

Supplementary Material for:

An assessment of the performance of the Monitor for AeRosols and GAses in ambient air (MARGA): a semi-continuous method for soluble compounds

Ian C. Rumsey¹, Kenneth A. Cowen², John T. Walker¹, Thomas J. Kelly²,
Elizabeth A. Hanft², Kevin Mishoe³, Chris Rogers³, Rob Proost⁴,
Gregory M. Beachley⁵, Gary Lear⁵, Timoer Frelink⁴, Rene P. Otjes⁶

¹ Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, U.S.A

² Battelle, Columbus, OH, 43201, U.S.A

³ AMEC, Jacksonville, FL, 32669, U.S.A

⁴ Metrohm Applikon B.V., Schiedam, The Netherlands

⁵ Clean Air Markets Division, U.S. Environmental Protection Agency, Washington, DC 20460, U.S.A.

⁶ Energy Research Centre of the Netherlands (ECN), Petten, The Netherlands

Contents

Summary of the results of the ETV report.....	2
Differences in the reduction and analysis of the data between this manuscript and the ETV report.....	3
Performance of the MARGA in comparison to the SO ₂ pulsed fluorescence analyzer (PFA).....	5
Information on chemicals.....	7
Supplementary tables and figures.....	8

1 **Summary of the results of the ETV report**

2 Table S1. Summary of the accuracy and precision results of the MARGA Environmental
 3 Technology Verification (ETV) program report (Table from U.S. EPA, 2011).

Parameter Evaluated	Method of Evaluation	Results				
		Analyte	MARGA 1		MARGA 2	
			Slope	Intercept ($\mu\text{g}/\text{m}^3$)	Slope	Intercept ($\mu\text{g}/\text{m}^3$)
Accuracy	Regression analysis comparison to reference samples	SO ₂	1.16^a	0.16	1.08	0.13
		HNO ₃	0.780	0.35	0.596	0.28
		NH ₃	0.930	-0.14	0.987	-0.08
		SO ₄ ²⁻	1.02	0.30	0.986	0.22
		NO ₃ ⁻	2.48	-0.15	1.73	-0.05
		NH ₄ ⁺	1.02	-0.23	0.993	-0.25
		SO ₂ ^b	0.962	0.50	0.890	0.44
Accuracy	Calculation of MARPD between MARGA results and reference method results	Analyte	MARPD			
			MARGA 1	MARGA 2		
		SO ₂	31.2%	18.9%		
		HNO ₃	34.1%	25.8%		
		NH ₃	33.1%	18.2%		
		SO ₄ ²⁻	17.3%	9.1%		
		NO ₃ ⁻	86.9%	58.7%		
Precision	Comparison of results from duplicate monitoring systems	Analyte	1-Hour MARPD			
			SO ₂	10.4%		
		HNO ₃		24.8%		
		NH ₃		22.4%		
		SO ₄ ²⁻		6.5%		
		NO ₃ ⁻		27.3%		
		NH ₄ ⁺		6.3%		

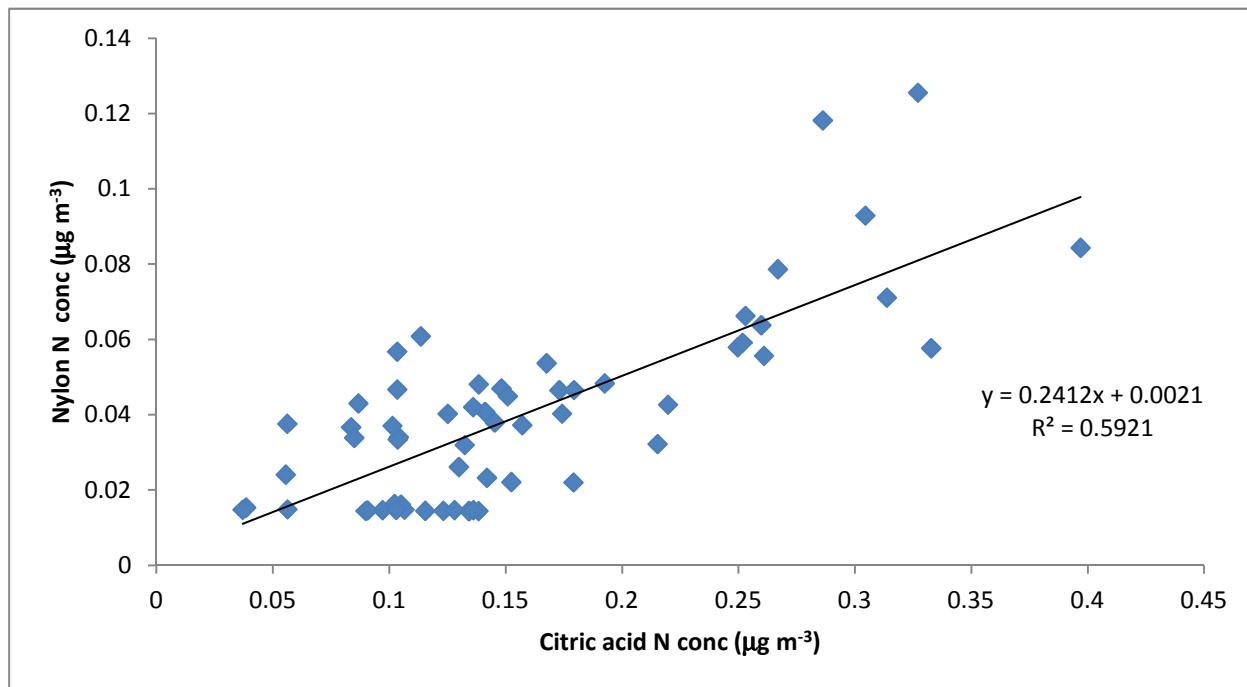
4 ^a Bolded numbers indicate that the performance goal was met. The performance goals are provided in the
 5 manuscript.

6 ^b Comparison to SO₂ pulsed fluorescence analyzer (1 hr data), all other comparisons relative to 12-hr denuder/filter
 7 pack.

8

9

10


11

1 **Differences in the reduction and analysis of the data between this manuscript and the ETV**
2 **report**

3 A description of the data reduction and analysis used in this manuscript is provided in
4 Sections 3.1 (raw data adjustments) and 3.2 (data collection and detection limits). For the data
5 used in the ETV report, none of the raw data adjustments described in this manuscript (section
6 3.1) were applied, with the exception of subtracting an NH₃ denuder blank (blanks were not
7 subtracted from other compounds). Treatment of data in regards to detection limits was also
8 different between the ETV report and this manuscript. In the ETV report, both MARGA and
9 denuder/filter pack 12-hour concentrations less than twice the MARGA detection limit (2DL)
10 were excluded from comparison. For the manuscript, measured concentrations were assessed in
11 comparison to their respective measurement system detection limit. As described in the
12 manuscript, there was a significant amount of NO₃⁻ and HNO₃ concentrations below 2DL (see
13 Table 1 in manuscript). Therefore for the manuscript, 12-hour concentrations <2DL were
14 included for both the MARGA and the denuder/filter pack. In the ETV report, 1-hour MARGA
15 data and 12-hour denuder/ filter pack below the detection limit were assigned a ½ DL value. For
16 the manuscript, concentration values below the DL were kept as measured.

17 In the filter pack system, the Teflon filter typically captures the majority of NH₄NO₃. In
18 addition, there are two back-up filters to capture volatized NH₄NO₃ from the Teflon filter, a
19 nylon filter to collect NO₃⁻ as HNO₃ and a citric acid filter to collect NH₄⁺ as NH₃. For the ETV
20 report, NO₃⁻ concentrations were calculated as the sum of concentrations on the Teflon and nylon
21 filters and NH₄⁺ concentrations as the sum of concentrations on the Teflon and citric acid filters.
22 For the manuscript, a quality assurance (QA) assessment of volatilized NH₄NO₃ on the nylon
23 and citric acid filters was conducted based on the theory that the molar equivalent nitrogen (N)
24 concentrations on the filters should be the same. Analysis of the molar N concentrations from the

1 two filters was conducted using linear regression (see Figure S1).

3 **Figure S1.** The relationship between the nitrogen (N) concentrations on the nylon and citric acid
4 filters.

5 The line of best fit shows that the citric acid filter has N concentrations \approx 4 times higher than that
6 of the nylon filter. Analysis of Figure S1 and the filter pack blank results indicates that a
7 significant but variable blank associated with the citric acid filter is likely contributing to this
8 result. Therefore, for the manuscript, the sum of concentrations on the Teflon and nylon filters is
9 used to calculate both NH_4^+ and NO_3^- concentrations. NO_3^- volatilized from the Teflon filter was
10 corrected by adding the amount of NO_3^- collected on the backup nylon filter to the NO_3^-
11 remaining on the Teflon filter. Similarly, NH_4^+ lost from the Teflon filter was estimated and
12 corrected by assuming that the NO_3^- collected on the backup nylon filter was associated entirely
13 with NH_4NO_3 volatilized from the Teflon filter.

1 In the manuscript, there are corrections from the ETV report. As stated earlier in this
2 section, in the ETV report a NH₃ denuder blank was subtracted from the measured
3 concentrations. However, during this calculation the units were not converted from $\mu\text{g-N}$ to $\mu\text{g-}$
4 NH₃. Therefore, the NH₃ denuder concentrations reported and analyzed in the ETV report are
5 systematically 17.65% lower than they should have been. Small errors associated with the
6 denuder/filter pack blank results in the ETV report should be noted. Specifically, five blank
7 values were reported in that report, instead of the correct number of six and also it was not stated
8 that the units presented for blank results are $\mu\text{g-N}$ for NH₃, NH₄⁺, HNO₃, and NO₃⁻ and $\mu\text{g-SO}_4$
9 for SO₂ and SO₄²⁻. However, these blank errors had a negligible impact on the results of the
10 ETV report.

11

12 **Performance of the MARGA in comparison to the SO₂ pulsed fluorescence analyzer (PFA)**

13 As discussed in the manuscript, the performance of the MARGA in measuring SO₂ was
14 also evaluated in comparison to a 43S SO₂ PFA (Thermo Environmental Instruments (TEI),
15 Mountain View, CA), which measures SO₂ continuously. SO₂ PFA concentrations were
16 collected as five minute averages. The SO₂ PFA was zeroed and spanned daily and
17 concentrations were adjusted based on the results of the zero and span. The accuracy of the
18 MARGA in comparison to the SO₂ PFA was evaluated using the same methodology as for the
19 denuder/filter pack. Therefore, the accuracy of the MUs was evaluated by calculating the median
20 absolute relative percent difference (MARPD) relative to SO₂ PFA concentrations and by
21 determining the slope value using linear regression analysis. However, as the SO₂ PFA makes
22 five minute average measurements, the accuracy evaluation was conducted for both 1-hour and
23 12-hour averaged concentrations.

1 For the SO₂ PFA, data was excluded during the daily zero and span and also due to
2 occasional instrument malfunction. As mentioned, SO₂ data was measured using 5-minute
3 averages. Of a possible 8640 five minute data averages during the ETV period, ≈98% (8319) of
4 them contained valid data. For ≈75% of the ETV period, daily zero and span events were 45 min
5 in length and were during one individual hour. This resulted in there being only 25% of 5 minute
6 averages valid during an individual hour, and thus these hours were excluded. Accordingly
7 during the ETV, the SO₂ PFA had a data collection of ≈96% for 1 hour averages. There were
8 always 11 valid hours of data for each 12 hour average, therefore no 12 hour average data period
9 was excluded.

10 For the SO₂ PFA, ≈29% (1 hour) or 20% (12 hour) of data was below the DL of 0.26 µg
11 m⁻³ (converted from 0.1 ppb, assuming standard atmospheric pressure (1 atm) and standard
12 temperature (298 K), and ≈37% (1 hour) or ≈33% (12 hour) of data was below 2DL. The amount
13 of data either close to or below the DL should be taken into consideration when comparing the
14 pulsed fluorescence analyzer SO₂ concentrations to other instruments.

15 The SO₂ concentration trend for the PFA, as well as the concentration trends for the MUs
16 and the denuder are shown in Figure S2. The average SO₂ concentration measured during the
17 ETV by the PFA was $2.07 \mu\text{g m}^{-3} \pm 2.86$. The SO₂ concentration measured by the denuder was
18 extremely similar ($2.08 \mu\text{g m}^{-3} \pm 2.64$). MU concentrations were slightly higher than both the
19 PFA and the denuder with MU1 measuring an average SO₂ concentration of $2.38 \mu\text{g m}^{-3} \pm 2.94$
20 and MU2 measuring an average concentration of $2.20 \mu\text{g m}^{-3} \pm 2.79$. The MARGA also
21 performed well in comparison to the SO₂ PFA. The slope values for the MARGA concentrations
22 against the 12-hour PFA concentrations were 1.02 for MU1 and 0.96 for MU2 (Figure S3a),
23 which is lower than the slope values for the MARGA against the denuder (1.11 for MU1, 1.05

1 for MU2). Against 1-hour averaged PFA concentrations (Figure S3b), the slope values were as
2 expected similar to the 12-hour averaged values (1.00 for MU, 0.94 for MU2).

3 The MARPD values for SO₂ between the MARGA and 12-hour averaged PFA
4 concentrations were 20.8% for MU1 and 14.6% for MU2, which was similar to the MARPD
5 between the MUs and the denuder (20.3% for MU1, 10.9% for MU2). Against 1-hour averaged
6 PFA concentrations, MARPD values were higher than those for 12-hour PFA, 28.8% for MU1
7 and 22.1% for MU2, respectively. These higher values are partly due to the low 1-hour
8 concentrations used in these calculations.

9 The denuder was also compared to the 12 hour averaged PFA concentrations. Figure S4
10 presents the SO₂ regression analysis between the two measurement techniques. The slope was
11 0.91, which is lower than either of the MU's slope value against the PFA. The accuracy MARPD
12 was 12.5%, which is similar to the MARPD between the MUs and the 12 hour PFA values.

13

14 **Information on chemicals**

15 All MARGA solutions were prepared in 18.2 MΩ.cm DDI water. 30% pure H₂O₂ was
16 used to provide a H₂O₂ concentration of 10 ppm for the absorption solution. Anion eluent (7.0
17 mmol/8.0 mmol Na₂CO₃/ NaHCO₃) was prepared from pure material (>99.5%, ACROS
18 Organics, Fisher Scientific, Pittsburgh, PA, USA). 2M HNO₃ (Sigma-Aldrich) was used to
19 prepare the cation eluent (3.2 mmol). For the regenerant, 85% phosphoric acid was used. Pure
20 NH₄NO₃ (99.9%, certified ACS, Fisher Scientific) and (NH₄)₂SO₄ (99.0% certified ACS, Fisher
21 Scientific) were used to prepare additional liquid standards of NH₄⁺, NO₃⁻, and SO₄²⁻.

22

1 **Supplementary tables and figures**

2 Table S2. Results of blank and external standard run on both MUs after the ETV period.

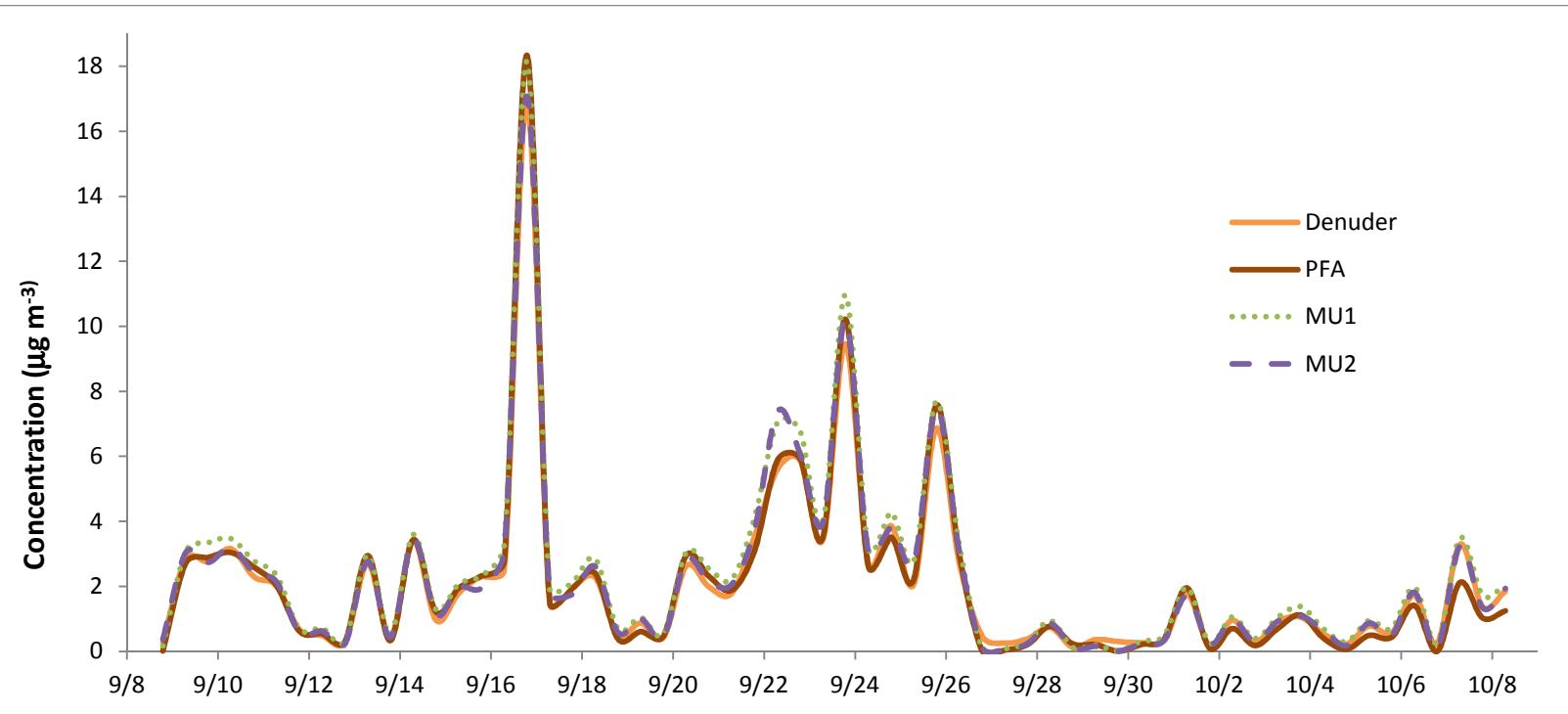
	SO ₂		HNO ₃		NH ₃		SO ₄ ²⁻		NO ₃ ⁻		NH ₄ ⁺	
	MU1	MU2	MU1	MU2	MU1	MU2	MU1	MU2	MU1	MU2	MU1	MU2
Obs Blank ^a	0.132 ^c (0.039) ^d	0.153 (0.039)	0.077 (0.066)	0.024 (0.011)	0.004 (0.010)	0	0.147 (0.026)	0.147 (0.019)	0.026 (0.027)	0.038 (0.027)	0 (0.027)	0.5 (0.5)
	n = 36 ^e	n = 26	n = 36	n = 37	n = 37	n = 37	n = 36	n = 32	n = 37	n = 35	n = 37	n = 36
Exp Conc ^a	1.085	1.068	1.759	1.732	1.048	1.031	1.626	1.601	1.731	1.704	1.110	1.092
Obs Conc ^{a, b}	1.134 (0.025)	1.131 (0.095)	1.902 (0.033)	1.903 (0.040)	0.810 (0.029)	0.780 (0.038)	1.700 (0.027)	1.657 (0.020)	1.926 (0.035)	1.887 (0.047)	0.949 (0.023)	0.862 (0.020)
	n = 19	n = 20	n = 18	n = 20	n = 19	n = 18	n = 20	n = 20	n = 20	n = 19	n = 19	n = 19
% analytical bias	+4.5	+5.9	+8.1	+9.9	-22.7	-24.4	+4.5	+3.5	+1.3	+10.7	-14.5	-21.1

12 ^a Units are $\mu\text{g m}^{-3}$

13 ^b The blank value has been subtracted from the observed concentration.

14 ^c Mean values

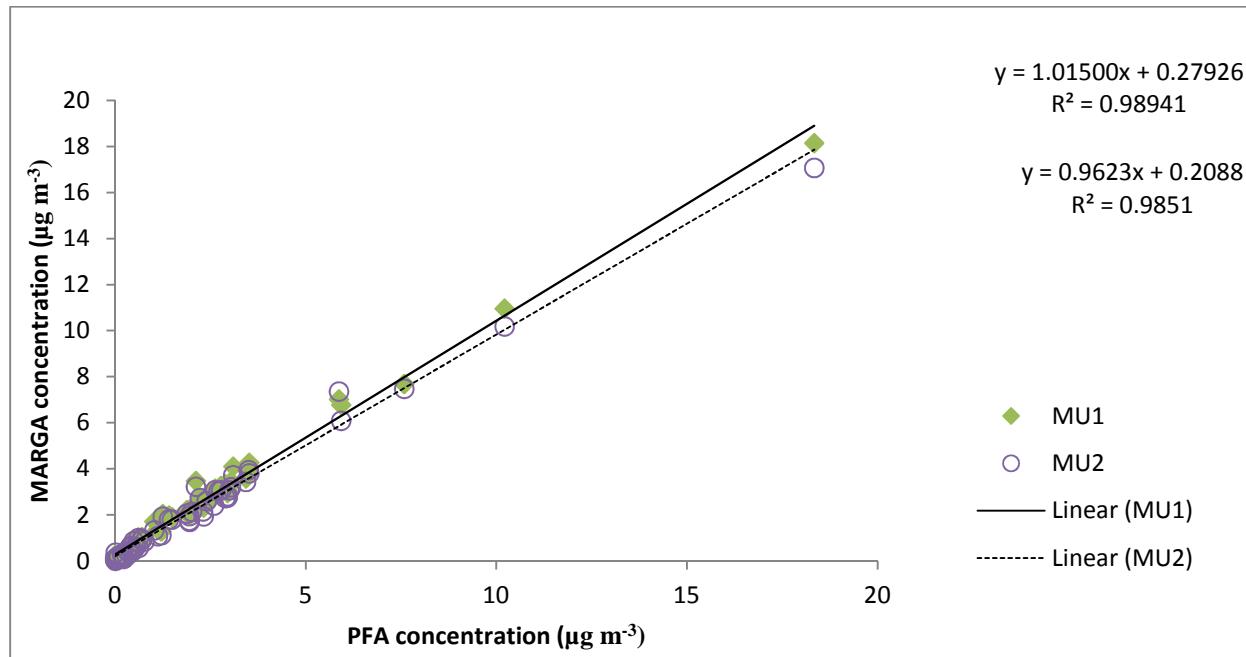
15 ^d 1 standard deviation


16 ^e n is the number of hourly values

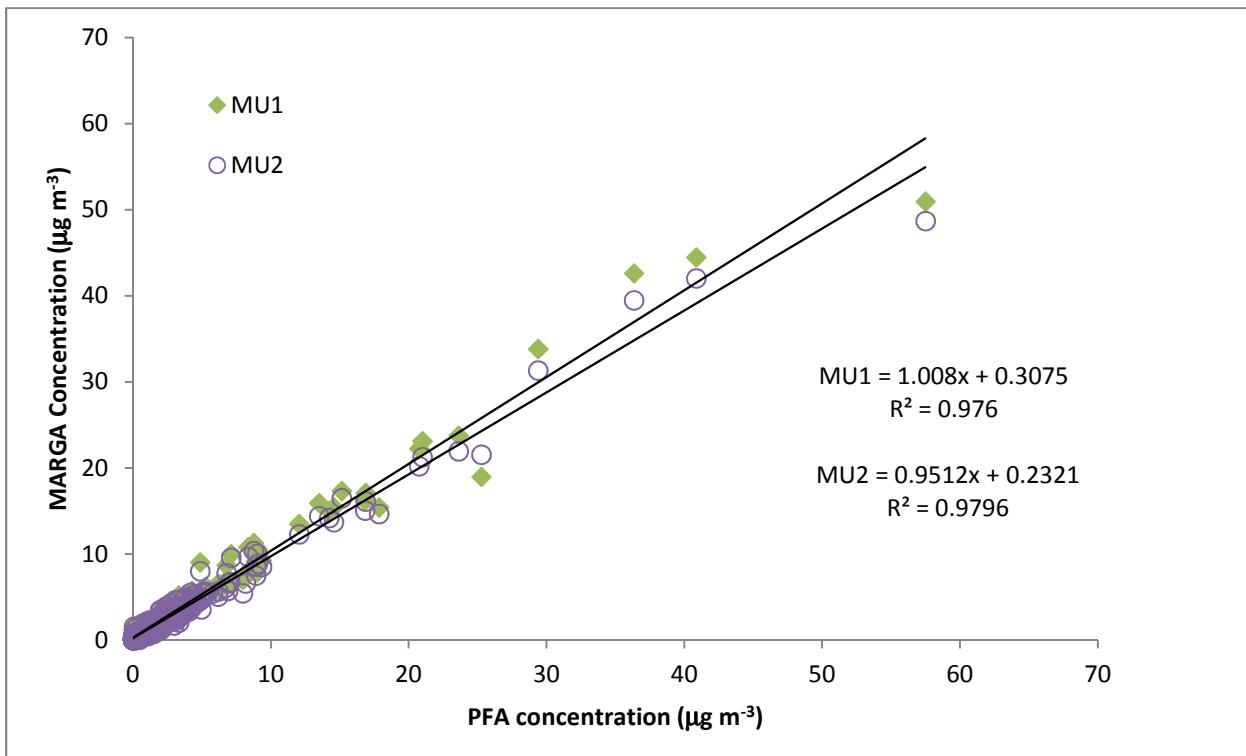
1 Table S3. Results of denuder/filter pack trip blanks (n= 6) collected during the ETV period.

Blank		
		(μ g)
Na ₂ CO ₃ denuder	SO ₂	0.24 ^a (0.32) ^b
	HNO ₃	0
H ₃ PO ₄ denuder	NH ₃	1.38 (0.43)
Teflon filter	SO ₄ ²⁻	0.14 (0.34)
	NO ₃ ⁻	0.05 (0.13)
	NH ₄ ⁺	0.31 (0.12)
Nylon filter	NO ₃ ⁻	0

2 ^a Mean value


3 ^b 1 standard deviation

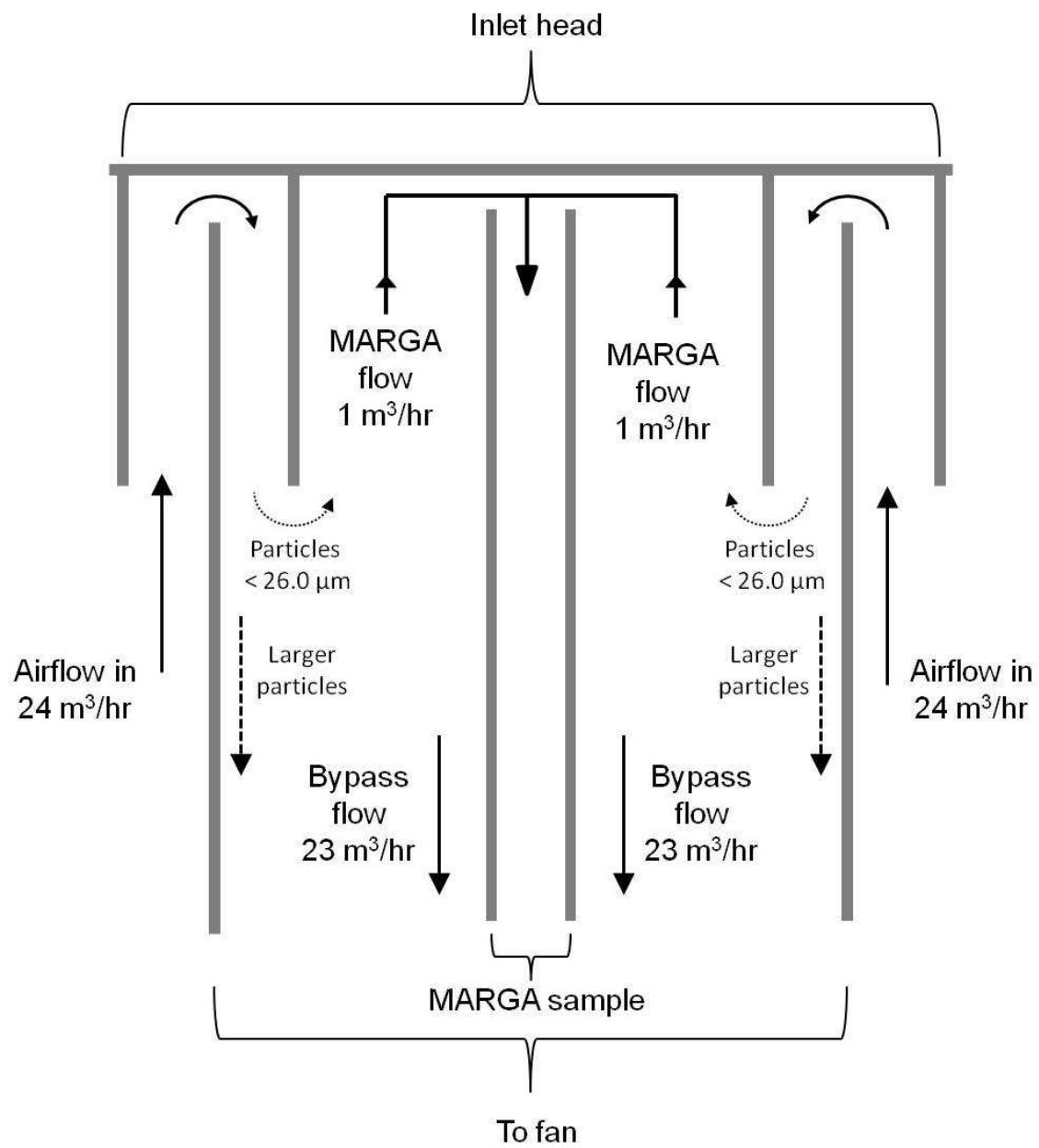
1


2 Figure S2. PFA, Denuder and MUs measured SO_2 concentrations during the ETV period (September 8th, 2010-October 8th, 2010).

1 a)

2

3 b)


4

5 Figure S3. Regression analysis of MARGA SO_2 concentrations against a) 12-hour PFA SO_2
6 concentrations b) 1-hour PFA SO_2 concentrations.

1

2 Figure S4. Regression analysis of denuder SO_2 concentrations against 12-hour PFA
3 concentrations.

