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Abstract

An overview of acetaldehyde exchange above a managed temperate mountain grass-
land in Austria over four growing seasons is presented. The meadow acted as a net
source of acetaldehyde in all four years, emitting between 7 and 28 mgCm−2 over the
whole growing period. The cutting of the meadow resulted in huge acetaldehyde emis-5

sion bursts on the day of harvesting or one day later. During undisturbed conditions,
both uptake and emission fluxes were recorded. The bidirectional nature of acetalde-
hyde fluxes was also reflected by clear diurnal cycles during certain time periods, indi-
cating strong deposition processes before the 1st cut and emission towards the end of
the growing season.10

The analysis of acetaldehyde compensation points revealed a complex relationship
between ambient acetaldehyde mixing ratios and respective fluxes, significantly influ-
enced by multiple environmental parameters and variable throughout the year. As a
major finding of this study, we identified both a positive and negative correlation be-
tween concentration and flux on a daily scale, where soil temperature and soil water15

content were the most significant factors in determining the direction of the slope. In
turn, this bidirectional relationship on a daily scale resulted in compensation points be-
tween 0.40 ppbv and 0.54 ppbv, which could be well explained by collected ancillary
data. We conclude that in order to model acetaldehyde fluxes at the site in Neustift on
a daily scale over longer time periods, it is crucial to know the type of relationship, i.e.20

the direction of the slope, between mixing ratios and fluxes on a given day.

1 Introduction

In recent years, technological progress and new measurement techniques facilitated
the in situ measurement of volatile organic compounds (VOC) over longer time periods.
The quantification of VOC exchange over different ecosystems and at different tempo-25

ral and spatial scales contributed towards an improved understanding of the complex
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interactions between VOCs and the atmosphere (Goldstein and Galbally, 2007). The
emission or uptake of biogenic VOCs (BVOCs) by plants has many underlying causes,
most of which are yet not fully understood.

In the past, most studies have focused on the highly reactive isoprenoids over for-
est due to their significant role in atmospheric chemistry (Sharkey et al., 2008). In5

contrast, only few field campaigns targeted the group of biogenic short-chained oxy-
genated volatile organic compounds (BOVOCs) which are abundant throughout the tro-
posphere (e.g. Singh et al., 2004), e.g. formaldehyde, acetaldehyde, acetone, methanol
and ethanol (Seco et al., 2007). Especially over grassland, little is known about the in-
terannual and seasonal variability of BOVOC fluxes.10

Acetaldehyde (CH3CHO) is a reactive compound with an atmospheric lifetime of
a few hours during summer (Atkinson, 2000; Atkinson et al., 2006; Possanzini et al.,
2002). Its photo-oxidation contributes to the radical budget in the troposphere (Seinfeld
and Pandis, 2006) and pollutants like PAN (Roberts, 1990) and O3 are formed in the
process. Increased O3 levels in the troposphere affect plant growth and human health15

(Kotzias et al., 1997).
Recent studies have reported bidirectional exchange of acetaldehyde with the atmo-

sphere (Fall, 2003; Graus et al., 2013; Karl et al., 2010), but our current knowledge
about acetaldehyde production and consumption in plants is still limited (Jardine et al.,
2008).20

Secondary photochemical production was described as the major source of atmo-
spheric acetaldehyde on a global scale and as much larger than biogenic emissions,
which in turn are the dominant direct terrestrial source of atmospheric acetaldehyde
(Millet et al., 2010). Acetaldehyde can also be emitted from decaying plant matter
(Greenberg et al., 2012) and as a consequence of photo-degradation of colored dis-25

solved organic matter (Kieber et al., 1990; Zhou and Mopper, 1997). Other terrestrial
sources include animals (Rumsey et al., 2012), biomass burning and anthropogenic
emissions (Langford et al., 2009; Millet et al., 2010).
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Previous studies described a clear dependence of acetaldehyde emission rates on
light and temperature (Cojocariu et al., 2004; Filella et al., 2007; Hayward et al., 2004;
Kondo et al., 1998; Ku et al., 2000; Schade and Goldstein, 2002). In a fumigation ex-
periment with trees, Kondo et al. (1998) found a linear relationship between acetalde-
hyde absorption and transpiration under varying light conditions and a clear increase5

of acetaldehyde uptake with rising total ambient C2-C5 aldehydes volume mixing ratios
(VMR) up to 3000 ppbv. In order to explain this continuous sink, the study suggests
a biological removal process mediated by stomata and that trees could act as an im-
portant sink for C2-C5 aldehydes. Jardine et al. (2008) pointed out that a chemical
reaction of acetaldehyde with the leaf surface is unlikely, since it mainly consists of in-10

ert alkanes (waxes). Acetaldehyde deposition to the leaf cuticle has been described for
leaves of Amazonian floodplain tree species (Rottenberger et al., 2008). Kreuzwieser
et al. (2001) described acetaldehyde as relatively insensitive to stomatal conductance
for leaves of trees but described an indirect effect by controlling transpiration rates
and therefore the amount of ethanol transported to the leaves from the roots. A lack15

of stomatal influence and physiological parameters on observed acetaldehyde fluxes
was also reported by other investigations (Kesselmeier and Staudt, 1999; Kesselmeier,
2001; Martin et al., 1999). In addition, acetaldehyde has been shown to be released
from young seedlings during the first days of germination (Stotzky et al., 1976).

Ethanol, an important precursor for acetaldehyde, is produced in plant roots dur-20

ing anoxic conditions, e.g. caused by soil flooding, through alcoholic fermentation and
subsequently transported to the leaves via the transpiration stream. In the leaves and
mediated by alcohol dehydrogenase (ADH), ethanol is then oxidized, generating ac-
etaldehyde as an intermediate (Kreuzwieser et al., 1999, 2004). As acetaldehyde it-
self is subsequently oxidized by the action of aldehyde dehydrogenase, Kreuzwieser25

et al. (2001) considered the emission of acetaldehyde as a leak between its produc-
tion and metabolism and affiliated diurnal changes of acetaldehyde emission with the
amount of ethanol that was produced and transported to the leaves since the enzy-
matic activity of ADH remained constant. This pathway may be a significant source
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of acetaldehyde on a global scale, for example during the wet season in the amazon
rain forest when the roots are flooded (Rottenberger et al., 2008). However, Jardine
et al. (2008) recently described that this fermentation process may also be active in
leaves under aerobic conditions.

The dominant sink of atmospheric acetaldehyde is assumed to be its reaction with5

OH (Atkinson et al., 2006), and to a lesser degree photolysis (Sander et al., 2006).
Studies have shown that plants can also act as a sink for acetaldehyde (e.g. Karl
et al., 2005; Rottenberger et al., 2004), for example when it is enzymatically oxidized
to acetate and subsequently metabolically consumed (Fall, 2003). Recently, both wet
and dry deposition have been described (Custer and Schade, 2007; Karl et al., 2004;10

Warneke et al., 2002).
An acetaldehyde compensation point (C∗) for leaves has been described previously

(Kesselmeier, 2001) and is defined as the ambient concentration at which the net ex-
change between the ecosystem and the atmosphere is zero. With ambient concen-
trations below C∗, acetaldehyde is emitted from the leaves, while the compound is15

taken up when ambient concentrations are above C∗. When the production within the
leaves dominates, C∗ is high, whereas it is low if consumption processes play a more
important role (Jardine et al., 2008). C∗ measurements of acetaldehyde are still rare
and have only been conducted in a small number of studies, e.g. for Norway spruce
(Cojocariu et al., 2004) and Amazonian tree species (Rottenberger et al., 2004). How-20

ever, it seems that physiological factors can influence observed compensation points,
like species composition and leaf age (Rottenberger et al., 2005). A previous study
showed that environmental variables like rising temperatures may increase the C∗, im-
plying that production is more sensitive to temperature than the consumption in plants
(Karl et al., 2005).25

Recent studies described acetaldehyde exchange patterns varying with height in the
plant canopy. Flux measurements within the canopy showed net emission in the upper
canopy and net uptake deeper within the canopy over a Norway spruce forest (Müller
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et al., 2006) and in the Amazon (Rottenberger et al., 2004). Cojocariu et al. (2004) re-
ported branch enclosure emission rates by spruce trees increasing with canopy height.

Karl et al. (2005) reported emission at the top of a loblolly pine plantation and up-
take in the canopy, where the strongest uptake occurred in regions with the highest
LAI. The same study observed highest acetaldehyde concentrations at the top of the5

canopy, where also highest emission fluxes were measured. In turn, lowest concentra-
tions were reported from the lower part of the canopy, where the highest uptake rates
of acetaldehyde were quantified. Assuming a fixed C∗, this exchange pattern cannot be
explained (Jardine et al., 2008). The distinct diurnal cycle of acetaldehyde exchange
reported by several studies supports the idea that diurnal variation in temperature and10

radiation influences C∗ and therefore the flux rate (Cojocariu et al., 2005; Jardine et al.,
2008).

The present study focuses on acetaldehyde, one of the three major BOVOCs be-
sides methanol and acetone found during undisturbed conditions above a grassland
near Neustift, Austria (Bamberger et al., 2010). To this end we investigated four years15

of diurnal, seasonal and interannual acetaldehyde exchange rates and elucidated ob-
served flux patterns in relation to biotic and abiotic drivers under in situ conditions at
ecosystem scale. The objective of this paper is to compare our findings to previous re-
sults at leaf or ecosystem level, to elaborate possible causes for observed differences to
other studies and to refine our understanding of long term acetaldehyde fluxes. Based20

on previous findings we hypothesized that during undisturbed conditions (1) emission
rates of acetaldehyde are influenced by light and temperature. As shown in an earlier
study for methanol (Hörtnagl et al., 2011), we further hypothesized that (2) the cutting
of the meadow results in high acetaldehyde emissions that constitute a major influ-
ence on resulting acetaldehyde budgets. In addition, as several studies have described25

a compensation point for acetaldehyde (Cojocariu et al., 2004; Kesselmeier, 2001; Rot-
tenberger et al., 2004), we assumed that (3) a compensation point can be found over
our grassland at ecosystem scale and that (4) C∗ varies over the course of a year due
to environmental variables and ecosystem structure and function.
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The study site Neustift, a managed temperate mountain grassland in Austria that
is cut three times per year for hay production, was selected because it has been the
focus of numerous studies over the last ten years and is therefore well described in
terms of management effects, net ecosystem CO2 and energy exchange (Hammerle
et al., 2008; Wohlfahrt et al., 2008) and VOC exchange (Bamberger et al., 2010, 2011;5

Brilli et al., 2012; Hörtnagl et al., 2011; Müller et al., 2010; Ruuskanen et al., 2011).

2 Methods

2.1 Site description

The study site is an intensively managed meadow situated at an elevation of 970 ma.s.l.
near the village of Neustift (47◦07′ N, 11◦19′ E) in the Stubai Valley (Austria) in the mid-10

dle of the flat valley bottom. The fetch is homogeneous up to 300 m to the north-north-
east and 900 m to the south-south-west of the instrument tower, which are also the
dominant daytime and nighttime wind directions, respectively, and parallel to the Val-
ley’s orientation. Typically, the atmosphere shows stable stratification during the night,
resulting in a larger footprint than during daytime, where wind velocities are higher and15

conditions unstable (Bamberger et al., 2010). The average annual temperature at the
study site is 6.5 ◦C, the average annual precipitation amounts to 852 mm, a humid con-
tinental climate with alpine influences. The vegetation of the meadow consists mainly
of a few dominant graminoids (Dactylis glomerata, Festuca pratensis, Phleum praten-
sis, Trisetum flavescens) and forbs (Ranunculus acris, Taraxacum officinale, Trifolium20

repens, Trifolium pratense, Carum carvi). The slopes of the surrounding mountains are
dominated by coniferous forest.

Acetaldehyde measurements were conducted during four years between 22 May–20
November 2008 (182 days), 19 March–11 December 2009 (267 days), 18 March–12
December 2011 (269 days) and 27 March–25 November 2012 (243 days). In each year,25

the meadow was cut three times, with the 1st cut taking place between 4–10 June, the
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2nd cut between 31 July–10 August and the 3rd cut between 21–28 September. In
addition, the meadow was fertilized by manure spreading once per year, between 18–
26 October. In 2008 and 2012 no data were recorded for both the day of the 3rd cut and
for the day of fertilization due to instrument failure. The meadow was snow-covered for
the first ten and the last eleven days of measurements in 2009 and for the last five days5

of the campaign in 2011.

2.2 Eddy covariance measurements

The net ecosystem acetaldehyde exchange was calculated by combining the three-
dimensional wind speed and the speed of sound measured with a sonic anemometer
(R3IA, Gill Instruments, Lymington, UK) at a height of 2.5 m above ground with ac-10

etaldehyde VMRs that were simultaneously detected by a PTR-MS at m/z 45 using the
virtual disjunct eddy covariance (vDEC) method proposed by Karl et al. (2002), which
is based on the eddy covariance (EC) method (Baldocchi et al., 1988; McMillen, 1988).
Air was sampled through an inlet located 0.1 m below the anemometer, drawn through
a particulate filter (1–2 µm, PTFE) and through a 16 m (2008)/12 m (2009–2012) PFA15

Teflon tube with 0.004 m inner diameter and was finally analyzed for acetaldehyde and
other VOCs by the PTR-MS. The inlet line was heated to 40 ◦C (2008)/35 ◦C (2009–
2012) to minimize adsorption of VOCs to the inlet line, the flow rate was held constant
at 8/9 SLPM (standard liter per minute; air volume normalized to standard temperature
and pressure conditions: 273 K, 1013 hPa) in 2008 and 2009–2012, respectively. Sonic20

anemometer data were stored to a hard drive of a personal computer using the Ed-
dymeas software (O. Kolle, Max Planck Institute for Biogeochemistry, Jena, Germany).

2.3 PTR-MS setup

Acetaldehyde VMRs were quantified by a high-sensitivity proton-transfer-reaction-
mass-spectrometer (PTR-MS, working principle described by Hansel et al. (1995) and25

Lindinger et al., 1998) that was deployed in a temperature controlled container next to
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the field site. Ambient air was analyzed for a number of compounds besides acetalde-
hyde. In 2008, 13 different m/z values were recorded repeatedly, resulting in a cycle
time of 2.82 s until 10 July, after which it was changed to 3.00 s (15 different m/z values)
until 6 November 2008 and after that to 1.80 s (8 m/z values) until 20 November. In
2009 the cycle time was 2.25 s until 6 April (12 m/z values) and then 2.35 s until 11 De-5

cember (13 m/z values). In both 2011 and 2012, the measurement cycle lasted 1.61 s,
targeting 9 m/z values. The dwell time for acetaldehyde (m/z 45) was 0.2 s in all years.
During the last five minutes of every half-hour period the instrumental background was
recorded by flushing 500 mL of ambient air through a home-built catalytic converter
(heated to 350 ◦C). The PTR-MS was calibrated once a week in 2008 and every 50 h10

in 2009/2011/2012 by diluting a multi-component gas standard containing VOCs in
ppm volume mixing ratios in N2 (Apel Riemer Inc., USA) in VOC-free ambient air. Typ-
ical calibration factors for acetaldehyde were 15/20/13/13 ncps (normalized counts per
second) per ppbv in 2008/2009/2011/2012, respectively. The PTR-MS was operated
at a drift tube pressure of 2.15 mbar/2.3 mbar and a drift voltage of 550 V/600 V dur-15

ing 2008/2009–2012, respectively. Data were stored in 30 min files and processed to
yield VOC volume mixing ratios in ppbv using a homemade program based on MAT-
LAB 7.4.0 (R2007a, The MathWorks, Inc., USA). More information regarding setup,
calibration and operation of the PTR-MS instrument at the site can be found in ear-
lier studies (Bamberger et al., 2010, 2011; Hörtnagl et al., 2011). In 2009 a PTR-TOF20

and a PTR-MS were simultaneously recording VOC fluxes at the field site in Neustift.
During this two month period no eddy covariance flux was found at the exact mass
of CO2H+ (m/z 44.998), a potential interfering compound of protonated acetaldehyde
(CH3HCOH+ m/z 45.0340) in the PTR-MS. Eddy covariance flux values obtained with
PTR-TOF at m/z 45.0340 were in excellent agreement with flux values from the PTR-25

MS at the nominal mass m/z 45. We can therefore rule out erroneous contributions of
CO2H+ to acetaldehyde fluxes measured with PTR-MS at m/z 45.
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2.4 Flux calculations

Half-hourly fluxes were calculated using ambient air measurements of the first 25 min
of each 30 min period due to the zero calibration during the last five minutes. Because
of the disjunct nature of the VMRs, the vDEC method (Karl et al., 2002) was applied to
calculate acetaldehyde fluxes as the maximum covariance between the turbulent de-5

partures of the 20 Hz vertical wind speed and the lower resolved acetaldehyde VMRs.
First, a homemade program was used for the time lag search between the two time
series and subsequently the post-processing software EdiRe (University of Edinburgh)
for final flux calculations by using a subsample of the horizontal wind data as given by
the sampling rate of the PTR-MS. Means and turbulent departures were calculated by10

Reynolds (block) averaging. Hörtnagl et al. (2010) showed that the vDEC method yields
unbiased flux estimates but is characterized by a larger random uncertainty compared
to the true EC.

Among all targeted VOCs the determination of the tubing induced delay time by
optimizing the correlation coefficient of the VOC signal with the vertical wind velocity15

(McMillen, 1988) worked best for methanol, of which the frequency distribution of found
lag times showed a peak around 1.5 s in all four years. Lag times for acetaldehyde
were searched in a window of ±3 s around this peak. If the time delay was outside of
the pre-defined window, the acetaldehyde lag time was set to the peak of the methanol
distribution (i.e. 1.5 s).20

Raw acetaldehyde fluxes were then corrected for high pass (block averaging) and
low-pass (lateral sensor separation, dynamic frequency response, scalar and vector
path averaging, frequency response mismatch and the attenuation of concentration
fluctuations down the sampling tube) filtering according to Moore (1986), Massman
(2000) and Aubinet et al. (2000). Frequency-response corrections were based on25

a site-specific model cospectrum described by Wohlfahrt et al. (2005). Instrumenta-
tion, data treatment and quality control of CO2, sensible and latent heat fluxes have
been described by Wohlfahrt et al. (2008) and Hammerle et al. (2008).
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2.5 Quality control

Half-hourly acetaldehyde fluxes were excluded from further analysis if (i) the third ro-
tation angle exceeded 10◦ (McMillen, 1988), (ii) the stationarity test for acetaldehyde
fluxes exceeded 60 % (Foken and Wichura, 1996), (iii) the deviation of the integral
similarity characteristics was larger than 60 % (Foken and Wichura, 1996), (iv) the5

maximum of the footprint function (Hsieh et al., 2000) was outside the boundaries
of the meadow, (v) the measured background signal of acetaldehyde was higher than
its ambient concentration (averaged over half an hour) and (vi) the background drift
was greater than the sum of the standard deviations of the two adjacent background
measurements before and after the flux averaging period. Acetaldehyde VMR data10

points were flagged as an outlier if the difference between a specific data point and
the averaged signal of the respective half-hour was higher than 20 times the theoret-
ical standard deviation (noise). On days influenced by management no outliers were
removed, as large fluctuations in acetaldehyde concentrations were found to be phys-
ically realistic. Half-hours with more than five outliers were rejected and not used in15

further analyses.
In total over all four years, 38 558 half-hourly fluxes of acetaldehyde were recorded,

of which 27 648 (72 %) passed all quality tests and were used in the present study.

2.6 Ancillary data

Meteorological measurements included total (PAR) and the fractions of diffuse20

(PARdif/PAR) and reflected (PARrefl/PAR) photosynthetically active radiation (BF3H,
Delta-T, Cambridge, UK), net radiation (Rnet; measured by CNR1, Kipp & Zonen, Delft,
Netherlands), air temperature (Tair) and humidity at 2 m height measured by the means
of a ventilated temperature/humidity sensor (RFT-2, UMS, Munich, Germany), soil heat
flux (SHF) quantified by means of heat flux plates (3 replicates at 0.05 m depth,25

corrected for the change in heat storage above that depth; HFP01, Hukseflux, Delft,
Netherlands), soil temperature (Tsoil) at 0.05 m depth (TCAV thermocouple, Campbell
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Scientific, Logan, UT, USA), volumetric soil water content (SWC) (ML2x, Delta-T De-
vices, Cambridge, UK) and precipitation (52202, R. M. Young, Traverse City, MI, USA).
All data were collected continuously by a data logger (CR10X, Campbell Scientific,
Logan, UT, USA). The green plant area index (GAI) was assessed (i) in a destruc-
tive fashion by harvesting the plant matter of square plots (0.09 m2, 3–5 replicates)5

and subsequent plant area determination (Li-3100, Li Cor, Lincoln, NE, USA) and (ii)
from measurements of canopy height which was related to destructively measured GAI
(Wohlfahrt et al., 2008). Continuous time series of the GAI were derived by fitting appro-
priate empirical functions to measured data separately for each growing phase before
and after cutting events. A more detailed list of all auxiliary parameters measured at10

this site is given by Wohlfahrt et al. (2008) and Hammerle et al. (2008).

2.7 Statistical analyses

Statistical analyses were done using Statistica 9 (StatSoft, Inc.), SigmaPlot 11 (Systat
Software, Inc.) and Excel 2010 (Microsoft, Inc.). The partial correlation in multiple linear
regression analyses gives the correlation between two variables after controlling for the15

effect of all other variables in the equation. The squared semi-partial correlation was
used to express the unique variance accounted for by a specific predictor, relative to
the total variance of a dependent variable. Tolerance is a measure of redundancy and
defined as 1 minus the squared multiple correlation of a variable with all other indepen-
dent variables in the regression equation. The higher the tolerance value of a predictor,20

the less redundant is its contribution to the regression. To determine significant differ-
ences between group means in an analysis of variance (ANOVA) setting, the Unequal
N HSD post hoc test, a modification of the Tukey’s HSD test, was used. For statistical
analyses, only days or half-hours where all parameters were available were included.

26128

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/13/26117/2013/acpd-13-26117-2013-print.pdf
http://www.atmos-chem-phys-discuss.net/13/26117/2013/acpd-13-26117-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
13, 26117–26174, 2013

Acetaldehyde
exchange above

a managed temperate
mountain grassland

L. Hörtnagl et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

3 Results

3.1 Overview

Figure 1 shows 844 daily average values of acetaldehyde fluxes over four measure-
ment years, with 140 (2008), 249 (2009), 248 (2011) and 207 values (2012) for each
single year. Both emission and deposition fluxes could be observed in all four years5

(Fig. 1). Between 2008 and 2012, the influence of management events, characterized
by elevated emission fluxes, could be observed on a total of 37 days, all of which re-
sulted in a daily net emission of acetaldehyde. During undisturbed conditions emission
and deposition were recorded on 333 (41 %) and 474 days (59 %), respectively, and 80
days (10 %) showed strong daily average deposition fluxes below −0.1 nmolm−2 s−1,10

while 79 days resulted in net emission fluxes that exceeded 0.1 nmolm−2 s−1 (Fig. 1).
The average flux over all 4 yr during undisturbed conditions was exactly zero, and only
slightly higher with management events included (0.04 nmolm−2 s−1).

Highest daily average acetaldehyde fluxes in each year were observed on
the day of the 2nd cutting of the meadow, reaching emission values between15

1.89–2.69 nmolm−2 s−1. During undisturbed conditions, maximum emissions of
0.75 nmolm−2 s−1 were observed in June and August 2008. Highest deposition fluxes
of more than −0.3 nmolm−2 s−1 were found in June 2012 (−0.37 nmolm−2 s−1) and
August 2011 (−0.31 nmolm−2 s−1), deposition fluxes of −0.45 nmolm−2 s−1 on 6 De-
cember 2009, one week after the start of continuous snow cover, were mainly caused20

by erratic nighttime fluxes but nevertheless passed all quality control criteria (Fig. 1).
In contrast to emission rates, which reached their maximum on days when the

meadow was cut, peak VMRs in each year were generally found 1–2 weeks after the
1st and 2nd cut, but also in November. The highest VMR was recorded in June 2012
(2.3 ppbv). Between 2008 and 2012 and including management, the daily average VMR25

of acetaldehyde was above 0.5 ppbv on 379 days (45 % of all recorded days).
Highest PAR values were similar in all four years, ranging from 663.7 in 2011 to

688.7 µmolm−2 s−1 in 2008. Yearly average air temperatures of between 6.7 (2012)
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and 7.1 ◦C (2008, 2011) were close to the 2001–2007 average of 6.7 ◦C at the same
site. The highest daily average temperature was recorded at the end of June 2012
(23.5 ◦C), the lowest at the beginning of February 2012 (−17.3 ◦C) (Fig. 1). Half-hourly
temperatures peaked at 32.5 ◦C on 30 June 2012, the lowest value was recorded on
6 February 2012 (−22.4 ◦C). On days where VOC measurements were performed, the5

average daily air temperature was between −3.5–23.5 ◦C. Soil temperature at a depth
of 5 cm was naturally dampened compared to air temperature, peaking at 22.1 ◦C in
June 2008 (Fig. 1). During winter months, soil temperatures were typically around zero,
with the exception of January 2008 when temperatures fell as low as −2.8 ◦C on a daily
average timescale.10

Soil water content exhibited a similar pattern in all four years. Generally, peak val-
ues of up to 0.46 m3 m−3 were found around snow melt, after which SWC continually
decreased to values as low as 0.08 m3 m−3 by mid-May (2008, 2011) or start of June
(2009, 2012), a decline only temporarily interrupted by rain events. During the second
half of the year, water content increased steadily with each precipitation event. Precip-15

itation ranged between 499 (2012) and 648 (2008) mmyr−1, well below the 2001–2007
average of 765 mmyr−1. During the measurement campaigns, rain was recorded on 77
(2008), 124 (2009), 97 (2011) and 81 (2012) days (Fig. 1).

On average, relative humidity was around 80 %, with the lowest value of 43 % at
the end of April 2012. Naturally, vapor pressure deficit was highest during warmer20

months between April and August with average values around 0.5 kPa and reached
peak values of 1.5 kPa on 2 days at the end of May 2008. GAI was close to zero af-
ter snowmelt, reached 7.1–7.8 m2 m−2 right before the 1st cut and was then reduced
to 1.3–2.0 m2 m−2 due to harvesting. Maximum values before the 2nd and 3rd cut de-
creased compared to the 1st cut and were in the range of 6.7–7.1 m2 m−2 and 5.1–25

6.3 m2 m−2, respectively. After the 3rd cut GAI first increased and later decreased.
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3.2 Inter-annual variability

Figure 2 shows half-hourly fluxes during the four years of measurements. For each year
highest fluxes of acetaldehyde were recorded on the day of the 2nd cut or one day later
with peak values of 11.0–16.5 nmolm−2 s−1. Including days influenced by management,
deposition from the atmosphere to the meadow was observed for 54 % of all half-hourly5

acetaldehyde fluxes, strong uptake with fluxes below −0.3 nmolm2 s−1 for 8 %. During
undisturbed conditions, 98 % of all fluxes were between −1 and 1 nmolm−2 s−1.

The meadow acted as a net source of acetaldehyde in all four years (Fig. 3). The
largest efflux was recorded in 2008 with an emission of 27.8 mgCm−2 in 183 days,
followed by 2012 (17.5 mgCm−2 over 239 days). Lower emissions were observed10

for 2009 (7.4/269) and 2011 (9.9/270). Cumulative carbon emissions on days influ-
enced by management events were substantial (Fig. 3). In 2008, 11.0 mgCm−2 were
emitted over a time period of four days that were influenced by two cutting events.
2009 and 2011 were similar: in both years all 3 cuts and the spreading of the ma-
nure were captured by the acetaldehyde measurements, resulting in 12 days influ-15

enced by anthropogenic actions that resulted in a total emission of 17.7 (2009) and
17.9 (2011) mgCm−2. Highest emissions as a direct consequence of management ac-
tions were found in 2012 (20.9 mgCm−2 over 9 days), although management dates
were only partially (3rd cut) or not at all (manure spreading) covered by our measure-
ments (Fig. 3). On a daily average scale, no deposition was observed on management20

days. When days with management influence were excluded from the analysis, only
2008 acted as a source of acetaldehyde (16.8 mgCm−2), while all other years acted
as a sink with cumulative deposition fluxes of −10.4 (2009), −8.0 (2011) and −3.5
(2012) mgCm−2.

With the exception of 2008, distinct time periods characterized by consecutive days25

with net acetaldehyde uptake were observed in each year (Fig. 3). For example, start-
ing on 15 April 2009 the meadow acted as a strong sink for acetaldehyde over the
next 49 days, divided into two stages distinguished by uptake rates. During the first
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28 days until 12 May 2009 a total of −3.0 mgCm−2 was transported to the meadow,
a process only shortly interrupted by two days of emission fluxes and resulting in
an average uptake rate of −0.11 mgCm−2 d−1. The speed of this deposition process
nearly tripled to −0.30 mgCm−2 d−1 over the following 21 days for a cumulative total of
−6.40 mgCm−2 until 2 June 2009, two days before the 1st cut. A very similar period5

was found over 47 days between 20 April and 5 June 2011, one day before the 1st cut,
when −4.57 mgCm−2 were transported to the meadow (−0.10 mgCm−2 d−1).

These periods were not restricted to the weeks leading up to the 1st cut, but were
also found throughout the rest of the year. For example, notable periods of acetalde-
hyde uptake were found in June and July. Starting on 19 June 2009 and spanning10

a period of 17 days with acetaldehyde measurements until 10 July 2009, average depo-
sition fluxes of −0.08 mgCm−2 d−1 were recorded. Between 29 June and 30 July 2011,
two days before the 2nd cut, carbon was transported to the meadow at a rate of
−0.12 mgCm−2 d−1. One year later a similar period was observed between 25 June
and 11 July 2012 with average deposition fluxes of −0.22 mgCm−2 d−1. Strong uptake15

was also recorded between 27 August–19 September 2011 (−0.13 mgCm−2 d−1), 27
April–7 May 2012 (−0.23) and 9 August–16 August 2012 (−0.31).

3.3 Management influence

Figure 4 shows the effect of cutting and manure spreading on half-hourly acetaldehyde
VMRs and fluxes. Generally, fluxes were around zero directly before the management.20

The cutting of the meadow caused a sudden burst of acetaldehyde emissions from the
meadow that reached a maximum on the day of the cut or one day later, and fluxes
remained elevated for between 2 (1st cut) and 5 days (2nd cut) after the cut.

The 2nd cut of the meadow took place at the end of July or beginning of Au-
gust and resulted in the strongest emission fluxes and longest observable manage-25

ment influence on acetaldehyde (Fig. 4). Maximum fluxes were found between 11.0–
16.5 nmolm−2 s−1 on the day of the cut, remained equally high one day later (9.6–
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16.4), decreased sharply the following day (1.9–3.1) and subsequently leveled off to
reach pre-cut, close-to-zero fluxes by day 5 after the cut. Emissions caused by the 1st
or 3rd cutting of the meadow were lower, with maximum emissions of 5.3–14.7 and
4.3–8.4 nmolm−2 s−1 on the day of cutting, respectively, and dropped off more rapidly
after the management event. In most years no cutting influence could be seen by day5

3 after the cut. One exception to this pattern was the 3rd cut in September 2011, when
the cut grass was left on the field for drying and maximum emissions were observed
during the turning of the grass in the afternoon one day after the cut. During this event,
acetaldehyde continued to exhibit a clear diurnal emission cycle until 5 days after the
harvesting (Fig. 4). Often, peak emissions were observed during the turning of the hay10

or immediately after all grass was collected from the field. For example, the 1st cut in
2011 started at 9 a.m. and maximum emissions during the harvesting were observed
about one hour later (2.5 nmolm−2 s−1). The hay was left on the field, turned at 12 p.m.
(3.5) and collected at 3 p.m. Maximum emissions were then observed at 4 p.m., im-
mediately after all grass was removed from the field (6.8) (Fig. 4). This pattern was15

even more pronounced in 2012, when maximum emissions during the 1st cut were
relatively low (2.2). However, acetaldehyde emissions increased considerably one day
later during the turning of the hay at 11.30 a.m. (14.7), then decreased sharply until
1 p.m. (4.3), increased significantly during the collection of the hay at 2 p.m. (12.4) and
then immediately dropped off to zero at 3 p.m. (Fig. 4, see also Sect. 4.1).20

The spreading of manure was only covered by measurements in 2009 and 2011,
where emissions between 1.6–2.7 nmolm−2 s−1 were observed, about one order of
magnitude higher than maximum fluxes one day earlier during undisturbed conditions
(Fig. 4). In 2011, the spreading of manure on the meadow was split over two days and
started on 18 October. On the first day, fluxes increased rapidly to 2.7 nmolm−2 s−1

25

when the manure was brought out directly in the footprint at 3 p.m. Acetaldehyde fluxes
started to exhibit a clear diurnal cycle for several days thereafter, with peak emissions
of 2.7 nmolm−2 s−1 at 7 a.m. on 19 October during the thawing of the nightly frost-
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cover on plants and manure (Fig. 4). Unfortunately, in 2011 the days directly before
fertilization were not covered by BVOC measurements.

High emission fluxes of acetaldehyde were generally accompanied by high volume
mixing ratios. Maximum half-hourly VMRs of 4.2 ppbv were registered on the day of the
2nd cut 2012, the same day when also the highest emission flux values were measured5

(Fig. 4). After cutting events, maximum concentrations of acetaldehyde continued to
remain elevated over several days, gradually decreasing to pre-cut values.

3.4 Seasonal variability

Figure 5 shows the diurnal course of acetaldehyde fluxes and VMRs before, in-between
and after management events in all four investigated years.10

The most distinct uptake was observed in 2009 after snowmelt and before the 1st
cut, when acetaldehyde deposition to the meadow started early in the morning dur-
ing a period of increasing VMRs and lasted until midnight, maximum uptake was
−0.19 nmolm−2 s−1 around noon. A clear diurnal uptake pattern characterized by two
uptake peaks was observed in 2011, when the daily maximum deposition flux of15

−0.15 nmolm−2 s−1 was recorded in the morning, shortly after the maximum VMR of
0.71 ppb (Fig. 5). After a period of close-to-zero fluxes and low VMRs around noon, up-
take of acetaldehyde started again in the afternoon when acetaldehyde concentrations
started to increase. The exchange pattern was similar but less distinct in 2012, when
local maxima and minima for both fluxes and VMRs were often observed during the20

same half-hour or within an hour (Fig. 5). On average, flux and VMR patterns between
snow melt and the 1st cut of the year exhibited a clear diurnal cycle, whereby highest
uptake rates before noon were recorded shortly after the daily maximum acetaldehyde
concentration and in the afternoon during rising VMRs.

In the period after the 1st and before the 2nd cut, low uptake rates were constantly25

recorded during daytime in 2009 and 2011, while exchange patterns during the other
two years showed higher variability (Fig. 5). The average 4 yr diurnal cycle shows a ten-
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dency towards weak acetaldehyde deposition during daytime and stable VMRs around
0.40 ppbv.

Later in the year after the 2nd and before the 3rd cut, acetaldehyde showed strong
deposition fluxes of up to −0.22 nmolm−2 s−1 in 2012 and exhibited a distinct diurnal
cycle, which was in strong contrast to 2008 and 2009 when fluxes were fluctuating5

around zero. 2011 was similar to 2012, with clear deposition before noon and in the af-
ternoon, and fluxes close to zero around noon (Fig. 5). Over all four years, the meadow
acted as a sink for acetaldehyde, whereby uptake started in the morning and continued
until the evening, with maximum deposition fluxes of −0.11 nmolm−2 s−1 before noon
(Fig. 5).10

The diurnal course of VMRs after the 3rd cut and before snow cover was similar to
the period before the 1st cut, with two daily VMR maxima and a local minimum around
noon, but flux patterns were rather different with clear acetaldehyde emission at midday.
Highest emission rates of 0.17 and 0.18 nmolm−2 s−1 were recorded in 2008 and 2011,
respectively, when VMRs were close to their minimum after a sharp decrease following15

the morning peak (Fig. 5). On average, maximum deposition fluxes were recorded both
in the morning and evening, when VMRs were close to their maximum.

3.5 Environmental controls

In order to analyze the drivers behind observed acetaldehyde fluxes, a multiple lin-
ear regression was performed using daily average values for days with deposition20

(group f−, includes days with daily average fluxes< −0.03 nmolm−2 s−1), emission (f+,
> 0.03 nmolm−2 s−1) and around-zero (f0, between −0.03 and 0.03 nmolm−2 s−1) fluxes
as well as for the different time periods before, in-between and after cutting events (Ta-
ble 1).

Ancillary data explained 15 % of the observed acetaldehyde exchange when data25

of all four years were pooled together and 21–26 % when 4 yr data were pooled for
specific time periods. During the same time periods but in single years, between 21–
85 % of the acetaldehyde flux pattern could be explained, whereby the regression was
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significant (p < 0.05) in 11 of 14 time periods and highly significant (p < 0.001) once,
before the 1st cut in 2009 during the period of highest acetaldehyde deposition (Table 1,
Fig. 5).

Among the collected parameters only two – the net ecosystem CO2 exchange (NEE)
and acetaldehyde VMR – were highly significant during at least one time period, while5

Tair was the only parameter that was not significant in any period (Table 1). When all
data were pooled, NEE had the highest positive partial correlation (PC) among all pa-
rameters in combination with a high tolerance value. Its influence was similar on days
with close-to-zero fluxes (group f0), but diminished clearly on days with acetaldehyde
uptake (f−) or emission (f+). Over the course of the vegetation period, PCs and toler-10

ance values of NEE increased towards the end of the year (Table 1). The other two
ecosystem fluxes, latent evaporation (LE) and sensible heat flux (H), were also signifi-
cant on a 4 yr scale, but their respective PC with acetaldehyde fluxes was considerably
lower when compared to NEE. H was positively correlated with acetaldehyde emission
(f0) and significant during time periods in single years whenever NEE was also signifi-15

cant (Table 1). Due to the bidirectional influence of LE and H , their PCs often changed
in sign between years, often resulting in very low PCs when data were pooled for spe-
cific time periods. The proportion of unique variance relative to the total variance of
acetaldehyde fluxes accounted for by all ecosystem fluxes combined (NEE, LE and H)
over all 4 yr was 9 %.20

In contrast to NEE, acetaldehyde VMR was characterized by a highly significant
negative and positive PC on uptake and deposition days, respectively, but its PC was
very low when all data were pooled and on days with fluxes around zero. During most of
the vegetation period and especially at the beginning, partial correlations were found
to be positive, but changed in sign towards the end of the measurement campaign25

after the 3rd cut (Table 1). However, a highly significant positive PC was found in 2009
between the 2nd and 3rd cut, a period of around-zero fluxes (Fig. 5).

Radiation variables showed significant correlations especially at the start of the vege-
tation period before the 1st cut, and none of the radiation parameters yielded significant
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results after the 3rd cut. Although PAR, PARdif/PAR and Rnet were significant on a 4 yr
scale, they explained only 3 % of the total acetaldehyde flux variance when combined
(Table 1). PARrefl/PAR had little influence when all data were pooled, but had a high
and significant negative PC during the period when acetaldehyde deposition fluxes
were highest, before the 1st cut in 2009 (Table 1, Fig. 5).5

On a 4 yr scale, SWC had a positive PC with acetaldehyde emission and was char-
acterized by high tolerance values, underlining its unique contribution to the regression
equation. It also had the highest PC among all parameters in a multiple linear regres-
sion, found in a period of low acetaldehyde uptake between the 2nd and 3rd cut in
2012 (Table 1, Fig. 5). The PC between SHF and acetaldehyde VMRs was positive on10

deposition days (f−) and negative on emission days (f+). Although SHF was not signifi-
cantly correlated with acetaldehyde exchange over the course of the vegetation period,
its PCs were considerably higher between the 2nd and 3rd cut than during other time
periods (Table 1). Tsoil was the only soil parameter that was not significant on any of the
4 yr scales, but in the time period between snow melt and 1st cut of two consecutive15

years, when its PC changed from positive to negative. The negative PC found for va-
por pressure deficit (VPD) when all data were pooled was very similar to values found
throughout the four years. Its strongest effect on acetaldehyde fluxes was observed in
2012 in the period between 2nd and 3rd cut, when uptake strongly increased with VPD.

A simple linear regression analysis resulted in SWC, NEE and H having highly sig-20

nificant positive correlations, which were very similar in magnitude to their respective
PCs (Table 1). No significant correlations were found for all other parameters with the
exception of PARdif/PAR, which in contrast to its PC was negatively correlated and
significant.

3.6 Compensation point25

As shown before, the correlation between acetaldehyde VMRs and fluxes based on
daily average values was not constant, changed over the course of a single year as
well as between years and was generally weak or statistically not significant (Table 1).
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Although the regression analyses could not reveal a consistent relationship between
the two variables, it indicated that a link between VMRs and fluxes existed and that
its strength varied over time. This changing relationship was also observed on single
days when looking at half-hourly data for both parameters. Figure 6 depicts four days
where the correlation between VMR and flux was either negative or positive, with both5

cases resulting in either daily net emission or uptake of acetaldehyde, showing that
a negative correlation on a certain day did not necessarily translate into acetaldehyde
deposition.

In order to investigate controls on a possible compensation point for acetaldehyde,
C∗ was quantified on two different time scales by calculating the zero-crossing of the10

linear regression between acetaldehyde VMR as the independent variable and flux as
the dependent parameter with the x axis.

First we examined the relationship between daily average values of acetaldehyde
VMRs and fluxes in 7 day windows, whereby management influence was excluded from
the analysis. The different relationships between the two parameters as shown in Fig. 615

for half-hourly data on single days were also observed for daily average data in 7 day
windows (Fig. 7a). During certain weeks in each year, slope k of the regression equa-
tion was negative and indicated uptake of acetaldehyde with increasing VMR (Fig. 7).
However, slope k was found to be positive during other time periods, suggesting a re-
lease of acetaldehyde with increasing VMRs. In both of these groups the goodness of20

fit varied greatly over the season. Therefore, Fig. 7a depicts compensation points for all
7 day windows where the regression between VMR and flux resulted in an either pos-
itive (P) or negative (N) slope k, both groups further distinguished by the goodness of
fit. In total, 235 7 day periods were investigated, 66 of which passed all quality criteria
and are displayed in Fig. 7a. The average C∗ in periods with negative k was 0.36 and25

0.46 ppbv in weeks with high r2 (> 0.2, group N1) and low r2 (between 0.05 and 0.2,
group N2), respectively. For weeks with a positive relationship (groups P1, P2) between
acetaldehyde VMR and flux, average C∗ was found at 0.55 ppbv. During other periods
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the goodness of fit was considerably lower, but nevertheless resulted in similar values
for C∗.

By performing a simple linear regression analysis using half-hourly values of ac-
etaldehyde VMRs and fluxes, it was possible to calculate C∗ for each day (Fig. 7b). In
total 691 days were analyzed, on 67 days of which r2 between VMR and flux was found5

above 0.2 (groups P1, N1). Slope k between the two parameters was negative on 188
days, positive on 102 days. No C∗ was calculated for 401 days due to the goodness
of fit between acetaldehyde VMR and flux being below 0.05. Generally, C∗ was very
similar to the values calculated in 7 day windows. When the slope k was negative, the
compensation point was on average 0.41 and 0.40 ppbv with high and low r2, respec-10

tively. Periods with a positive relationship between VMR and flux resulted in C∗ average
values of 0.49 and 0.54 ppbv (Fig. 7b).

The best positive relationship between half-hourly acetaldehyde concentration val-
ues and fluxes was found on 12 July 2012 (r2 = 0.81), the best negatively correlated
fit was found on 13 May 2009 (r2 = 0.72, Fig. 6). C∗ on days with negative slopes was15

relatively constant in all four years with the exception of 2011, when the compensa-
tion point decreased linearly (r2 = 0.67) from over 0.70 ppbv at the end of March to
0.11 ppbv right before the 2nd cut, after which it increased again to values of up to
1.24 ppbv in October (Figs. 6 and 7b). Slope k was strongly negative during a pe-
riod of high uptake at the end of May 2009 with values as low as −1.87 molm−2 s−1.20

When negative, slope k was found between −0.5 and 0 mol m−2 s−1 on a total of 129
days over all four years. Similarly, days with strongly positive slopes were mainly found
during periods of acetaldehyde emission, for example right after the 1st cut in 2012
(Fig. 7b). However, the occurrence of a negative slope did not necessarily result in
uptake of acetaldehyde (Figs. 6 and 7b).25

Figure 7b showed that finding a clear relationship between half-hourly acetaldehyde
VMRs and fluxes over a longer time period, for example between the 1st and 2nd cut,
posed a difficult task, as it was changing constantly. The relationship between VMRs
and fluxes became clearer when looking at half-hourly bin averages of both parame-
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ters during different times of the year (Fig. 8). In addition, this approach enabled the
calculation of C∗ by inter- or extrapolating the values of the two bins closest to the zero
line and looking at the zero-crossing with the x axis. During different time periods, C∗

was found between 0.05 (in the period snowmelt–1st cut) and 0.19 ppbv (2nd–3rd cut,
Fig. 8a). When all data were pooled, the compensation point was 0.13 ppbv (Fig. 8b).5

In addition, Fig. 8c investigates the relationship between binned VMR and flux in
the four groups previously established in Fig. 7. For days where the relationship be-
tween half-hourly values of VMRs and fluxes yielded a negative correlation with r2

> 0.2 (group N1, Fig. 7b) the compensation point was 0.10 ppbv, and 0.09 ppbv when
r2 was between 0.05 and 0.2 (N2, Fig. 8c). On days with a positive slope k (Fig. 7b) the10

relationship between bin averaged VMRs and fluxes was less clear. For high r2 (P1),
emission fluxes increased linearly with VMRs above a concentration of 0.54 ppbv, while
acetaldehyde exchange fluctuated around zero at VMRs below (Fig. 8c). In group P2,
deposition fluxes were observed above 0.59 ppbv (Fig. 8c). On days with no clear re-
lationship (r2 < 0.05 group F) between VMR and flux on a half-hourly scale, C∗ was15

0.06 ppbv.
Figures 7 and 8 show that the relationship between VMRs and fluxes is complex and

that the correlation between the two parameters can be both negative and positive. For
the purpose of modeling acetaldehyde fluxes at our study site it is important to better
understand the relationship between acetaldehyde concentration and flux, in particular20

whether a significant correlation between these two parameters on a given day ex-
ists, and if it is positive or negative. Therefore, an ANOVA was performed to determine
significant environmental differences between the groups established in Fig. 7b. The
analysis revealed that only groups N1 and P1 were significantly different from each
other, with Tsoil and SWC both being higher in P1 (15.7 ◦C and 0.29 m3 m−3, respec-25

tively) than in N1 (12.1 ◦C and 0.24 m3 m−3). Daily average values of both parameters
and in both groups are illustrated in Fig. 9.

Table 2 examines to what extend measured ancillary data can explain C∗ and slope
k, both resulting from the analysis in Fig. 7b, in forward stepwise regression analyses.
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Generally, results for N1 and P1 can be regarded as the most reliable, as both groups
are characterized by a relatively high correlation between VMR and flux.

Among the different groups between 66–75 % of the C∗ variance could be explained,
whereby acetaldehyde VMR was highly significant and positively correlated with C∗ in
N1, N2 and P2, but was not used in P1, where instead VPD emerged as the most5

important regressor with the highest partial correlation of any parameter in the C∗ re-
gression analysis. While SHF was an important predictor in N1 and not in P1, the
opposite was the case for PAR. NEE was the only parameter that was used in the re-
gression equation of both N1 and P1, being positive in the former group and negative
in the latter, but not significant in either. Most significant variables were found for N2,10

where Tair was positively, but Tsoil negatively correlated with C∗, a significant difference
to P2, where the two PCs changed in sign. Similarly, the PCs of both PAR and NEE
were positive in N2, but negative in both P1 and P2. N2 was also the only group where
the other two ecosystem fluxes, LE and H , were significant (Table 2). Four parameters
were not significant in any of the groups (SWC, PARdif/PAR, PARrefl/PAR, Rnet).15

The regression analysis of slope k resulted in substantial differences between groups
N and P. While the analysis resulted in only one variable being significant in P1 and
P2, 9 and 5 parameters were found at p < 0.05 for N1 and N2, respectively, explaining
86 and 35 % of the observed total variance of slope k between acetaldehyde VMRs
and fluxes (Table 2). Similar to the C∗ analysis, VMR was an important predictor in all20

groups except in P1, where VPD was the most significant parameter and, in contrast
to N1, positively correlated with slope k. Results in N1 and N2 were similar, with SWC
and VMR being positively, PAR negatively correlated. The two temperature parameters
Tair and Tsoil were only significant in N1 and had a negative and positive PC with slope
k, respectively. Other significant parameters in N1 with PCs similar to Tsoil were LE,25

H and PARrefl/PAR. NEE and PARdif/PAR were significant only in N2, while SHF and
Rnet were not significant in any of the groups (Table 2).
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4 Discussion

4.1 Flux variability

The present study shows that air temperature cannot explain ecosystem acetaldehyde
fluxes at the present site. The influence of Tair on observed flux patterns was statistically
insignificant during each of the time periods shown in Table 1 and in addition virtually5

zero in a simple linear regression. Although PAR yielded significant results during cer-
tain time periods, no consistent relationship with acetaldehyde exchange was found.
These findings are in contrast to our hypothesis and an important difference to other
VOCs (e.g. terpenoids), which often exhibit a distinct temperature- or light-driven emis-
sion pattern that is widely used in modeling approaches (Guenther et al., 1995, 2006,10

2012).
Soil parameters seemingly influenced observed emission patterns to a larger degree

than most other ancillary data (Table 1). The significant influence of SWC on emission
fluxes can be explained by increasingly anoxic conditions near the plant roots and
as a consequence thereof increased production of ethanol, an important precursor of15

acetaldehyde (Kreuzwieser et al., 2004). However, the significant positive correlation of
SWC with acetaldehyde fluxes in both the simple and multiple linear regression when
all data are pooled seemed to contradict results by Asensio et al. (2007), who reported
increasing soil uptake of acetaldehyde at higher soil moistures (Table 1).

While it is difficult to find a general explanation for acetaldehyde deposition pro-20

cesses at ecosystem scale, a look at specific, shorter time periods reveals possible
driving forces and the seemingly important role of SWC for acetaldehyde transport to
the meadow. For example, after the meadow became snow-free on 29 March 2009,
environmental conditions changed rapidly over the next 2 weeks. Tsoil, Tair, H , LE and
SHF all increased significantly, but acetaldehyde fluxes were still close to zero. This25

changed on 15 April when the meadow started to incorporate acetaldehyde, the same
time when CO2 uptake started and many parameters further increased, most notably
Tsoil, Tair and LE, while SWC and VMR decreased. Then, during the period of the high-
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est uptake between 12 May and 2 June (Fig. 3), SWC was extremely low and reached
values that were among the lowest over all four years (Fig. 1), while VMR, Tsoil and
Tair continued to rise and CO2 uptake remained the same. During the same period,
the correlation between VMR and flux was high (r2 = 0.48). These observations in the
time period after snowmelt–1st cut 2009 can partially be explained by earlier studies.5

The lack of acetaldehyde emissions during this period could be a direct consequence
of missing or very low ethanol production as a consequence of low SWC (Kreuzwieser
et al., 1999, 2004). Therefore, although the activity of the transpiration stream in the
plants is high as indicated by high LE, only very little ethanol is transported to the leaves
and acetaldehyde production by ethanol oxidation is low (Kreuzwieser et al., 2001). Ac-10

etaldehyde emission associated with this mechanism was described as a leak between
acetaldehyde production and metabolism (Kreuzwieser et al., 2001). At our study site
in Neustift it seems like plants are trying to avoid this leak during the strongest growing
period of the year, the weeks after snowmelt right before the 1st cut, and to incorpo-
rate as much carbon as possible to support their growth. Fittingly, the uptake of ac-15

etaldehyde on 15 April 2009 started about one week after the meadow started to emit
methanol at the same site (Hörtnagl et al., 2011), a compound that is known to be re-
leased as a by-product during cell wall expansion (Fall and Benson, 1996; Galbally and
Kirstine, 2002). The high correlation between acetaldehyde mixing ratios and uptake
could be a consequence of acetaldehyde emitted from nearby sites being transported20

to the meadow where it is rapidly incorporated. However, in the present study it is not
possible to identify acetaldehyde sources outside the investigated flux footprint.

Observations from the period in 2009 described above can also be confirmed on
a broader time scale. An ANOVA identified higher acetaldehyde VMRs on days with
high deposition fluxes (average acetaldehyde flux < −0.08 nmolm−2 s−1) as a sig-25

nificant difference to zero-flux days. In comparison to high emission days (average
flux> 0.08 nmolm−2 s−1), days with strong acetaldehyde uptake were characterized by
significantly higher CO2 uptake, lower SWC and lower sensible heat flux. These results
indicate that the quantification of additional soil parameters accompanied by concur-
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rent ethanol measurements might be indispensable for deciphering the reasons behind
acetaldehyde exchange patterns at ecosystem scale.

The positive correlation of VMRs with acetaldehyde emissions on uptake days (group
f+, Table 1) might be misleading, as emissions of acetaldehyde from the meadow also
cause ambient VMRs to rise. This observation for acetaldehyde is similar to an earlier5

study at the same site, where a highly positive PC between methanol VMRs and fluxes,
pooled over 2 yr, was reported (Hörtnagl et al., 2011). However, no such relationship
could be seen for acetaldehyde when all 4 yr of data were pooled, which resulted in
a close-to-zero PC between the two parameters as a direct result of their bidirectional
relationship on uptake or emission days in combination with the non-existent influence10

of VMRs on acetaldehyde exchange on days with very low or zero fluxes (Table 1).
The negative correlation of acetaldehyde VMRs on days with net uptake (group f−,
Table 1) is more in line with studies reporting an acetaldehyde compensation point
(e.g. Kesselmeier, 2001) and discussed below (see 4.2).

The amount of carbon emitted from the meadow as a result of the net acetaldehyde15

exchange in 2009, 2011 and 2012 corresponded to 2.5–4.2 % of the carbon emitted
due to methanol emissions during the same time period, while the respective value was
considerably higher in 2008 (11.2 %). One reason for the latter could be the late start
of the measurement campaign, where the period between snowmelt and the 1st cut –
a period of high uptake rates in all other years – was only partially captured (Figs. 320

and 5, see also 3.2).
A comparison of eddy covariance acetaldehyde fluxes during undisturbed conditions

with other studies at ecosystem scale is difficult, as earlier publications over agricul-
tural grassland sites mainly focused on the effect of cutting or other compounds like
methanol over shorter time scales (Brunner et al., 2007; Davison et al., 2008; Karl25

et al., 2001a, 2001b, 2001c; Olofsson et al., 2003). Warneke et al. (2002) reported
close-to-zero fluxes right before the cutting of an alfalfa field in August, while Graus
et al. (2013, see addendum) reported average leaf level fluxes of 0.07 nmolm−2 s−1 for
switch grass over a 7 day period in September, both of which are somewhat similar to
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average fluxes of 0.01 nmolm−2 s−1 during August and September in this study. Also in
September, Custer and Schade (2007) found a median flux of −0.01 nmolm−2 s−1 (in-
terquartile range: −0.03 to 0.02) over 19 days above ryegrass. These numbers closely
resemble results from Neustift, where we observed a median flux of −0.02 nmolm−2 s−1

(−0.09 to 0.06) in September.5

Maximum acetaldehyde fluxes in Neustift were considerably higher than exchange
rates reported from various forest ecosystems, where previous studies reported high
fluxes of 0.2–1.2 mgm−2 h−1 (Karl et al., 2002, 2003; Rinne et al., 2007), while max-
imum flux rates in Neustift were 1.5 mgm−2 h−1 during undisturbed conditions and
2.6 mgm−2 h−1 during cutting. However, the maximum average emission from diur-10

nal cycles (Fig. 5) was only 0.04 mgm−2 h−1, which is much lower than the 0.6 and
0.2 mgm−2 h−1 reported by Schade and Goldstein (2001) and Kaser et al. (2013), re-
spectively, above a ponderosa pine plantation and lower than the 0.1 mgm−2 h−1 over
a tropical rain forest (Karl et al., 2004).

Results from measurements including harvesting and drying of harvested plant ma-15

terial compare well to other studies. Davison et al. (2008) reported maximum acetalde-
hyde emissions of 19.4 nmolm−2 s−1 on the day of cutting and a daytime (7 a.m.–
5 p.m.) average of 5.1 nmolm−2 s−1 over a 3 day drying phase in June for a meadow
similar to Neustift near Oensingen, Switzerland. While maximum fluxes during the
1st cut were similar (5.3–14.7 nmolm−2 s−1), daytime averages were generally lower20

(0.6–1.6 nmolm−2 s−1). Similarly, Davison et al. (2008) described average daytime
fluxes of 8.4 nmolm−2 s−1 on the day of cutting, much higher than in Neustift (0.3–
2.5 nmolm−2 s−1). In Oensingen, average daytime emissions decreased by 53 % one
day after the cut, and with the exception of the 1st cutting in 2012, when emissions in-
creased by one order of magnitude, we observed the same decrease in Neustift (54 %25

on average). Average daytime VMRs in Neustift also compared well, decreasing from
0.81 ppbv on the day of cutting to 0.48 ppbv 3 days later (Oensingen: from 1.84 ppbv to
0.29 ppbv).
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Davison et al. (2008) reported emission peaks of about 10 nmolm−2 s−1 due to the
turning of the hay to support the drying process, about half as large as maximum emis-
sions during the cutting. These peaks were also found in Neustift, however, emission
fluxes during the 1st cut in June were often much higher when the hay was turned or
shortly after all grass was removed from the field than during harvesting (Fig. 4, see5

also Sect. 3.3). The abrupt decline of acetaldehyde emissions after the removal of the
hay as seen by Davison et al. (2008) was less distinct in Neustift, especially during the
3rd cut in September, when the influence could be seen for up to 5 days after the event
(Fig. 4).

Our findings are very similar to Karl et al. (2001b), who reported high fluxes of ac-10

etaldehyde between 0.5–3 mgm−2 h−1 after the cutting of a hayfield in August, nearly
the same as those recorded in Neustift (0.7–2.6 mgm−2 h−1). Warneke et al. (2002) de-
scribed daily integrated acetaldehyde emissions of 8.9 mgm−2 from 0.4 kg plant matter
(PM) after the cutting of an alfalfa field in August and the drying on the field over the
following 2 days, which was much lower than 15.9–20.2 mgm−2 during the 2nd cut in15

Neustift, but similar to values observed during the 1st and 3rd cut (4.5–9.6 mgm−2).
In contrast to the alfalfa field the grass in Neustift was normally collected on the day
of cutting or one day later, and some of the emission spikes were caused by the hay-
turning. However, the cut grass was left on the meadow for 2 days in September 2009,
when we recorded 5.3 mgm−2 from 0.43 kgPMm−2.20

On an ecosystem scale, a comparison of acetaldehyde emissions in µg per gram
dry weight (µggdw−1) might provide important information not only when upscaling lo-
cal fluxes to a global scale based on plant functional groups, but also when comparing
eddy covariance fluxes to laboratory experiments. Brilli et al. (2012) showed that leaf or
plant enclosure measurements of BVOCs under laboratory conditions can yield similar25

results in comparison to ecosystem flux measurements scaled to the amount of har-
vested plant material. Several studies have reported acetaldehyde emissions from cut
and drying plants (Warneke et al., 2002), for example 40 µggdw−1 for cut grass from
an enclosure measurement (Kirstine et al., 1998), 20–80 µggdw−1 for drying grass in

26146

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/13/26117/2013/acpd-13-26117-2013-print.pdf
http://www.atmos-chem-phys-discuss.net/13/26117/2013/acpd-13-26117-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
13, 26117–26174, 2013

Acetaldehyde
exchange above

a managed temperate
mountain grassland

L. Hörtnagl et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

an laboratory experiment (Karl et al., 2001b), 3–80 µggdw−1 for cut clover (Trifolium
repens; Brilli et al., 2012; De Gouw et al., 2000; Kirstine et al., 1998) and between 6–
9 µggdw−1 for the day of harvesting and two drying days (Warneke et al., 2002). Brilli
et al. (2012) also give numbers for Dactylis glomerata (1 µg acetaldehyde gdw−1 over
24 h after cutting) and Ranunculus acris (3). In comparison, when the cut grass was5

left on the field in Neustift, we observed acetaldehyde emissions of 1–19 µggdw−1 on
the day of cutting and 6–33 µggdw−1 over two days of drying, with maximum fluxes in
August. Despite the different plant composition these numbers are similar to the find-
ings of Warneke et al. (2002), who reported 6 µggdw−1 on the cut day and 15 µggdw−1

cumulative during cutting and drying. The same study described acetaldehyde VMRs10

of around 2 ppbv directly before and up to 8 ppbv during the cutting, much higher than
in Neustift (around 0.5 and 2.5–4.5 ppbv, respectively).

Acetaldehyde fluxes described by Warneke et al. (2002) were generally very similar
to the present study: after close-to-zero fluxes right before the cutting, acetaldehyde
emissions increased rapidly and reached a maximum on the day after the harvesting,15

with a stronger increase during the drying phase than during the cutting itself. Similar
emission bursts were observed for methanol at the same site by Hörtnagl et al. (2011),
and in the case of acetaldehyde the reason for these massive emissions may be similar,
when acetaldehyde in the liquid phase inside the damaged plant cells is suddenly
exposed to the atmosphere as a consequence of the wounding. The question if these20

pools are always present or if acetaldehyde is formed directly as a consequence of
the harvesting, for example from pyruvate by an unknown mechanism upon wounding
(Loreto et al., 2006), merits further study. Loreto et al. (2006) reported acetaldehyde
emissions remote from the wounding site for Phragmites leaves on leaf level scale,
where emissions from ethanol transported to the leaves seemed unlikely, as no ethanol25

emissions were associated with the acetaldehyde burst. Remotely triggered emissions
due to mechanical stress could also play a role in Neustift, for example after the 1st
cut in 2011 when maximum emissions were observed directly after all grass had been
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removed from the field and all liquid phase acetaldehyde at the wounding site may
already have escaped to the atmosphere (Fig. 4, see also 3.3).

Loreto et al. (2006) further described the absence of acetaldehyde emissions from
Phragmites leaves when the leaves were immediately placed in water instead of leav-
ing them in air, and further reported the possibility of a strong stomatal control on5

acetaldehyde emissions because of wounding or high light exposure as well as a de-
layed response to high temperatures. These observations on leaf level could be one
explanation for the low acetaldehyde emissions on the day of the 1st cut in 2012, fol-
lowed by massive emissions of acetaldehyde on the following two days. On the day of
cutting, a light rain contributed to the already wet conditions in the canopy by falling on10

the cut grass that was still on the field, possibly preventing the majority of acetaldehyde
that was solved in the liquid phase from escaping from the wounding site to the atmo-
sphere by keeping them adsorbed on or within the cut grass. On the next day when
weather conditions were sunny and dry, emissions increased sharply before the ma-
jority of adsorbed acetaldehyde was released in two massive burst during the turning15

and collection of the hay (Fig. 4). This observation could be similar to earlier studies,
where increased acetaldehyde emissions from drying alfalfa after rainfall (Warneke
et al., 2002) and from wetted plant material in the laboratory (Warneke et al., 1999)
were reported. After all grass was removed from the field, fluxes suddenly dropped to
zero, indicating that all previous emissions after the cut were due to the harvesting it-20

self, the temperature-driven drying process or the grass turning. One day after all grass
was removed emissions began to rise tenfold as soon as sunlight reached the vege-
tation in the morning while also surface conductance was high (data not shown). Up
to this point only little light had reached the short vegetation below the overlying grass
cover for nearly 24 h and light conditions for the lower canopy were already relatively25

dark before the harvesting due to high GAI and low PAR. If the observation of a possible
strong stomatal control on acetaldehyde emissions because of wounding or high light
exposure described by Loreto et al. (2006) was to be examined at ecosystem scale,
the conditions during this morning would be a good comparison to respective labo-
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ratory experiments. This pattern of high emissions after all grass was removed from
the field was observed several times (e.g. 1st cut 2011, see also Sect. 3.3). Generally,
these emission bursts of acetaldehyde during and after harvesting events confirm our
hypothesis and could influence the lower atmospheric chemistry on a local scale.

Regarding anthropogenic management actions the spreading of liquid manure on5

the field may constitute another, minor source of acetaldehyde. Earlier studies de-
scribed the strong impact of fertilization on biological and biochemical processes (Ros
et al., 2006). For example, Seewald et al. (2010) reported elevated acetaldehyde emis-
sions from soil samples and a change of microbial community composition after the
application of mineral fertilizer in combination with sewage sludge compost. Therefore,10

increased acetaldehyde emissions during and some days after manure spreading in
2009 and to a lesser extent in 2011 could be a direct effect of increased microbial
activity in the soil. The emission spike on 19 October 2011 at 7 a.m. followed by high
deposition fluxes 30 min later could be a combination of multiple factors: first, acetalde-
hyde production in the soil increased during the first part of fertilization on 18 October,15

but emissions remained low and fluctuated around zero, maybe held back or dampened
by starting dew formation later in the evening. Then, one day later, built-up acetalde-
hyde was released instantly in the morning, the same time when the nightly frost-cover
on the meadow thawed and adsorbed acetaldehyde was revolatized (Seco et al., 2007).
This resulted in a huge emission spike (Fig. 4) and high ambient VMRs. Now, with ac-20

etaldehyde VMRs in the soil being low, a deposition process started according to Fick’s
first law of diffusion and acetaldehyde was transported to the meadow, resulting in a net
uptake of the compound. However, the exact origin of acetaldehyde fluxes cannot be
determined with the eddy covariance method, simultaneous soil measurements of ac-
etaldehyde would definitely expand the room for interpretation of observed exchange25

patterns.
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4.2 Compensation point

Over the course of a year the relationship between acetaldehyde VMRs and fluxes
changed constantly. This complex interaction was reflected by varying values for C∗

throughout the year, which is in accordance with our hypothesis. From a very general
perspective, our results confirm findings by Karl et al. (2005) who found varying com-5

pensation points of loblolly pine needles, with C∗ between 3.7 and 8.5 ppb, which is
by more than one order of magnitude higher than values found for the grassland at
Neustift (Fig. 7, see 3.6) but similar to other tree studies (Cojocariu et al., 2004). Al-
though we did not find C∗ exponentially increasing like described by Karl et al. (2005),
we identified Tair and Tsoil as significant parameters (Table 2).10

The main difference of the present study to other C∗ investigations is the existence of
both a positive and a negative relationship between mixing ratios and fluxes, reflecting
the complex relationship at ecosystem scale (Fig. 7). Table 2 shows that NEE plays
a highly significant role in group N2, meaning a low compensation point in times of high
CO2 uptake, which would facilitate the deposition of acetaldehyde into the plant and fits15

flux observations in this study. In the same group increasing Tsoil lead to decreasing C∗

values, which could in part be a consequence of microbial processes in the soil that
facilitate acetaldehyde uptake. Due to a high goodness of fit between acetaldehyde
VMR and flux, groups N1 and P1 yielded the most reliable results and will be discussed
in the following.20

Some of our observations are in line with findings by Jardine et al. (2008), who de-
scribed C∗ as a function of light, temperature and ambient acetaldehyde concentrations
at leaf level. However, it seems that at ecosystem scale different parameters influence
C∗ during different time periods, strongly depending on whether the correlation between
VMR and flux is positive or negative (Table 2). The high correlation between VMR and25

C∗ in N1 seems to reflect Fick’s first law of diffusion. During periods when both C∗ and
ambient VMRs are low and mixing ratios start to rise, acetaldehyde starts to diffuse
into the plants, i.e. the leaf-internal acetaldehyde levels increase. This in turn causes
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the gradient between internal and ambient acetaldehyde VMRs to decrease, slowing
or stopping the diffusion process. For the gradient to build up again, it needs either less
internally stored acetaldehyde or higher ambient VMRs. As shown before, the meadow
in Neustift only emits minor amounts of acetaldehyde during undisturbed conditions
(Fig. 3), therefore an increase of ambient acetaldehyde mixing ratios might be a more5

likely scenario. At this point, with VMRs further increasing, plants have already taken
up considerable amounts of acetaldehyde and leaf-internal acetaldehyde levels are
relatively high, reflected by a high C∗. Therefore, high compensation points at ecosys-
tem scale at the study site in Neustift might be the consequence of preceding periods
of acetaldehyde uptake in combination with little or no emission fluxes, which would10

mean that an increase of C∗ at our meadow could be controlled by external factors as
opposed to leaf-internal processes (Jardine et al., 2008).

During periods of low ambient VMRs and low C∗ the canopy might further be more
susceptible to uptake of acetaldehyde that was transported to the meadow from ex-
ternal sites. It might be of note that during the strong uptake period before the 1st cut15

2009 analyzed in 4.1, C∗ remains about the same (Fig. 7), indicating that leaf-internal
acetaldehyde might be consumed by an unknown process. Table 2 further shows that
low SHF resulted in lower C∗, meaning that uptake of acetaldehyde is facilitated. This
seems to confirm our findings in Table 1, where decreasing SHF resulted in more ac-
etaldehyde uptake on deposition days.20

The negative slope between acetaldehyde mixing ratios and fluxes calculated in
Fig. 7 is influenced significantly by multiple parameters in N1 (Table 2), most no-
tably VPD and PAR, whereby the former is positively, the latter negatively correlated
with slope k. During periods of high VPD there may be more LE with plants drawing
more water through their roots, which could result in increased ethanol oxidation in the25

leaves and higher leaf-internal acetaldehyde. This in turn would increase C∗, resulting
in a slower deposition of ambient acetaldehyde to the canopy. Similarly, high PAR is of-
ten associated with high Tair, both of which can increase acetaldehyde emission (Loreto
et al., 2006). In such case, increased acetaldehyde production in the plant would lead
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to an increased C∗ and in less uptake of ambient acetaldehyde. This internal produc-
tion might also be fueled by high SWC (more ethanol production) and high LE (more
transport of ethanol to the leaves), both of which decreased the steepness of slope k
in N1 (Table 2).

Discussing the positive correlation between acetaldehyde mixing ratios and respec-5

tive fluxes is challenging (Table 1, Figs. 6, 8), as it seems plausible that high ambient
VMRs are found during and as a result of periods of high acetaldehyde emission at
or near the study site. Also, environmental parameters were not able to explain slope
k in groups P1 and P2 satisfyingly (Table 2), which is an apparent contrast to groups
N1 and N2 and indicates that there might be other factors involved than environmental10

drivers available in this study.

5 Conclusions

Our analysis of acetaldehyde fluxes measured over four growing seasons between
2008–2012 show that in contrast to other VOCs, air temperature and photosynthetic
active radiation do not explain observed acetaldehyde exchange patterns at the inves-15

tigated grassland ecosystem.
The cutting of the meadow resulted in massive bursts of acetaldehyde, either re-

leased on the day of harvesting, during drying when the grass was left on the field or
immediately after all grass was removed from the meadow. Emission values from this
study compared well to laboratory or in situ measurements investigating cutting-related20

acetaldehyde emissions. Due to management events, the meadow acted as a source
of acetaldehyde in all four years, while it was a net sink of acetaldehyde in three of four
years with management actions excluded.

In comparison to days with high acetaldehyde emission, high deposition days during
undisturbed conditions were characterized by higher CO2 uptake rates in combination25

with lower soil water content and lower sensible heat flux, while acetaldehyde VMRs
were similar and higher than on zero-flux days.
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The calculation of acetaldehyde compensation points revealed a complex relation-
ship between ambient acetaldehyde mixing ratios and respective fluxes that changed
constantly throughout the year. While the correlation between these two parameters
was negative during certain time periods as expected, it was positive during others. It
was further shown that slope k associated with negative correlations is influenced by5

multiple environmental parameters, each of which increase or slow down deposition
from the atmosphere to the canopy. In order to model acetaldehyde fluxes at the site
in Neustift it is important to know the relationship between mixing ratios and fluxes on
a given day.

Eddy covariance measurements of acetaldehyde at ecosystem scale would benefit10

greatly when performed in combination with simultaneous soil measurements quan-
tifying VOC exchange, measurements within the canopy to learn more about (VOC)
gradients and laboratory experiments targeting ethanol production in plants.
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Table 1. Partial correlations (PC) and tolerance (tol) of a multiple linear regression analysis
and correlation coefficients (r) of a simple linear regression analysis using daily average values
of air temperature (Tair), soil temperature (Tsoil) and soil water content (SWC) in 5 cm depth,
soil heat flux (SHF), net ecosystem CO2 exchange (NEE), latent (LE) and sensible (H) heat
flux, photosynthetically active radiation (PAR), fraction of diffuse (PARdif/PAR) and reflected
(PARrefl/PAR) PAR, total net radiation (Rnet), vapor pressure deficit (VPD) and acetaldehyde
volume mixing ratios. Management events were excluded from the analysis. Bold numbers
highlight p < 0.05, except bold underlined numbers resulted in p < 0.001. all. . . all fluxes, f − . . .
deposition fluxes< −0.03 nmolm−2 s−1, f + . . . emission fluxes> 0.03 nmolm−2 s−1, f0 . . . fluxes
between −0.03 and 0.03 nmolm−2 s−1.

Multiple Linear Regression
time period 2008–2012 snow melt–1st cut 1st cut–2nd cut

all f− f+ f0 2009 2011 2012 2008–2012 2008 2009 2011 2012 2008–2012

Tair PC 0.07 −0.12 0.15 0.11 0.09 −0.19 0.25 0.06 −0.05 0.13 −0.06 −0.19 −0.05
tol 0.04 0.04 0.04 0.03 0.02 0.01 0.03 0.04 0.05 0.03 0.03 0.02 0.06

Tsoil PC −0.06 0.10 −0.08 −0.09 −0.21 0.29 −0.40 −0.08 0.25 −0.31 0.08 0.07 0.07
tol 0.06 0.08 0.06 0.04 0.05 0.02 0.05 0.08 0.17 0.12 0.18 0.08 0.17

SWC PC 0.11 0.06 0.19 0.11 0.10 0.16 −0.20 0.01 0.22 0.03 0.15 0.28 0.18
tol 0.60 0.57 0.57 0.62 0.18 0.11 0.16 0.26 0.29 0.27 0.24 0.26 0.76

SHF PC −0.05 0.16 −0.16 −0.14 −0.07 0.14 −0.12 0.00 0.07 0.00 −0.01 0.10 0.02
tol 0.13 0.11 0.12 0.11 0.16 0.06 0.08 0.19 0.03 0.04 0.04 0.04 0.10

NEE PC 0.28 −0.02 0.10 0.20 0.19 0.25 −0.07 0.10 0.18 0.08 −0.23 0.24 0.15
tol 0.37 0.30 0.36 0.31 0.17 0.16 0.18 0.21 0.10 0.18 0.13 0.13 0.27

LE PC 0.12 0.07 −0.02 −0.09 −0.03 0.14 0.04 0.00 0.19 0.16 0.01 0.19 0.17
tol 0.13 0.13 0.13 0.11 0.08 0.09 0.07 0.12 0.13 0.03 0.06 0.06 0.11

H PC 0.08 −0.01 0.02 0.14 0.11 0.29 0.01 0.12 0.00 0.04 −0.06 0.32 −0.02
tol 0.24 0.19 0.23 0.23 0.09 0.23 0.12 0.18 0.17 0.10 0.08 0.13 0.20

PAR PC 0.13 −0.03 0.11 −0.03 0.10 0.14 0.15 0.20 0.03 0.06 −0.24 −0.07 0.06
tol 0.03 0.02 0.03 0.03 0.02 0.01 0.02 0.03 0.01 0.01 0.01 0.01 0.02

PARdif/PAR PC 0.11 −0.05 0.12 −0.03 0.09 0.19 0.03 0.18 0.05 0.06 −0.32 0.09 0.02
tol 0.13 0.11 0.14 0.12 0.06 0.04 0.07 0.08 0.05 0.04 0.04 0.03 0.05

PARrefl/PAR PC 0.02 0.05 0.14 0.18 −0.31 0.07 −0.11 −0.02 −0.10 −0.08 0.36 −0.07 0.21
tol 0.67 0.85 0.83 0.42 0.39 0.54 0.54 0.79 0.10 0.18 0.12 0.19 0.47

Rnet PC −0.08 −0.07 0.01 0.13 −0.07 −0.30 −0.06 −0.18 0.10 −0.09 0.29 0.03 −0.03
tol 0.06 0.06 0.04 0.06 0.11 0.04 0.05 0.09 0.04 0.03 0.03 0.04 0.07

VPD PC −0.13 −0.11 −0.12 0.11 −0.01 0.07 −0.28 −0.09 −0.07 −0.16 −0.16 0.13 −0.16
tol 0.11 0.09 0.12 0.11 0.08 0.05 0.08 0.08 0.04 0.06 0.03 0.05 0.07

acetaldehyde VMR PC 0.02 −0.29 0.38 0.00 −0.11 0.12 0.10 0.15 0.29 0.17 0.09 0.29 0.04
tol 0.72 0.65 0.74 0.67 0.30 0.36 0.43 0.70 0.41 0.27 0.19 0.17 0.42

multiple r2 0.15 0.30 0.21 0.14 0.60 0.31 0.47 0.22 0.59 0.29 0.54 0.64 0.26
N 647 255 157 235 60 76 63 213 34 49 45 41 169
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Table 1. Continued.

Multiple Linear Regression Simple Linear Regression
2nd cut–3rd cut 3rd cut–snow cover 2008–2012

2008 2009 2011 2012 2008–2012 2008 2009 2012 2008–2012

Tair PC 0.06 −0.16 −0.39 0.52 0.07 0.08 0.10 −0.17 0.04 r −0.03
tol 0.01 0.03 0.01 0.01 0.03 0.01 0.02 0.02 0.03 N 781

Tsoil PC 0.10 0.22 −0.06 −0.54 −0.10 0.03 −0.11 0.40 −0.08 r −0.01
tol 0.03 0.06 0.03 0.02 0.08 0.02 0.02 0.02 0.05 N 781

SWC PC −0.20 −0.07 −0.21 0.74 −0.04 0.29 −0.14 0.42 −0.09 r 0.18
tol 0.29 0.25 0.19 0.16 0.62 0.19 0.09 0.23 0.55 N 777

SHF PC −0.26 0.15 0.35 −0.36 −0.14 −0.05 −0.03 0.05 −0.01 r 0.03
tol 0.03 0.04 0.02 0.01 0.05 0.05 0.06 0.06 0.11 N 777

NEE PC −0.09 −0.09 0.39 −0.11 0.33 0.42 0.43 0.04 0.27 r 0.21
tol 0.07 0.18 0.26 0.06 0.31 0.39 0.69 0.43 0.74 N 676

LE PC −0.08 −0.07 0.48 −0.22 0.00 −0.06 0.09 0.33 0.05 r −0.01
tol 0.03 0.03 0.02 0.02 0.07 0.09 0.04 0.11 0.15 N 691

H PC 0.08 0.31 −0.07 −0.40 −0.04 −0.29 0.44 −0.27 0.04 r 0.14
tol 0.08 0.12 0.15 0.08 0.21 0.05 0.12 0.03 0.16 N 720

PAR PC 0.24 −0.27 −0.25 0.03 0.19 −0.17 −0.20 −0.01 −0.04 r 0.03
tol 0.01 0.01 0.01 0.01 0.02 0.01 0.02 0.03 0.05 N 781

PARdif/PAR PC 0.38 −0.33 0.11 −0.15 0.13 −0.16 −0.12 −0.03 −0.06 r −0.07
tol 0.02 0.03 0.04 0.02 0.06 0.03 0.13 0.04 0.12 N 777

PARrefl/PAR PC −0.17 0.23 0.10 0.33 −0.12 0.47 0.12 0.24 0.08 r 0.04
tol 0.19 0.15 0.14 0.04 0.55 0.04 0.61 0.26 0.74 N 777

Rnet PC 0.20 −0.09 0.08 0.37 0.03 −0.01 −0.12 0.02 0.04 r −0.01
tol 0.02 0.06 0.02 0.01 0.06 0.19 0.12 0.07 0.16 N 777

VPD PC 0.00 −0.02 −0.23 −0.66 −0.16 −0.06 −0.09 −0.15 0.06 r −0.05
tol 0.05 0.07 0.04 0.05 0.10 0.05 0.07 0.05 0.15 N 781

acetaldehyde VMR PC 0.17 0.69 0.38 0.17 0.06 −0.24 −0.29 0.12 −0.32 r −0.06
tol 0.40 0.32 0.18 0.21 0.47 0.12 0.39 0.31 0.61 N 771

multiple r2 0.67 0.64 0.76 0.85 0.21 0.70 0.48 0.49 0.23
N 32 41 28 24 125 25 51 33 124
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Table 2. Partial correlations of forward stepwise multiple linear regression analyses of the com-
pensation point (C∗) and slope k calculated per day from half-hourly acetaldehyde VMR and
flux values, using daily average values of air temperature (Tair), soil temperature (Tsoil) and
soil water content (SWC) in 5 cm depth, soil heat flux (SHF), net ecosystem CO2 exchange
(NEE), latent (LE) and sensible (H) heat flux, photosynthetically active radiation (PAR), frac-
tion of diffuse (PARdif/PAR) and reflected (PARrefl/PAR) PAR, total net radiation (Rnet), vapor
pressure deficit (VPD) and acetaldehyde volume mixing ratios (VMR). Bold numbers highlight
p < 0.05, except bold underlined numbers resulted in p < 0.001. Groups represent direction of
correlation and goodness of fit between acetaldehyde VMR and flux: N1. . . negative slope,
r2 > 0.2, N2. . . negative slope, 0.05 < r2 < 0.2, P1. . . positive slope, r2 > 0.2, P2. . . positive
slope, 0.05 < r2 < 0.2. All management data were excluded from the analysis.

dependent variable C∗ slope k
group N1 N2 P1 P2 N1 N2 P1 P2
slope flux vs. VMR negative positive negative positive
correlation flux vs. VMR high low high low high low high low

Tair −0.26 0.28 −0.26 −0.54
Tsoil −0.30 0.31 0.60 0.29
SWC −0.15 0.49 0.31
SHF 0.42 −0.16 0.06 0.30
NEE 0.33 0.34 −0.34 −0.37 −0.28
LE −0.20 0.49 0.10
H 0.22 0.36 0.56
PAR 0.25 −0.59 −0.24 −0.78 −0.28 −0.16
PARdif/PAR 0.15 0.02 −0.39 −0.21
PARrefl/PAR 0.47
Rnet −0.09 0.17 0.21
VPD 0.84 0.34 0.75 −0.42
acetaldehyde VMR 0.69 0.73 0.72 0.65 0.38 −0.30

0.66
multiple r2 0.66 0.68 0.75 0.71 0.86 0.35 0.19 0.15
N 29 127 28 61 29 127 28 61
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Fig. 1. Daily averages of acetaldehyde flux and volume mixing ratio (VMR), photosynthetically
active radiation (PAR), air temperature, soil temperature in 5 cm depth, soil water content in
5 cm depth, relative humidity, vapor pressure deficit, green plant area index (GAI) and daily
sums of precipitation over four years of VOC measurements from 2008–2009 and 2011–2012.
Vertical lines show management dates, numbers 1, 2 and 3 in green squares mark the 1st, 2nd
and 3rd cutting of the meadow, respectively, while M denotes manure spreading.

26166

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/13/26117/2013/acpd-13-26117-2013-print.pdf
http://www.atmos-chem-phys-discuss.net/13/26117/2013/acpd-13-26117-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
13, 26117–26174, 2013

Acetaldehyde
exchange above

a managed temperate
mountain grassland

L. Hörtnagl et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 2. Half-hourly acetaldehyde fluxes over four years of VOC measurements. Numbers 1, 2
and 3 in green squares mark the 1st, 2nd and 3rd cutting of the meadow, respectively, while M
denotes manure spreading. Horizontal blue lines show the start and end of months.

26167

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/13/26117/2013/acpd-13-26117-2013-print.pdf
http://www.atmos-chem-phys-discuss.net/13/26117/2013/acpd-13-26117-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
13, 26117–26174, 2013

Acetaldehyde
exchange above

a managed temperate
mountain grassland

L. Hörtnagl et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 3. Cumulative and daily average acetaldehyde fluxes over four years of VOC measure-
ments. Vertical lines show management dates, numbers 1, 2 and 3 in green squares mark the
1st, 2nd and 3rd cutting of the meadow, respectively, while M denotes manure spreading.

26168

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/13/26117/2013/acpd-13-26117-2013-print.pdf
http://www.atmos-chem-phys-discuss.net/13/26117/2013/acpd-13-26117-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
13, 26117–26174, 2013

Acetaldehyde
exchange above

a managed temperate
mountain grassland

L. Hörtnagl et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 4. The influence of management events on acetaldehyde fluxes and volume mixing ra-
tios (VMR) during four years of VOC measurements, the filled rectangle marks the day of the
management action.
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Fig. 5. Diurnal cycles of acetaldehyde fluxes and volume mixing ratios (VMR) during different
time periods over four years of VOC measurements. Management data were excluded from the
analysis.
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Fig. 6. Four days with different relationships between half-hourly acetaldehyde volume mixing
ratio (VMR) and flux including linear regression lines, showing negative and positive correlation
between the two parameters on days with net emission and net deposition of acetaldehyde.
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Fig. 7. Results of a simple linear regression between acetaldehyde VMR as the independent
variable and flux as the dependent parameter, quantifying the compensation point (C∗), slope k,
r2 and the respective acetaldehyde flux on two different time scales. Panel (a) shows C∗ calcu-
lated from daily average values in 7 day windows when a minimum of four days was present in
each window. Panel (b) illustrates C∗ and corresponding parameters calculated from half-hourly
values per day. Colors represent direction of correlation and goodness of fit between acetalde-
hyde VMRs and fluxes: N1. . . negative slope, r2 > 0.2, N2. . . negative slope, 0.05 < r2 < 0.2,
P1. . . positive slope, r2 > 0.2, P2. . . positive slope, 0.05 < r2 < 0.2. All management data were
excluded from the analysis. Vertical lines show management dates.
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Fig. 8. Bin averages of half-hourly acetaldehyde volume mixing ratio (VMR) and flux (a) during
different time periods and over all four years (551–725 values per bin), (b) using all avail-
able data from all four years (2542 values per bin) and (c) in groups defined by the direc-
tion of correlation and goodness of fit between half-hourly acetaldehyde VMRs and fluxes:
N1. . . negative slope, r2 > 0.2, N2. . . negative slope, 0.05 < r2 < 0.2, P1. . . positive slope, r2 >
0.2, P2. . . positive slope, 0.05 < r2 < 0.2, F. . . zero slope, r2 < 0.05. All management data were
excluded from the analysis.
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Fig. 9. Daily average values of soil temperature (Tsoil) and soil water content (SWC) in two
groups defined by the direction of correlation and goodness of fit between half-hourly acetalde-
hyde VMRs and fluxes, where N1. . . negative slope, r2 > 0.2, P1. . . positive slope, r2 > 0.2. All
management data were excluded from the analysis.
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