

1 Supplementary material for “Improved satellite retrievals of NO₂ and SO₂ over the
2 Canadian oil sands and comparisons with surface measurements” by McLinden
3 et al.

4

5

6 1. Wood Buffalo Environmental Association

7 The Wood Buffalo Environmental Association (WBEA; www.wbea.org) operates
8 15 continuous air monitoring stations in and around the oil sands region (Percy et al.,
9 2012). Some of these stations are equipped with in-situ NO₂ and PM2.5 (particulate
10 matter with a diameter of 2.5 μm or smaller) detectors (Hsu et al., 2010; Kindzierski,
11 2010). A summary of the stations used in this study is given in Table S1.

12 The WBEA data protocols, standard operating procedures, and quality
13 control/quality assurance procedures are all compliant with the regulations for routine
14 monitoring. This includes daily zero/span calibration and monitoring of instrument
15 performance, monthly multi-point calibrations, annual independent third-party audits, and
16 independent system evaluations conducted every three years (Phillips, 2010).

17

18 2. Estimating the effect of smoothing

19 Figure S1 shows idealized distributions of surface concentration of NO₂ and SO₂,
20 and an estimate of how the OMI satellite would see the distribution by accounting for its
21 spatial resolution. These were constructed using two-dimension Gaussian functions. The
22 parameters chosen via trial and error such that (i) their vmrs were comparable to the
23 average measured values at the ground-based (GB) stations and (ii) after smoothing the
24 distributions generally resembled those from Figure 8 (although not necessarily the
25 absolute values). For NO₂, the sum of three Gaussians was used: one each for the north
26 and south grouping of mines, and a smaller one for the Fort McMurray area. For SO₂
27 only one Gaussian was used, reflecting the lack of a significant source of SO₂ in the north
28 or Fort McMurray. GB measurements from Fort Chipewyan (station 12) were used to
29 define background values. The NO₂ and SO₂ idealized distributions are shown in Figure
30 S1a and S1c, and after smoothing in Figure S1b and S1d.

31

1 References

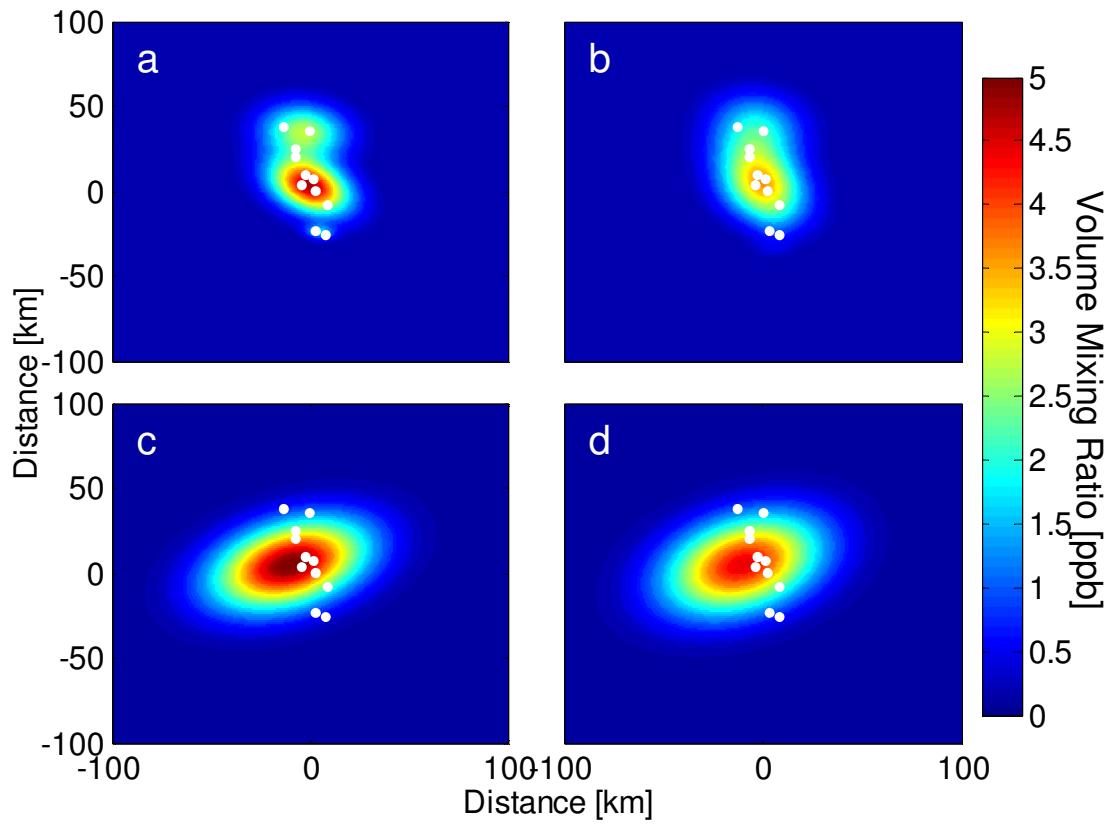
2

3 Hsu, Y.-M., K. Percy, and M. Hansen, Comparison of Passive and Continuous
4 Measurements of O₃, SO₂ and NO₂ in the Athabasca Oil Sands Region, Proc. 2010
5 A&WMA Conf., 2010-A-834-AWMA, pp. 5.

6

7 Kindzierski, W. B. (2010), Ten-years trends in regional air quality for criteria pollutants
8 in the Athabasca oil sands region, Proc. 2010 A&WMA Conf., 2010-A-1079-AWMA, pp
9 14.

10


11 Percy, K. E., Hansen, M. C., and Dann, T.: Air Quality in the Athabasca Oil Sands
12 Region, in Volume 11: Alberta Oil Sands, Energy, Industry and the Environment, edited
13 by K. Percy, Elsevier, 2012

14

15 Phillips, D. (2010), The WBEA air quality monitoring network: history of operation and
16 current status, Proc. 2010 A&WMA Conf., 2010-A-914-AWMA, pp. 8.

17

1
2

3
4
5
6
7
8

Figure S1. Idealized volume mixing ratio distributions over the oil sands surface mining area: (a) NO₂, (b) NO₂ after smoothing with a 2D boxcar comparable to the OMI horizontal resolution, (c) SO₂, (d) SO₂ after smoothing with a 2D boxcar comparable to the OMI horizontal resolution. The white dots denote the location of the WBEA surface stations.

9 Table S1: List of WBBA monitoring stations used in this study and associated information.

9	Fort McKay	57.19	-111.64	Thermo	42C	43	Thermo	0.56±0.01	0.94	1.01	1.34	0.93
10	Albian Mine	57.28	-111.53	Teledyne API, 200A	17C	43	Thermo	0.45±0.06	1.28	0.84	1.07	0.76
11	CNRL Horizon	57.30	-111.74	Teledyne API, 200A	43	Thermo	0.35±0.16	1.23	0.72	1.34	0.93	
12	Fort Chipewyan	58.71	-111.18	Thermo	42C-TL	43	Thermo	0.40±0.09	1.0	1.0	1.17	1.14

10

11 ^a Calculated using equation (10). Value is based on mean value of GEM-MACH and GEOS-CHEM models, plus/minus
12 half their difference.

13 ^b Sampled from Figure S1.

14 ^c Calculated using GEM-MACH averaged over May-September and based on ratio between all-sky and cloud-fraction <
15 0.2.

16