1 Characterizing the impact of urban emissions on regional aerosol particles; Airborne

- 2 measurements during the MEGAPOLI experiment.
- 3 Freney, E.J¹, K.Sellegri¹, F. Canonaco², A. Colomb¹, A. Borbon³, V. Michoud³, J-F Doussin³,
- 4 S. Crumeyrolle⁴, N. Amarouch⁵, J-M, Pichon¹, A. S. H. Prevot², M. Beekmann³, A.
- 5 Schwarzenböeck¹.
- 6 Affliations
- ¹Laboratoire de Météorologie Physique, CNRS-Université Blaise Pascal, UMR6016, 63117, Clermont Ferrand,
 France
- 9 ²Paul Scherrer Institute, Laboratory of Atmospheric Chemistry, 5232 Villigen PSI, Switzerland
- 10 ³Laboratoire Interuniversitaire des Systemes Atmosphériques, LISA/IPSL, UMR CNRS 7583, Université Paris
- 11 Est Creteil (UPEC) and Universite Paris Diderot (UPD), France
- 12 ⁴NASA Langley Research Center, Hampton, VA 23681, USA
- ⁵ CNRS, Div Tech, Inst Natl Sci Univers, UPS 855, F-92195 Meudon, France
- 14

15 **Supplementary information**

16 **Description MONA** :

17 NO, NO₂, and NO_Y were measured, at a 30s time resolution, using the MONA (Measurement 18 Of Nitrogen on Aircraft) instrument developed at LISA. This instrument, composed of two 19 racks, is a unique prototype for airborne measurements and designed to fit into the French 20 ATR-42. It comprises three similar commercial analysers: CLD780TR (ECO-PHYSICS®) 21 which are based on ozone chemiluminescence and thus permit the measurements of NO 22 concentrations at ppt levels (DL = 10ppt). The air is sampled, through backward facing inlets, by a vacuum pump at a flow rate of 9L.min⁻¹ (3L.min⁻¹ for each analyser). The flow rate of 23 24 each analyser is controlled by a critical orifice and a system used to control the pressure of the inflow. Furthermore, an O₂ flow of 330mL.min⁻¹, using pure O₂ cylinders (Air liquide, 25 26 Alphagaz 1), allow the generation of ozone in each analyser. Finally, purified air (air pumped 27 passing trough three cartridges containing drierite®, purafil® and charcoal) is injected into 28 the analytical system before take off and landing to avoid any contamination.

For the measurement of NO₂ concentrations, the air sampled passes through a photolytic converter (Blue light converter- MetAir®) to convert it into NO. NO_y measurements are performed using another sampling line, since this one needs to be heated to avoid any loss of nitric acid (The sampling line was heated at 60°C). Then the air sampled passes through a

EJFreney

33 gold converter (8mm Inox tube cover of gold) heated at 200°C with H_2 as reagent to convert 34 nitrogen species into NO. H_2 is generated at a flow rate of 0.5mL.min⁻¹ thanks to a heated 35 reservoir of hydride to avoid the use of H_2 cylinder.

36 Calibrations of the three analysers were performed before and after each flight using a standard 8ppm NO/Air mixture (Crystal, Air Liquid (uncertainty: ± 2%)) and a clean air 37 cylinder (Alphagaz 1, zero air at 99,99% Air Liquid) used to dilute NO concentrations (8 38 ml/min for NO, and 10 L/min for the zero air, which leads to a NO concentration for 39 calibration of 6 ppbv.). Gas-Phase Titration (GPT) was used to calibrate NO2. The principle of 40 GPT is based on the rapid gas-phase reaction between NO and O₃ that produces 41 42 stoechiometric quantities of NO₂. If the initial and final NO concentrations for this reaction 43 are known, the resulting NO₂ concentration can be determined. Ozone is added to excess NO 44 in a dynamic calibration system, and the NO channel of the chemiluminescent analyzer 45 detects the changes in NO concentration. After the addition of O₃, the observed decrease in 46 NO concentration is equivalent to the concentration of NO₂ produced. The NO₂ generated is, 47 then, used to calibrate both the NO₂ and the NO_y analysers. Finally, The NO measurement 48 uncertainty was estimated to be 10% and the NO₂ and NO_y measurement uncertainties were 49 estimated to be 20%.

- 50
- 51
- 52
- 53
- 54

- 56
- 57
- 58
- 59
- 60
- 61
- 62

63 Supplementary figures and tables

65 Figure S1. Comparison between the total mass concentration of the C-ToF-AMS and

66 **SMPS for a**) **N13, and b**)**N29**

67

69 Figure S2. An overview of aerosol gas and particle composition measured during N21. a)

70 Time series of AMS particle composition, and BC (in black). b) PMF analysis of the organic

71 aerosol mass spectra along with BC. d) Temporal evolution of gas-phase species and d)

72 increase in the organic aerosol mass concentration as a function of photochemical age.

73

68

76 Figure S3: Average aerosol composition measured upwind of the plume area during N21 and

on the sides of the plume area. Pie charts illustrate that the composition outside of the plumeare representative of upwind aerosol composition.

Figure S4. An example of some of the VOC species measured using PTR-MS during E20 andN29.

83

Figure S5: Fraction of Org44 to total Organics (F44) against the fraction of Org 43 to total

85 Organics (F43) for E20, E25, and NE15. The black dotted lines show boundaries set by Ng et

86 al., (2010).

89 Figure. S6 Four factor PMF solution a) SV-OOA1 b) HOA c) LV-OOA, and d) SV-OOA1.

90 Black mass spectra correspond to reference mass spectra for a) SV-OOA, b) HOA, c) LV-

91 OOA, and d) SV-OOA.

88

Figure. S7 Three factor PMF solution a) HOA b)LV-OOA, and c)SV-OOA. Black mass
spectra correspond to reference mass spectra for a)HOA, b)LV-OOA, and c)SV-OOA.

Figure. S8 Two factor PMF solution a) SV-OOA b) LV-OOA. Black mass spectra correspond
to reference mass spectra for a) SV-OOA, and b) LV-OOA.

95

99 Table S1. Research flight number, date and principal measurements available during each

100	flight. A denotes available and N/A denotes unavailable.	
-----	--	--

RF	Date	C-ToF-AMS	PTR-MS	MONA O ₃ , O	CO, BC	Classification
28	13/07/09	Α	А	N/A	А	N13
29	15/07/09	Α	А	N/A	А	NE15
30	16/07/09	Α	N/A	А	А	N16
31	20/07/09	Α	А	А	А	E20
32	21/07/09	Α	А	А	А	N21
33	25/07/09	Α	N/A	А	А	E25
35	28/07/09	Α	N/A	N/A	А	NE28
36	29/07/09	Α	А	А	А	N29

- 101
- 102

103

104

\sim	UUA	SV-OOA	LV-OOA	HOA
.0	-0.077	-0.134	0.262	-0.041
Ozone	-0.106	-0.537	-0.370	-0.511
NO ₃	-0.039	0.467	0.304	0.377
SO_4	-0.076	0.172	0.015	0.085
NH ₄	-0.049	0.338	0.138	0.235
Chl	-0.072	0.187	-0.003	0.009
RH	0.205	-0.317	-0.116	-0.135
Methanol	0.094	0.894	0.693	0.819
Monoterpenes	0.145	0.476	0.670	0.504
C8-aromatics	0.033	0.421	0.541	0.593
Foluene	-0.090	0.472	0.530	0.619
Benzene	-0.052	0.431	0.596	0.598
soprene	-0.160	0.160	0.342	0.127
Methacrolein	0.125	0.642	0.635	0.660
Metheylketone	0.011	0.543	0.341	0.630
NO ₂	-0.014	0.073	0.023	0.270
NO	-0.014	0.103	0.062	0.301
NO _Y	-0.016	0.236	0.297	0.437
BC	-0.006	0.522	0.527	0.655
Reference mass spectra				
HOA	0.277	0.476	0.367	0.876
DOA	0.439	0.806	0.847	0.454
LV-OOA	0.419	0.775	0.844	0.387
SV-OOA	0.521	0.785	0.745	0.842
BBOA	0.476	0.702	0.651	0.859
SV-OOA BBOA	0.521 0.476	0.785 0.702	0.745 0.651	0.8 0.8

106 Table S2. Pearsons R (P_R) correlation values a four factor PMF solution using a fpeak =0.

- 117 Table S3. Pearsons $R(P_R)$ correlation values with particle and gas phase species for a three
- 118 factor PMF solution with an fpeak of 0.2.

External Data	SV-OOA	LV-OOA	HOA
СО	-0.187	0.255	0.031
Ozone	-0.549	-0.374	-0.504
NO ₃	0.455	0.314	0.380
SO_4	0.184	0.013	0.076
NH_4	0.345	0.142	0.227
Chl	0.177	0.008	0.020
RH	-0.292	-0.127	-0.147
Methanol	0.888	0.698	0.864
Monoterpenes	0.446	0.665	0.571
C8-aromatics	0.404	0.541	0.588
Toluene	0.436	0.535	0.614
Benzene	0.394	0.599	0.620
Isoprene	0.085	0.352	0.195
Methacrolein	0.631	0.636	0.673
Metheylketone	0.552	0.349	0.570
NO_2	0.088	0.027	0.187
NO	0.115	0.066	0.221
NO _Y	0.225	0.299	0.392
BC	0.504	0.532	0.642
Reference mass spectra			
НОА	0.416	0.262	0.857
OOA	0.803	0.842	0.389
LV-OOA	0.776	0.848	0.321
SV-OOA	0.752	0.662	0.803

- 128 Table S4. Pearsons R (P_R) correlation values with particle and gas phase species for a two
- 129 factor PMF solution with an fpeak of 0.2.

External Data	SV-OOA	LV-OOA
СО	0.266	-0.004
Ozone	-0.359	-0.525
NO ₃	0.307	0.409
SO_4	0.015	0.102
NH_4	0.139	0.259
Chl	0.009	0.063
RH	-0.121	-0.194
Methanol	0.628	0.896
Monoterpenes	0.673	0.563
C8-aromatics	0.522	0.554
Toluene	0.509	0.588
Benzene	0.575	0.580
Isoprene	0.349	0.193
Methacrolein	0.628	0.675
Metheylketone	0.317	0.563
NO_2	0.011	0.151
NO	0.050	0.185
NO_Y	0.286	0.351
BC	0.514	0.621
Reference mass s	pectra	
HOA	0.624	0.560
OOA	0.731	0.837
LV-OOA	0.686	0.809
SV-OOA	0.869	0.862
BBOA	0.813	0.786

¹³⁰

131 Table S5. Yields used for the prediction of the formation of secondary organic aerosol.

Low	NOx yield	High NOx	Yield
Benzene	0.369*	0.08*	*Ng et al., 2007
Toluene	0.3*	0.281*	*Ng et al., 2008
C8-aromatics	0.36**	0.035**	**yield of m-xylene (Ng et al, 2007)
C9-aromatics	0.36**	0.035**	** yield of m-xylene (Ng et al, 2007)

132

133

134