): the one determined from the $\mathrm{H}_{2} \mathrm{O}_{2}$ decay experiment $\left(\mathrm{k}_{1}=\mathrm{k}_{\text {obs }}=1.9 \times 10^{-4} \mathrm{~s}^{-1}\right.$, red curve in Figure S7), and (b) the one determined from the model ($\mathrm{k}_{1}=1.0 \times 10^{-4} \mathrm{~s}^{-1}$, blue curve in Figure S7) by taking into account other reactions (reactions 2-6 in Table S2). A k_{1} value of $1.0 \times 10^{-4} \mathrm{~s}^{-1}$ was used for approach (2) (green curve in Figure S7). With a k_{1} value of $1.0 \times 10^{-4} \mathrm{~s}^{-1}$, the two approaches resulted in very similar and quite steady OH concentrations, while using the $\mathrm{H}_{2} \mathrm{O}_{2}$ decay constant as the photolysis constant leads to a factor of two overestimation of the OH radical concentration. An OH concentration of 7.0×10^{-12} M , which is one order of magnitude higher than that in cloud water, but close to that in wet aerosol particles (Ervens et al., 2013), was thus used.

By using the OH concentration of $7.0 \times 10^{-12} \mathrm{M}$, the bimolecular reaction rate constant between VL and OH was determined to be $3.9 \times 10^{8} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ by simply dividing the decay rate of VL in condition (A) ($2.7 \times$ $10^{-3} \mathrm{~s}^{-1}$, see Figure 4) by the steady-state OH concentration $\left(7.0 \times 10^{-12} \mathrm{M}\right)$. Alternatively, the same model with all the reactions in Table S 2 was also run by varying k_{7} (as the k_{OH} of organics, VL in this case), as in Figure S8. Regardless of which approach was used (OH concentration constrained or not), the modeled VL decay matched the measured one when k_{7} was set to $4 \times 10^{8} \mathrm{M}^{-1} \mathrm{~s}^{-1}$. Therefore, the bimolecular reaction rate constant of VL and OH reaction (k_{OH}) was determined to be $\sim 4 \times 10^{8} \mathrm{M}^{-1} \mathrm{~s}^{-1}$.

1 Table S 2 . Reactions and rate constants for aqueous-phase reactions involving reactive oxygen species $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right.$, $\mathrm{HO}_{2}, \mathrm{OH}$, etc.) as well as organics.

Reaction	Rate constant	References
$1 \mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{h} \nu \rightarrow 2 \mathrm{OH}$	$\mathrm{k}_{1}=1.1 \times 10^{-4} \mathrm{~s}^{-1}$	Tan et al. 2009 (Heraeus Noblelight Hg lamp, 254 nm)
	$\mathrm{k}_{1}=1.6 \times 10^{-4} \mathrm{~s}^{-1}$	Perri et al. 2009 (Strahler Hg lamp, 254 nm)
	$\begin{aligned} & k_{\text {obs }}=1.9 \times 10^{-4} \mathrm{~s}^{-1} \\ & k_{1}=1.0 \times 10^{-4} \mathrm{~s}^{-1} \end{aligned}$	This study (UVP Pen-Ray lamp, 254 nm)
	$\mathrm{k}_{\text {obs }}=2.0 \times 10^{-4} \mathrm{~s}^{-1}$	An et al. 2001 (UVP Pen-Ray lamp, 254 nm)
$2 \mathrm{OH}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{HO}_{2}+\mathrm{H}_{2} \mathrm{O}$	$\mathrm{k}_{2}=2.7 \times 10^{\mathbf{7}} \mathrm{M}^{-1} \mathrm{~s}^{-1}$	Sander and Crutzen, 1996; Warneck, 1999; Perri et al. 2009
$3 \mathrm{HO}_{2}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{OH}+\mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$	$\mathrm{k}_{3}=3.7 \mathrm{M}^{-1} \mathrm{~s}^{-1}$	Tan et al. 2009; Lee et al. 2012
$4 \mathrm{HO}_{2}+\mathrm{HO}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{O}_{2}$	$\mathrm{k}_{4}=9.7 \times 10^{5} \mathrm{M}^{-1} \mathrm{~s}^{-1}$	Sander and Crutzen, 1996; Warneck, 1999; Perri et al. 2009
$5 \mathrm{OH}+\mathrm{HO}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$	$\mathrm{k}_{5}=7.1 \times 10^{9} \mathrm{M}^{-1} \mathrm{~s}^{-1}$	Sander and Crutzen, 1996; Warneck, 1999; Perri et al. 2009
$6 \mathrm{OH}+\mathrm{OH} \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}$	$\mathrm{k}_{6}=5.5 \times 10^{9} \mathrm{M}^{-1} \mathrm{~s}^{-1}$	Sander and Crutzen, 1996; Warneck, 1999; Perri et al. 2009
$7 \mathrm{Org}+\mathrm{OH} \rightarrow$ oxyOrg	$\mathrm{k}_{7}=1 \times 10^{8} \mathrm{M}^{-1} \mathrm{~s}^{-1}$	Lee et al. 2012

Figure S5. A typical calibration curve for $\mathrm{H}_{2} \mathrm{O}_{2}$.

Figure $\mathrm{S} 6 . \mathrm{H}_{2} \mathrm{O}_{2}$ decay experiments under "neutral" (blue circles) and acidic (red squares) conditions. The green dotted curve is the fitted (exponential decay) curve for data points under both "neutral" and acidic conditions, resulting in a decay rate of $\mathrm{k}_{\text {obs }}=1.9 \times 10^{-4} \mathrm{~s}^{-1}$. The red solid curve is the calculated $\mathrm{H}_{2} \mathrm{O}_{2}$ decay from reactions 1-6 with $\mathrm{k}_{1}=\mathrm{k}_{\text {obs }}$. The blue solid curve is the calculated $\mathrm{H}_{2} \mathrm{O}_{2}$ decay from reactions 1-6 with $\mathrm{k}_{1}=1.0 \times 10^{-4} \mathrm{~s}^{-1}$.

2 Figure S 7 . OH concentrations estimated from two approaches and with k_{1} set to different values. Also shown 3 are typical ranges of OH concentration under ambient conditions (Warneck, 2003; Ervens et al., 2011;
4 Ervens et al., 2013).

2 Figure S8. VL decay modeled from two approaches: pseudo-steady-state for OH radicals (a), and no constraint on OH radicals (b). Different values of k_{7} in Table S 2 were tested in both approaches to see which one would give the experimentally observed VL decay (red circles).

5. Off-line analyses

5.1 Ultra-performance liquid chromatography with diode array detector (UPLC-DAD)

Aqueous samples at different time intervals from experiments A_1 to A_3, and those from B_1 to B_3 (see Table 1), as well as VL and vanillic acid (VA) aqueous solutions with known concentrations were analyzed by UPLC-DAD (Waters, Milford, MA). A Waters ACQUITY UPLC HSS C18 column ($1.8 \mu \mathrm{~g}, 2.1 \mathrm{~mm} \times 100 \mathrm{~mm}$) was used. A solvent gradient with solvent A as 0.02 $\mathrm{vol} \%$ trifluoroacetic acid (TFA) in water and solvent B as $0.02 \mathrm{vol} \%$ TFA in acetonitrile was used for the separation. The gradient was 35% B in the first 0.2 minutes, increased to 90% B in the next 2.8 minutes, stayed at 90% B for 1 minute, and then decreased to 35% B in the next 0.2 minutes. The flow rate was $0.45 \mathrm{~mL} / \mathrm{min}$. Two channels with UV absorption of 254 nm and 300 nm were used for the detection. VL was quantified with the 300 nm channel while VA was quantified with the 254 nm channel. Typical chromatograms (UV absorption at 300 nm) and calibration curves are shown in Figure S9 and Figure S10, respectively.

VA had a retention time of ~ 1.2 minutes, while VL had a retention time of ~ 1.4 minutes (Figure S9-a). Sample from condition (A) showed a strong VL peak at 10 minutes (Figure S9-b), but the peak became very small at later time intervals (Figures S9-c, and -d). There was a very small amount of VA at 10 minutes, and its peak at later time intervals became undetectable in $300-\mathrm{nm}$ chromatograms and very small in 254-nm chromatograms (the wavelength for its quantification, not shown). There were a number of peaks with retention times shorter than 1.2 minutes, probably due to the formation of other products (e.g., small carboxylic acids). Since most of them were not well separated, they were not quantified. Samples from condition (B) showed a strong VL peak at 1.4 minutes throughout the course of the 3-hour experiments, in accordance with the slow reactions of VL under condition (B). Some small peaks at 1.2 minutes (VA) and at even shorter retention times were observed. They might also be those small carboxylic acids formed at later time intervals, although their amounts would be much smaller than in condition (A). This also supports the analysis of the O:C ratio (see main text Section 3.2), which concludes that the identified high-molecular-weight products (see discussion later on UPLC-ToF-MS) cannot explain the relatively high O:C ratio (~ 1.0 at the end of the experiments, see Figure 3-B) and certain amounts of small and highly oxygenated products were also formed later in the experiments under condition (B).

2 Figure S9. Typical chromatograms from the standards (a), samples in condition (A) at different time 3 intervals (b-d), and samples in condition (B) at different time intervals (e-g).

2 Figure S10. Typical calibration curves for VL (green) and VA (red) using UPLC-DAD.
5.2 Ultra-performance liquid chromatography electrospray ionization time-of-flight mass spectrometry (UPLC-ESI-ToF-MS)
Samples from A_9 and B_7 (Table 1) were collected at different time intervals. $10 \mu \mathrm{~L}$ of 1% hydrogen peroxide catalase were added to each sample from $A _9$ to destroy unreacted $\mathrm{H}_{2} \mathrm{O}_{2}$. A Waters ACQUITY UPLC system plus a Bruker Daltonics MiroOTOF MS with an electrospray ionization (ESI) source was used for sample analysis. The UPLC column was a Waters ACQUITY UPLC HSS C18 column $(2.1 \times 100 \mathrm{~mm}, 1.8 \mu \mathrm{~m})$. Mobile phases were 0.1% acetic acid in water (A) and 0.1% acetic acid in methanol (B). The gradient was 100% A in the first 2 minutes, decreased to $10 \% \mathrm{~A}$ in 28 minutes, stayed at 10% A until 42.2 minutes, and increased back to $100 \% \mathrm{~A}$ in 45 minutes. The flow rate was $0.2 \mathrm{~mL} / \mathrm{min}$. The ESI-MicrOTOF MS was operated under negative mode with a scanning m / z range of $50-1000$.

Figure S11. Extracted ion chromatograms (EIC) for samples from condition (B).

2 Figure S12. Mass spectra of products identified by UPLC-ESI-ToF-MS.

1 Table S3. Formulas, double bond equivalency, major ions, and fragmentation routes proposed for - calculated; ${ }^{\mathrm{c}}$ possible fragmentation routes.

Name	Formula	DBE $^{\text {a }}$	Ion peak	Measured Calculated $\Delta^{\text {b }}$ (mDa)			Loss ${ }^{\text {c }}$
B168_a	$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{4}$	4	$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{4}{ }^{-}$	167.0287	167.0344	-5.7	-H
			$\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{4}{ }^{-}$	152.0056	152.0110	-5.4	$-\mathrm{H}-\mathrm{CH}_{3}$
			$\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{3}{ }^{-}$	137.0177	137.0239	-6.2	$-\mathrm{H}-\mathrm{CH}_{2} \mathrm{O}$
B168_b	$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{4}$	4	$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{4}{ }^{-}$	167.0294	167.0344	-5.0	-H
			$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{O}_{2}{ }^{-}$	123.0393	123.0446	-5.3	$-\mathrm{H}-\mathrm{CO}_{2}$
			$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}^{-}$	108.0190	108.0211	-2.1	$-\mathrm{H}-\mathrm{CH}_{3}-\mathrm{CO}_{2}$
B168_c	$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{4}$	4	$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{4}{ }^{-}$	167.0293	167.0344	-5.1	-H
			$\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{4}{ }^{-}$	152.0057	152.0110	-5.3	$-\mathrm{H}-\mathrm{CH}_{3}$
			$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{4}^{-}$	141.0096	141.0188	-9.2	$-\mathrm{H}-\mathrm{C}_{2} \mathrm{H}_{2}$
			$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{3}^{-}$	124.0066	124.0160	-9.4	$-\mathrm{H}-\mathrm{CH}_{3}-\mathrm{CO}$
B184_a	$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{5}$	4	$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{5}{ }^{-}$	183.0242	183.0293	-5.1	-H
			$\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{5}^{-}$	168.0011	168.0058	-4.7	$-\mathrm{H}-\mathrm{CH}_{3}$
			$\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{4}{ }^{-}$	153.0127	153.0188	-6.1	$-\mathrm{H}-\mathrm{CH}_{2} \mathrm{O}$
			$\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{O}_{3}{ }^{-}$	123.0042	123.0082	-4.0	$-\mathrm{H}-\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$
			$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{2}^{-}$	109.0256	109.0290	-3.4	$-\mathrm{H}-\mathrm{CH}_{2} \mathrm{O}-\mathrm{CO}_{2}$
B184_b	$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{5}$	4	$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{5}^{-}$	183.0230	183.0293	-6.3	-H
			$\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{5}^{-}$	168.0019	168.0058	-3.9	$-\mathrm{H}-\mathrm{CH}_{3}$
			$\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{4}{ }^{-}$	152.0052	152.0110	-5.8	$-\mathrm{H}-\mathrm{CH}_{3} \mathrm{O}$
			$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{4}{ }^{-}$	141.0140	141.0188	-4.8	$-\mathrm{H}-\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}$
			$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{3}^{-}$	124.0136	124.0160	-2.4	$-\mathrm{H}-\mathrm{CH}_{3} \mathrm{O}-\mathrm{CO}$
B302_a	$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{6}$	10	$\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{O}_{6}{ }^{-}$	301.0784	301.0712	7.2	-H
			$\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{O}_{6}{ }^{-}$	286.0522	286.0477	4.5	$-\mathrm{H}-\mathrm{CH}_{3}$
			$\mathrm{C}_{14} \mathrm{H}_{7} \mathrm{O}_{6}{ }^{-}$	271.0299	271.0243	5.6	$-\mathrm{H}-\mathrm{CH}_{3}-\mathrm{CH}_{3}$
B282_a	$\mathrm{C}_{15} \mathrm{H}_{6} \mathrm{O}_{6}$	13	$\mathrm{C}_{15} \mathrm{H}_{5} \mathrm{O}_{6}{ }^{-}$	281.0056	281.0086	-3.0	-H
B300_a	$\mathrm{C}_{15} \mathrm{H}_{8} \mathrm{O}_{7}$	12	$\mathrm{C}_{15} \mathrm{H}_{7} \mathrm{O}_{7}{ }^{-}$	299.0212	299.0192	2.0	-H
B358_a	$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{8}$	9	$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{NaO}_{8}{ }^{-}$	357.0665	357.0586	7.9	$-2 \mathrm{H}+\mathrm{Na}^{+}$
B358_b	$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{8}$	9	$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{NaO}_{8}{ }^{-}$	357.0669	357.0586	8.3	$-2 \mathrm{H}+\mathrm{Na}^{+}$
B290_a	$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{6}$	9	$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{O}_{6}{ }^{-}$	289.0633	289.0712	-7.9	-H
B358_c	$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{8}$	9	$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{NaO}_{8}{ }^{-}$	357.0653	357.0586	6.7	$-2 \mathrm{H}+\mathrm{Na}^{+}$

5.3 Gas chromatography mass spectrometry (GC-MS) with derivatization

Using the $\mathrm{BF}_{3} /$ butanol method, samples from $\mathrm{A}_{-} 9$ and $\mathrm{B}_{-} 7$ or standard compounds (glyoxylic acid, oxalic acid, malonic acid and pyruvic acid, from Sigma-Aldrich) in aqueous phase were adjusted to $\mathrm{pH}=8.5 \sim 9.5$ using a 0.1 M NaOH (AR grade, Sigma-Aldrich) solution. The $5-\mathrm{mL}$ samples were first concentrated to approximately 0.5 mL using a rotary evaporator under vacuum, then transferred to a $4-\mathrm{mL}$ graduated conical vial and further concentrated to dryness under a nitrogen stream. A total volume of 0.25 mL of $10 \% \mathrm{BF}_{3} / 1$-butanol (Supelco, Bellefonte, PA, USA) was immediately added to the sample. The samples and reagents were mixed with ultrasonication for 1 minute and then heated at $100^{\circ} \mathrm{C}$ for 30 minutes to form butyl ester for the carboxyl group and acetal for the aldehyde group. Once the sample cooled down, the derivatives were extracted with hexane (95%, Mallinckrodt) ($5 \times 1 \mathrm{~mL}$) after adding 0.3 mL of acetonitrile (ACN, 99.8%, Duksan) and 3 mL of deionized water. The fractions were combined and further washed with deionized water $(3 \times 3 \mathrm{~mL})$. Then, the resulting solutions were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ (AR grade, Sigma-Aldrich) and concentrated to about $250 \mu \mathrm{~L}$ by a nitrogen stream.

The resulting derivatives were injected into a GC-MS system (Perkin-Elmer Clarus 500) for analysis. The temperature program was set to a constant $40^{\circ} \mathrm{C}$ for 4 minutes, increased to $200^{\circ} \mathrm{C}$ at the rate of $8{ }^{\circ} \mathrm{C} / \mathrm{min}$ and held for 0 minutes, then further to $300{ }^{\circ} \mathrm{C}$ at $20^{\circ} \mathrm{C} / \mathrm{min}$ and finally maintained at $300{ }^{\circ} \mathrm{C}$ for 1 minute. The injection volume was $10 \mu \mathrm{~L}$. The MS data (total ion chromatogram) were acquired in the full scan mode (m / z of $50-600$) using electron ionization. The solvent delay was set to 5 minutes.

Using the pentafluorophenylhydrazine (PFPH) method, the aqueous-phase samples from A_9 and B_7 or standard compounds (formaldehyde and glyoxal) were adjusted to $\mathrm{pH}=8.5 \sim 9.5$ with the help of a 0.1 M NaOH solution. The $5-\mathrm{mL}$ samples were first concentrated to approximately 1 mL using a rotary evaporator under vacuum, then transferred to a vial upon which 1 mL of 0.5 mM PFPH (Sigma-Aldrich, 97%) aqueous solution was immediately added. The mixtures were left to react at room temperature in the dark overnight. Later, $5 \times 2 \mathrm{~mL}$ hexane was used to extract the derivatives, followed by drying with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtering. The extract was concentrated to about $200 \mu \mathrm{~L}$ before the GC-MS analysis. The GC-MS conditions were the same as those when the $\mathrm{BF}_{3} /$ butanol method was used.

e: Formaldehyde

m/z
m/z
2 Figure S13. Mass spectra of standard compounds (red) and of products from the samples (green) identified by GC-MS. BF2/butanol method: a - d; PFPH method: e and f.
6. Estimated organic growth factor at $\mathbf{9 0 \%} \mathbf{R H}$

The organic growth factors ($\mathrm{GF}_{\text {org }}$) were calculated from the measured GF_{90} by assuming a constant GF of ammonium sulfate (AS) of 1.68 . They were calculated based on the ZSR rule (Seinfeld and Pandis, 2006) as in Eq. 1 below, with $\mathrm{GF}_{\text {org }}$ being the GF of organics, $\mathrm{GF}_{\mathrm{AS}}$ the GF of $\mathrm{AS}, \varepsilon_{\text {org }}$ the volume fraction of organics, and $\varepsilon_{\mathrm{AS}}$ the volume fraction of AS.

$$
G F_{\text {org }}=\sqrt[3]{\frac{G F_{90}^{3}-G F_{A S}^{3} \times \varepsilon_{A S}}{\varepsilon_{o r g}}} \quad \text { Eq. S1 }
$$

The volume fraction of organics ($\varepsilon_{\text {org }}$) was calculated based on the mass fraction of organics measured by the AMS, and the density estimated from H:C and O:C ratios (Kuwata et al., 2012) as shown below.

$$
\rho_{\text {org }}=1000 \times \frac{12+H: C+16 \times O: C}{7.0+5.0 \times H: C+4.15 \times O: C} \quad \text { Eq. S2 }
$$

$$
\begin{array}{ll}
\varepsilon_{\text {org }}=\frac{\frac{f_{\text {org }}}{\rho_{\text {org }}}}{\left(\frac{f_{\text {org }}}{\rho_{\text {org }}}+\frac{f_{A S}}{\rho_{A S}}\right)} & \text { Eq. } \mathrm{S} 3 \\
\varepsilon_{A S}=1-\varepsilon_{\text {org }} & \text { Eq. } \mathrm{S} 4
\end{array}
$$

where $\rho_{\text {org }}\left(\mathrm{kg} / \mathrm{m}^{3}\right)$ is the density of organics, $\mathrm{H}: \mathrm{C}$ and $\mathrm{O}: \mathrm{C}$ are the hydrogen-to-carbon ratio and the oxygen-to-carbon ratio, respectively, of organics, $f_{\text {org }}$ and $f_{A S}$ are the mass fractions of AMS-measured organics and sulfate, respectively, and $\rho_{\mathrm{AS}}=1769 \mathrm{~kg} / \mathrm{m}^{3}$ is the density of ammonium sulfate.

7. References

Aiken, A. C., DeCarlo, P. F., and Jimenez, J. L.: Elemental analysis of organic species with electron ionization high-resolution mass spectrometry, Anal. Chem., 79, 8350-8358, 2007.
Allan, J. D., Delia, A. E., Coe, H., Bower, K. N., Alfarra, M. R., Jimenez, J. L., Middlebrook, A. M., Drewnick, F., Onasch, T. B., Canagaratna, M. R., Jayne, J. T., and Worsnop, D. R.: A generalised method for the extraction of chemically resolved mass spectra from aerodyne aerosol mass spectrometer data, J. Aerosol Sci., 35, 909-922, 2004.

Allen, A. O., Hochanadel, C. J., Ghormley, J. A., and Davis, T. W.: Decomposition of water and aqueous solutions under mixed fast neutron and gamma-radiation, J. Phys. Chem., 56, 575-586, 1952.
An, Y. J., Jeong, S. W., and Carraway, E. R.: Micellar effect on the photolysis of hydrogen peroxide, Water Res., 35, 3276-3279, 2001.
Chen, Q., Liu, Y. J., Donahue, N. M., Shilling, J. E., and Martin, S. T.: Particle-Phase Chemistry of Secondary Organic Material: Modeled Compared to Measured O:C and H:C Elemental Ratios Provide Constraints, Environ. Sci. Technol., 45, 4763-4770, 2011.
Ervens, B., Turpin, B. J., and Weber, R. J.: Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): a review of laboratory, field and model studies, Atmos. Chem. Phys., 11, 11069-11102, 2011.
Ervens, B., Wang, Y., Eagar, J., Leaitch, W. R., Macdonald, A. M., Valsaraj, K. T., and Herckes, P.: Dissolved organic carbon (DOC) and select aldehydes in cloud and fog water: the role of the aqueous phase in impacting trace gas budgets, Atmos. Chem. Phys., 13, 5117-5135, 2013.
Kuwata, M., Zorn, S. R., and Martin, S. T.: Using Elemental Ratios to Predict the Density of Organic Material Composed of Carbon, Hydrogen, and Oxygen, Environ. Sci. Technol., 46, 787-794, 2012.

Lee, A. K. Y., Hayden, K. L., Herckes, P., Leaitch, W. R., Liggio, J., Macdonald, A. M., and Abbatt, J. P. D.: Characterization of aerosol and cloud water at a mountain site during WACS 2010: secondary organic aerosol formation through oxidative cloud processing, Atmos. Chem. Phys., 12, 7103-7116, 2012.

Li, Y. J., Yeung, J. W. T., Leung, T. P. I., Lau, A. P. S., and Chan, C. K.: Characterization of Organic Particles from Incense Burning Using an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer, Aerosol Sci. Technol., 46, 654-665, 2011.
Seinfeld, J. H., and Pandis, S. N.: Atmospheric chemistry and physics: From air pollution to climate change, $2^{\text {nd }}$ ed., Wiley, New Jersey, 2006.
Sun, Y. L., Zhang, Q., Anastasio, C., and Sun, J.: Insights into secondary organic aerosol formed via aqueous-phase reactions of phenolic compounds based on high resolution mass spectrometry, Atmos. Chem. Phys., 10, 4809-4822, 2010.

Tan, Y., Perri, M. J., Seitzinger, S. P., and Turpin, B. J.: Effects of Precursor Concentration and Acidic Sulfate in Aqueous Glyoxal-OH Radical Oxidation and Implications for Secondary

Organic Aerosol, Environ. Sci. Technol., 43, 8105-8112, 2009.
Warneck, P.: In-cloud chemistry opens pathway to the formation of oxalic acid in the marine atmosphere, Atmos. Environ., 37, 2423-2427, 2003.
Zhang, Q., Canagaratna, M. R., Jayne, J. T., Worsnop, D. R., and Jimenez, J. L.: Time- and size-resolved chemical composition of submicron particles in Pittsburgh: Implications for aerosol sources and processes, J. Geophys. Res.-Atmos., 110, 2005.

