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Abstract 35 

 36 

The off-line Eulerian AURAMS (A Unified Regional Air quality Modelling System) 37 

chemical transport model was adapted to simulate airborne concentrations of seven 38 

PAHs: phenanthrene, anthracene, fluoranthene, pyrene, benz[a]anthracene, 39 

chrysene+triphenylene, and benzo[a]pyrene.  The model was then run for the year 2002 40 

with hourly output on a grid covering southern Canada and the continental USA with 42-41 

km horizontal grid spacing.  Model predictions were compared to ~5,000 24-hour- 42 

average PAH measurements from 45 sites, most of which were located in urban or 43 

industrial areas.  Eight of the measurement sites also provided data on particle/gas 44 

partitioning which had been modelled using two alternative schemes.  This is the first 45 

known regional modelling study for PAHs over a North American domain and the first 46 

modelling study at any scale to compare alternative particle/gas partitioning schemes 47 

against paired field measurements.  The goal of the study was to provide output 48 

concentration maps of use to assessing human inhalation exposure to PAHs in ambient 49 

air.  Annual average modelled total (gas + particle) concentrations were statistically 50 

indistinguishable from measured values for fluoranthene, pyrene and benz[a]anthracene 51 

whereas the model underestimated concentrations of phenanthrene, anthracene and 52 

chrysene+triphenylene.  Significance for benzo[a]pyrene performance was close to the 53 

statistical threshold and depended on the particle/gas partitioning scheme employed.  On 54 

a day-to-day basis, the model simulated total PAH concentrations to the correct order of 55 

magnitude the majority of the time.  The model showed seasonal differences in prediction 56 

quality for volatile species which suggests that a missing emission source such as air-57 

surface exchange should be included in future versions.  Model performance differed 58 

substantially between measurement locations and the limited available evidence suggests 59 

that the model spatial resolution was too coarse to capture the distribution of 60 

concentrations in densely populated areas.  A more detailed analysis of the factors 61 

influencing modelled particle/gas partitioning is warranted based on the findings in this 62 

study. 63 

 64 

65 



1. Introduction 66 

 67 

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous air pollutants that tend to be 68 

most concentrated in areas of dense human population (Hafner et al., 2005) but are also 69 

detected at locations remote from local sources (Hung et al., 2005).  Many PAH species 70 

have been classified as carcinogens (IARC, 2010) and they are implicated routinely as 71 

toxicants in airborne particulate matter (Kelly and Fussell, 2012).  They are regulated 72 

under international agreements such as the Aarhus Protocol on Persistent Organic 73 

Pollutants.  Benzo[a]pyrene, a commonly-reported PAH species, is subject to ambient air 74 

guidelines in many jurisdictions.  75 

 76 

In Canada, PAHs meet the criteria for inclusion on the Toxic Substances List of the 77 

Canadian Environmental Protection Act (Environment Canada and Health Canada, 78 

1994), and the resulting government obligation has been to reduce or minimise their 79 

release into the environment.  Nationwide anthropogenic emissions of benzo[a]pyrene, a 80 

commonly-reported species, fell by 70% between 1990 and 2010 according to estimates 81 

made by the National Pollutant Release Inventory (Environment Canada, 2012).  Though 82 

there are no federal guidelines for PAHs in Canadian air, a recent analysis of ambient 83 

monitoring data found that measured PAH concentrations regularly exceed the health-84 

based guidelines set by the Canadian province of Ontario (Galarneau and Dann, 2011).   85 

 86 

In the USA, PAHs are listed as Clean Air Act Hazardous Air Pollutants as part of the 87 

polycyclic organic matter (POM) class of compounds (US EPA, 2012) and have been 88 

identified as a regional cancer concern in the US National-Scale Air Toxics Assessment 89 

(US EPA, 2012).  Industrial releases to air reported to the US Toxics Release Inventory 90 

(TRI) fell by 35% between 1995 and 2010 (US EPA, 2012).  There is no federal US 91 

guideline for PAHs in ambient air. 92 

 93 

PAH measurements are labour-intensive compared to those of criteria air contaminants 94 

such as ozone and particulate matter, and the processes governing their atmospheric fate 95 

are not yet well-understood.  In an attempt to elucidate the spatiotemporal distributions of 96 

PAH sources and ambient concentrations, several numerical modelling studies have been 97 

published.  Lagrangian frameworks have been used for Europe (Van Jaarsveld et al., 98 

1997; Halsall et al., 2001) and China (Liu et al., 2007; Lang et al., 2007; Lang et al., 99 

2008).  Others studies have used box modelling (Prevedouros et al., 2004) and 100 

multimedia fate approaches (Yaffe et al., 2001; Prevedouros et al., 2008).  Eulerian 101 

chemical transport models (CTMs) have been developed for Europe (Shatalov, 2005; 102 

Aulinger et al., 2007; Matthias et al., 2009; Gusev et al., 2011; Bieser et al., 2012) and 103 

east Asia (Zhang et al., 2009; 2011a; 2011b; Inomata et al., 2012), and three such studies 104 

on a global scale have also been published in recent years ( Sehili and Lammel, 2007; 105 

Lammel et al., 2009; Friedman and Selin, 2012). 106 

 107 

The aforementioned studies differ in many respects relating to the PAH species 108 

examined, the temporal variability of their emissions, and the spatial resolutions and 109 

process representations in the models.  None has focussed exclusively on North America 110 

at the regional scale.  As well, although several particle/gas partitioning mechanisms have 111 

been explored in other models, including Junge-Pankow adsorption (Junge, 1977; 112 



Pankow, 1987), organic matter sorption (Finizio et al., 1997), and combined 113 

adsorption/absorption (Dachs and Eisenreich, 2000), no previous studies have evaluated 114 

model output against paired phase-distributed measurements for alternative partitioning 115 

expressions on the same domain. 116 

 117 

This study presents the results of a chemical transport model, AURAMS-PAH, run over 118 

North America at 42-km horizontal grid spacing with hourly output for the year 2002.  119 

Seven PAH species were simulated with the model.  Three isomer pairs of decreasing 120 

volatility and increasing particulate fraction comprise six of the species: phenanthrene 121 

(PHEN) and anthracene (ANTH) (178 g mol
-1

), fluoranthene (FLRT) and pyrene (PYR) 122 

(202 g mol
-1

), and benz[a]anthracene (BaA) and chrysene/triphenylene (C+T) (228 g mol
-

123 
1
).  The seventh PAH, benzo[a]pyrene (BaP) (252 g mol

-1
), is not generally considered to 124 

be semivolatile but has been included due to its common use as a representative PAH 125 

species.  Two particle/gas partitioning schemes, Junge-Pankow (JP: Junge, 1977; 126 

Pankow, 1987) and Dachs-Eisenreich (DE: Dachs and Eisenreich, 2000),were tested. 127 

 128 

Model performance was evaluated against ~5,000 measurements from 45 stations in 129 

established networks in Canada and the USA.  This is the first published model to be run 130 

and evaluated for PAH concentrations and their distributions between the particle and gas 131 

phases using two partitioning methods.  It is also the first such model to be evaluated 132 

over a regional North American domain. 133 

 134 

2. Methods 135 

 136 

2.1 Model Description 137 

 138 

AURAMS (A Unified Regional Air quality Modelling System) is an Eulerian CTM 139 

originally developed to simulate criteria air contaminants.  The standard version of the 140 

model uses a sectional approach to represent the size distribution of airborne particles: 12 141 

size bins from 0.01 to 40.96 m in diameter and 9 particulate species (sulphate, nitrate, 142 

ammonium, elemental carbon, primary organic aerosol, secondary organic aerosol, 143 

crustal material, sea salt, and aerosol water) are usually considered.  The model includes 144 

process representation for tropospheric gas-phase oxidative chemistry, the absorptive 145 

formation of secondary organic aerosols, inorganic heterogeneous chemistry, particle 146 

microphysics (nucleation, condensation, coagulation, etc.), cloud processing of aerosols, 147 

advective transport, vertical diffusion, and gas and particle emissions and deposition.  A 148 

detailed overall description of AURAMS appears in Gong et al. (2006) while a 149 

description of the aerosol sectional approach and the microphysics modules of the model 150 

can be found in Gong et al. (2003a,b).  Performance evaluation and model 151 

intercomparison results for AURAMS appear in McKeen et al. (2008), Smyth et al. 152 

(2009), Makar et al. (2010), Kelly et al. (2012) and Solazzo et al. (2012) among other 153 

publications.    154 

 155 

A modified version of the AURAMS CTM known as AURAMS-PAH was developed to 156 

incorporate primary semivolatile organic compounds that are subject to sorptive 157 

partitioning.  Starting from the standard AURAMS CTM had the advantage that a 158 



number of required fields for modelling PAHs were already available.  These included 159 

hydroxyl concentration, total particle surface area, and fractions of particle elemental 160 

carbon and organic carbon.  The modifications made to AURAMS version 1.3.2 in order 161 

to simulate PAHs are described below.  Physico-chemical property values used for each 162 

PAH in the modified code are found in Table S1.1 of the Supplementary Material.   163 

 164 

2.1.1 Dry Deposition of Gases.  Within AURAMS, gaseous dry deposition velocities are 165 

modelled using the inverse resistance analogy for several land-use categories (Zhang et 166 

al., 2002).  Three resistances are assessed in AURAMS and only the first of these 167 

(aerodynamic resistance) is independent of the chemical species under consideration.  168 

The species-dependent resistances are the quasi-laminar sub-layer resistance and the 169 

surface or canopy resistance.  The latter both depend on the gas-phase diffusivity of the 170 

compound in question, and this quantity was calculated in the model according to the 171 

Fuller et al. method described in Reid et al. (1987). 172 

  173 

Surface or canopy resistance is the most complex of the three gaseous dry deposition 174 

component resistances and tends to dominate total dry deposition (Zhang et al., 2002).  175 

One of its sub-components, mesophyll resistance, was set to 100 s m
-1

 for species that are 176 

relatively insoluble in water and have small oxidizing capacities, as is the case for PAHs.  177 

The remaining sub-components (cuticle and ground resistances) are determined by 178 

scaling to O3 and SO2 settings based on physico-chemical qualifications.  For the PAHs, 179 

scaling factors to O3 and SO2 for both acetaldehyde and C3 carbonyls, the least soluble 180 

organic compounds considered in AURAMS aside from the PAHs, were used.  181 

Unsubstituted compounds such as PAHs are generally considered to have high 182 

resistances to deposition whereas carbonyl resistances are thought to be lower (Zhang et 183 

al., 2002).  However, published observations of PAH deposition led us to assume that 184 

deposition velocities would be greater than zero (low resistances) and we therefore used 185 

the best-available homologues in AURAMS to represent PAHs.  This is an uncertainty in 186 

the model that merits future attention. 187 

 188 

Volatilisation of gaseous PAHs can occur from exposed water (Hoff et al., 1996), soil 189 

(Jones, 1994), and impervious urban surfaces (Diamond et al., 2000).  Net gaseous 190 

deposition to the Great Lakes in 2002 was downward (Blanchard et al., 2005) suggesting 191 

that PAH fugacities in air exceeded those in surface compartments at the regional scale.  192 

Volatilisation was not included in this first-generation version of AURAMS-PAH and the 193 

effect of this omission is presented in Section 3.1.1.  194 

 195 

2.1.2 Gas-Phase Reactions. Reactions of gas-phase PAHs with hydroxyl radicals are 196 

considered in this model.  Since these reactions consume relatively little hydroxyl due to 197 

the trace concentrations of PAH, their reactions were simulated outside the AURAMS 198 

gas-phase chemistry solver.  PAH oxidative loss was estimated as a first-order process 199 

using the model-predicted OH concentration immediately preceding particle-gas 200 

partitioning.  Only seven new gas-phase concentration fields were added to the CTM; 201 

PAH reaction products were not tracked in the model, either as individual gas-phase 202 

species or as contributors to SOA. 203 

  204 



Hydroxyl reaction rate constants were taken from the program AOPWIN which is part of 205 

the US EPA’s EPI Suite (U.S. EPA, 2006).  Measured constants are available for three 206 

low-molecular-weight PAHs considered here (phenanthrene, anthracene, fluoranthene) 207 

and these values were represented in AOPWIN.  However, measurements for the 208 

remaining four PAHs are not available and the software predicted the same hydroxyl 209 

reaction rate constant of 50x10
-12

 cm
3
 molec

-1
 s

-1
 for these species. 210 

 211 

2.1.3 Particle Representation of PAHs.  Seven additional particle species, each with 12 212 

size bins as in the original AURAMS configuration, were added to the model to represent 213 

the particle-bound PAH mass.  214 

 215 

2.1.4 Particle/Gas Partitioning of PAHs.  A new algorithm was developed for 216 

AURAMS-PAH to account for the sorptive particle/gas partitioning of PAHs.  It is fully 217 

adaptable to other semivolatile species with similar atmospheric partitioning behaviour to 218 

PAHs such as dioxins and furans, PCBs, and organochlorine pesticides.  The partitioning 219 

of PAHs to airborne particles was assumed to be fully reversible. 220 

 221 

Two instantaneous equilibrium sorptive partitioning expressions were incorporated in the 222 

new partitioning subroutine.  The first treated particle/gas partitioning as a Langmuirian 223 

adsorption process on a uniform particle surface (JP: Junge, 1977; Pankow, 1987).  The 224 

model calculations began by adding the particulate PAH concentrations in all size bins 225 

(Cp) and the gas-phase PAH concentration (Cg) to give a total PAH concentration 226 

(CTOT) for each species.  An updated bulk particulate fraction () was then assigned 227 

according to the first part of Eq. (1): 228 

 229 

TOT

p

L
C

C

pc

c 







0



 , 

(1) 

 230 

where c is a constant set at 0.173 J m
-2

 (estimated from Figure 3 in Junge, 1977),  is 231 

the total particle surface area concentration (m
2
 m

-3
) and pL

0
 is the saturated vapour 232 

pressure of the sub-cooled liquid (Pa) taken from the temperature-dependent values 233 

measured by Offenberg and Baker (1999; see Table S1.1).  We have selected Junge’s 234 

(1977) value of c over that estimated by Pankow (1987) since the latter was based on 235 

assumptions that have not been revisited in light of the numerous observations of PAH 236 

partitioning published since.  The total particulate PAH concentrations dictated by  were 237 

then redistributed among the particle size bins by prorating to the proportion of total 238 

aerosol surface area concentration within each size bin.  The redistributed gas-phase PAH 239 

concentration was determined by difference between CTOT and Cp. 240 

 241 

The second equilibrium partitioning expression available in the partitioning subroutine 242 

developed a partition coefficient (Kp, m
3
 g

-1
) based on the contributions of two additive 243 

processes: absorption into particulate organic matter and adsorption onto particulate soot 244 

(DE: Dachs and Eisenreich, 2000) 245 

     246 



 
 

g

TSPp

SAECOAoctOCp
C
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KfKfK


  5.110 12 , 

(2) 

 247 

where oct is the bulk density of octanol (0.82 kg L
-1

), fOC is the organic carbon fraction 248 

of the particulate matter (the 1.5 multiplier converts organic carbon to organic matter 249 

which is assumed to be well-represented by octanol), KOA is the octanol-air partition 250 

coefficient (dimensionless), fEC is the elemental carbon fraction of the particulate matter, 251 

KSA is the soot-air partition coefficient (L kg
-1

), Cp is the particulate PAH concentration 252 

across all the size bins (ng m
-3

), CTSP is the total particulate matter concentration (g m
-3

), 253 

and Cg is the gas-phase concentration (ng m
-3

). 254 

 255 

Soot-air partition coefficients (KSA, L kg
-1

) were estimated as the ratios of soot-water 256 

(KSW) to air-water partition (KAW) coefficients since direct KSA measurements are not 257 

available for PAHs.  KSW values from Jonker and Koelmans (2002) were used in this 258 

model.  These values vary substantially (up to a factor of 47) between relevant soots for 259 

each PAH considered here.  Since a single KSW was needed for each PAH in the model, 260 

representative values were determined by weighting the reported KSW values by the 261 

contribution of their related combustion processes to the total emitted fine particulate 262 

matter (PM2.5) used in the inventory of Galarneau et al. (2007).  Temperature-dependent 263 

KAW values were taken from Bamford et al. (1999).  KOA values were taken from the 264 

temperature-dependent expressions determined by Odabasi et al. (2006). 265 

 266 

PAH partition coefficients were calculated according to the first part of Eq. (2).  By 267 

determining the contribution of each size bin’s organic matter and soot carbon to the 268 

totals across all size bins, the total particulate PAH was apportioned to each size bin.  For 269 

example, if a total partition coefficient had contributions from the organic matter and soot 270 

carbon of 20% and 80%, respectively, and size bin 1 held 10% of the total particulate 271 

organic matter and 15% of the total soot carbon, the fraction of total particulate PAH 272 

assigned to size bin 1 would be 14% (viz., 0.2 × 0.1 + 0.8 × 0.15).  Gas-phase 273 

concentrations were then determined by difference between CTOT and Cp. 274 

 275 

2.1.5 Below-cloud (Precipitation) Scavenging.   Scavenging of gas and particle PAHs by 276 

liquid precipitation was calculated as per Gong et al. (2006).  Particle scavenging 277 

assumed that particle-bound PAHs do not dissolve in falling rain; particle-bound PAHs 278 

were thus treated as passive aerosol tracers.  Snow scavenging of gaseous PAHs was not 279 

considered in this version of AURAMS though particle-bound PAHs are scavenged by 280 

snow in the model as passive components of airborne particles. 281 

 282 

2.1.6 Cloud Processing.  Cloud processing in the model was treated in a similar manner 283 

to precipitation scavenging whereby gas-phase mass transfer to cloud water is species-284 

dependent, whereas particulate interactions with cloud droplets are only affected by the 285 

presence of PAHs in terms of the size (mass and volume) that they represent as part of 286 

the overall aerosol.  Solid-phase densities used to relate aerosol PAH mass to volume 287 

were taken from Mackay et al. (2006; see Table S1.1). 288 

 289 

2.2 Model Domain, Emissions, and Boundary Conditions 290 



 291 

The model domain included southern Canada and the continental USA (see Figure 1).  It 292 

was run on a 42-km polar stereographic grid using off-line meteorology generated with 293 

the Global Environmental Multiscale numerical weather prediction model (GEM v 3.2.0: 294 

Côté et al., 1998a, b).   295 

 296 

Emissions of PAHs were taken from the inventory of Galarneau et al. (2007) that had 297 

been updated from 2000 to 2002 and to which benzo[a]pyrene had been added using 298 

identical methods and data sources.  As discussed in Galarneau et al. (2007), hourly PAH 299 

emissions fields were estimated with an emissions processing system using source-300 

specific temporal profiles.  The temporal profile library included 3020 month-of-year, 64 301 

day-of-week, and 2672 hour-of-day temporal profiles for Canada and 1500, 49, and 680 302 

analogous temporal profiles for the US.  The overall temporal profile thus varies from 303 

grid cell to grid cell due to the different mixtures of source types found in each one. 304 

 305 

All PAHs were emitted exclusively in the gas phase.  Particle/gas partitioning took place 306 

at each 15-minute CTM time step according to the partitioning module described in 307 

Section 2.1.5.  As mentioned in Section 2.1.2, no emissions of previously deposited 308 

PAHs were considered in this first-generation version of the model and the implications 309 

of this are discussed in Section 3.1.1.  Emissions of SO2, NOx, NH3, CO, volatile organic 310 

compounds (VOCs), and particulate matter were derived using Environment Canada and 311 

US EPA databases and methods for the year 2002.   312 

 313 

Initial PAH concentrations at all lateral boundaries were set to zero in anticipation of 314 

pronounced spatial gradients away from localised source regions.  As a result, modelled 315 

concentrations in Mexico and near its border with the US are not expected to be reliable, 316 

particularly since PAH emissions from Mexico have not been included in the model.  317 

Model output along the northern edge of the domain over western Canada is similarly 318 

expected to be unreliable since emission sources are located close to the model boundary 319 

in that region.  The development of representative non-zero boundary concentrations is 320 

anticipated as part of future model development.  321 

 322 

2.3 Evaluation Data 323 

 324 

Observational PAH data used for comparison with model output were collected from four 325 

measurement networks: NAPS (Canada), IADN (Canada-US), CARB (California), and 326 

Rio Tinto Alcan (Kitimat, British Columbia, Canada).  The measurement stations are 327 

depicted in Figure 2 and described in Section 2 of the Supplementary Material. 328 

 329 

Measurement data were available from a total of 45 stations, 23 in Canada and 22 in the 330 

USA, all of which collected samples integrated over periods of 24 hours.  Particle/gas 331 

partitioning was assessed at eight stations, three in Canada and five in the USA, all of 332 

which were operated by IADN. 333 

 334 

The IADN phase-distributed data were also combined to yield total concentrations.  335 

These combined IADN data, along with NAPS and Rio Tinto data, yielded a total of 28 336 

sites at which total PAH concentration for all the modelled PAHs could be assessed.  337 



Particulate PAH measurements from the latter networks were determined from samples 338 

of total suspended particles (TSP).  CARB provided data for benzo[a]pyrene in particles 339 

smaller than 2.5 m in diameter (PM2.5) at a further 17 locations. 340 

 341 

Four model grid squares (Kitimat, Toronto, Hamilton, and Montreal) contained two or 342 

more measurement stations thus allowing for an assessment of the adequacy of modelling 343 

all seven PAHs at 42-km grid spacing. 344 

 345 

3. Results 346 

 347 

3.1 Total PAH Concentration 348 

 349 

3.1.1 Overall Spatiotemporal Domain 350 

 351 

Total PAH concentration refers to the sum of the gas and particulate concentrations 352 

whether these have been analysed together (e.g., NAPS) or separately (e.g., IADN).  For 353 

stations at which the gas and particle phases were analysed separately, a valid total 354 

concentration was assumed to exist if at least one of the gas and particle phase 355 

concentrations was greater than the detection limit.  Non-detectable values were assumed 356 

equal to zero for the calculation of total concentrations. 357 

 358 

A representative plot of the spatial distribution of modelled annual average 359 

concentrations is presented in Figure 1 for fluoranthene.  The remaining PAHs show 360 

similar spatial distributions and maps of their modelled concentrations are found in 361 

Section 3 of the Supplementary Material.  All the PAHs show spatial distributions of 362 

their modelled concentrations that are consistent with regional dispersion of their 363 

emissions as depicted in Galarneau et al. (2007). 364 

 365 

A summary of annual mean modelled and measured values over the entire spatiotemporal 366 

model domain is shown in Table 1.  Only modelled values for which there was a 367 

corresponding measurement were included. 368 

 369 

Table 1: Summary of 2002 Annual Modelled and Measured Total PAH Concentration 370 

Mean (Standard Deviation) Values (ng m
-3

) 371 

 372 

PAH Modelled – JP Modelled - DE Measured n
1
 

PHEN 12.75 (36.44) 12.76 (36.44) 36.06 (131.8) 790 

ANTH 0.9123 (1.757) 0.9104 (1.759) 2.804 (11.56) 701 

FLRT 6.781 (14.40) 6.888 (14.66) 9.179 (32.44) 789 

PYR 5.727 (12.23) 6.009 (13.40) 5.733 (21.57) 785 

BaA 1.227 (2.438) 1.328 (2.704) 1.326 (6.081) 610 

C+T 1.511 (3.964) 1.473 (3.569) 3.303 (21.95) 721 

BaP 1.173 (2.002) 1.424 (2.455) 0.9047 (3.238) 595 
1
n = number of modelled-measured data pairs  373 

 374 

In comparing modelled results to measurements, the annual means were statistically 375 

indistinguishable at the 95% confidence level for FLRT, PYR, BaA, and BaP (JP) 376 

whereas they were statistically different for PHEN, ANTH, C+T, and BaP (DE).  For 377 



PHEN, ANTH, and C+T, modelled values were underestimated relative to measurements 378 

whereas they were overestimated for DE BaP. 379 

 380 

The model’s temporal variability tended to be smaller than that of the corresponding 381 

measurements; the relative standard deviations of the measurements were 1.3 to 2.7 times 382 

greater than those of the modelled values.  A similar observation has been made in the 383 

modelling of particulate matter with AURAMS and other regional air quality models 384 

(Solazzo et al., 2012)  For PAHs, this effect was also seen by Matthias et al. (2009) who 385 

concluded that temporal variability in PAH emissions was not adequately represented by 386 

their inventory.  This is a plausible contributing factor in the current study as well.  387 

Furthermore, meteorological parameters vary over a scale much finer than that used for 388 

regional air quality models.  As a result, observed concentrations from point locations can 389 

be expected to exhibit greater variability than modelled concentrations determined for 390 

entire grid squares. 391 

 392 

Differences in mean modelled total concentrations between the two partitioning versions 393 

(JP and DE) were statistically indistinguishable at 95% significance despite the finding 394 

that the two BaP model results differed in their comparison to measured values.  The 395 

latter anomaly indicates that the BaP distributions were close to the 95% confidence 396 

threshold.  As a result, no conclusion can be drawn about which partitioning mechanism 397 

was superior in simulating overall total PAH concentrations.  Phase partitioning of 398 

semivolatile organic compounds (SVOCs) is a major determinant of their potential for 399 

long-range transport (Bidleman, 1988), yet it does not appear to have a large effect on the 400 

simulation of their total concentrations at the regional scale.  Model performance in 401 

simulating phase partitioning is discussed in Section 3.2. 402 

 403 

The model’s performance was also more closely evaluated by examining the pertinent 404 

data distributions.  Figure 3 depicts frequency distributions of the ratios of modelled-to-405 

measured concentrations for all of the valid data pairs available for the model evaluation.  406 

Four PAH species (ANTH, FLRT, PYR, and C+T) yielded median values of the 407 

modelled-to-measured concentration ratio that were close to the ideal value of unity (1.1, 408 

1.1, 1.5, and 1.4, respectively).  PHEN showed an overall tendency toward 409 

underestimation by the model (0.2), whereas BaA and BaP tended toward overestimation 410 

(3.2/3.5 and 3.0/3.5 JP/DE, respectively). 411 

 412 

BaA and BaP are reactive PAHs (e.g., Behymer and Hites, 1985; Pöschl et al., 2001; 413 

Kwamena et al., 2004; Esteve et al., 2006, Shiraiwa et al., 2009) and the exclusion of 414 

particle-bound reactions in this first-generation model may explain a portion of their 415 

overestimation in AURAMS-PAH as suggested in a comparable model for Europe 416 

(Matthias et al., 2009).  However, BaP is subject to losses during sampling (Menichini, 417 

2009) and some portion of the apparent model overestimation may in fact be due to 418 

measured concentrations that are biased low since the samplers used were not equipped 419 

with oxidant denuders.  This presents a priority for future research since many 420 

jurisdictions use BaP as an indicator PAH when setting air quality standards.  421 

 422 

As presented in Section 2.1.2, volatilisation of gaseous PAHs from surface compartments 423 

such as water and soil was not included in this first-generation version of AURAMS-424 



PAH.  If such volatilisation were significant to the balance of PAHs in ambient air 425 

relative to the other processes simulated, one would expect an overall bias in model 426 

results whereby the most volatile PAHs, which are found predominantly in the gas phase, 427 

would be underestimated and the least volatile particulate species would be unaffected.  428 

Summary results provide indefinite evidence.  Volatile PHEN is systematically 429 

underestimated yet its similarly volatile isomer, ANTH, shows an ambiguous central 430 

tendency whereby its mean concentrations are underestimated by the model (Table 1) but 431 

its median concentrations are not (Figure 3).  Less volatile but nonetheless predominantly 432 

gaseous FLRT and PYR show no tendency toward underestimation.   433 

 434 

Though results are equivocal on an annual basis, monthly patterns observed in the model 435 

output are consistent with the absence of a seasonal source (e.g., air-surface exchange).  436 

Volatilisation from a variety of environmental compartments is typically stronger in 437 

warmer periods than in cooler ones (e.g., Nelson et al., 1998; Smith et al., 2001; Motelay-438 

Massei et al., 2005; Bozlaker et al., 2008; Wang et al., 2011).  Figure 4 shows the 439 

monthly distribution of modelled-to-measured concentration ratios for PHEN and PYR.  440 

Both exhibit higher values in winter than in summer as do ANTH and FLRT whereas this 441 

seasonality is not observed for the higher molecular BaA, C+T or BaP (not shown).  442 

These findings are consistent with a missing volatilisation source that emits during 443 

warmer weather.  However, other factors could also be involved including overestimated 444 

loss terms (e.g., oxidation, deposition) or underestimated emissions (e.g., forest fires) 445 

during warmer periods.  The investigation of the relevant causes is a priority for future 446 

model development.  Regardless of the causes, the seasonal effect on model output 447 

appears to be compounded by further, as yet unidentified factors whereby PHEN is 448 

underpredicted throughout the year and ANTH, FLRT and PYR are overpredicted 449 

through some seasons, potentially due to air-surface exchange that leads to net deposition 450 

during cooler months. 451 

 452 

The range of modelled-to-measured concentration ratios shown in Figure 3 varied 453 

substantially by species.  The ratios of 90
th

 to 10
th

 percentile values for PHEN, FLRT, 454 

PYR, BaA, and C+T spanned fewer than, or close to, two orders of magnitude (55, 59, 455 

67/68, 67/63, and 100/93, respectively).   The ratio for BaP was larger (180/270) and that 456 

for ANTH was very large (5900/7400), with extreme values tending toward 457 

underestimation for the latter species.  As seen with the comparison of means, the two 458 

partitioning parametrizations used by AURAMS-PAH led to similar model performance 459 

overall when considering the distribution of total PAH concentrations.   460 

 461 

Additional quantitative performance metrics are presented for the two particle/gas 462 

partitioning parametrizations in Tables S4.1 and S4.2 of the Supplementary Material.  463 

Normalized mean bias and error have been included for completeness, but their utility in 464 

this evaluation is questionable given the large range of concentrations.  Measured 465 

maximum to minimum concentration ratios range from 4.7E+06 (PYR) to 466 

1.3E+09/1.4E+09 (C+T).  Therefore, the mean measured concentrations used to 467 

normalize the bias and error do not represent the dataset well. 468 

  469 

The correspondence between individual modelled-measured data pairs is weak as 470 

demonstrated by the low coefficients of determination, non-unity slopes, and high 471 



intercepts listed in Tables S4.1 and S4.2.  However, the ability of the model to simulate 472 

observed concentrations within a certain tolerance is reasonable, especially when 473 

considering that PAHs are trace organic compounds subject to numerous sampling 474 

artefacts (McDow, 1999) and poor measurement precision (Galarneau, 2008).  475 

Depending on PAH species, 22-34% of modelled-measured data pairs fell within a factor 476 

of 2 of each other.  This increased to 61-86% when considering a factor of 10.  As a 477 

result, it can be stated with confidence that, on average, AURAMS-PAH was able to 478 

simulate atmospheric PAH concentrations in North America for rural to urban locations 479 

to the correct order of magnitude. 480 

 481 

3.1.2 Site-Specific Performance 482 

 483 

Model performance was not spatially uniform.  Figure 5 depicts the variation in 484 

distributions of individual modelled-to-measured concentration ratios across 485 

measurement sites for fluoranthene, the PAH species for which overall performance was 486 

best as determined by the median and spread in modelled-to-measured concentration 487 

ratios.  Note that only JP partitioning values have been plotted since these are visually 488 

indistinguishable from those for DE partitioning. 489 

 490 

Of the 30 sites depicted in Figure 5 (CARB sites could not be considered since only 491 

benzo[a]pyrene was reported there), the median modelled-to-measured concentration 492 

ratio ranged from 0.061 (St. John’s) to 4.0 (Hamilton – Confederation Park), whereas the 493 

median value for all sites was 1.1.  The variability at individual sites is itself highly 494 

variable, with ratios of 90
th

 to 10
th

 percentile values of the modelled-to-measured 495 

concentration ratio ranging from 5.8 (Toronto – Junction Triangle) to 105,000 (Haul 496 

Road, near the Rio Tinto Alcan smelter in Kitimat, British Columbia).  A low value of 497 

1.1 was observed for Saint John, but this was based on only two modelled-measured data 498 

pairs.  Sixteen of the 30 sites (53%) had median modelled-to-measured ratios that fell 499 

within a factor of two of the median value for all sites. 500 

 501 

The other compounds varied spatially in a manner similar to fluoranthene with the 502 

following exceptions.  ANTH exhibited atypically large underestimation at the three sites 503 

near the Rio Tinto Alcan smelter in Kitimat, suggesting that inaccurately low ANTH 504 

emissions are associated with the dominant source there.  The reporting threshold for 505 

point-source ANTH emissions through the Canadian National Pollutant Release 506 

Inventory (NPRI) system is higher than the thresholds for other commonly-measured 507 

PAHs and no ANTH emissions were reported to the NPRI by Rio Tinto Alcan for 2002.  508 

The C+T performance at Jonquière, home to aluminum smelting facilities, suggests that 509 

reported emissions there are also too low.  Emissions for other PAHs were reported from 510 

this location for 2002 but not so for chrysene, which is called benzo[a]phenanthrene in 511 

the NPRI. 512 

 513 

3.1.3 Model Grid Squares Containing Multiple Measurement Sites 514 

 515 

The smoother the spatial distribution of a pollutant, the coarser the model resolution that 516 

can be used to simulate it.  Four AURAMS-PAH model grid squares contain more than 517 

one measurement site, thus allowing for an assessment of the 42-km spatial resolution 518 



used for the evaluation runs.  The multi-site grid squares are all located in Canada, and 519 

from west to east, they encompass sites in Kitimat (2 sites), Hamilton (2), Toronto (3), 520 

and Montreal (2) (see Tables S2.1 and S2.4). 521 

 522 

Kitimat is a town 650 km northwest of Vancouver with approximately 9,000 residents 523 

whose largest employer is the aluminum smelter complex operated by Rio Tinto Alcan 524 

(District of Kitimat, 2009).  Two measurement sites (Haul Road and Kitamaat Village) 525 

are located in the same model grid square and a third site (Whitesail) lies in an adjacent 526 

square even though it is only a few kilometers away.  Hamilton is a city at the western 527 

end of Lake Ontario that is known colloquially as the Steel Capital of Canada and had a 528 

population of approximately 700,000 in 2010.  It is part of the so-called “Golden 529 

Horseshoe” conurbation at the western end of Lake Ontario whose 2010 population, 530 

estimated as the sum of the populations of Oshawa, Toronto, Hamilton, and St. 531 

Catharines-Niagara, was over 7 million (Statistics Canada, 2011).  Toronto and Montreal 532 

are the largest cities in Canada having 2010 populations of 5.7 and 3.9 million, 533 

respectively. 534 

 535 

Table 2 lists the variability in contemporaneously measured concentrations at the four 536 

grid squares as represented by their coefficients of variation (COV).  At any given site, 537 

the average COVs for the different PAH species tend to be similar to each other.  538 

Substantial differences exist between sites, however, particularly when grouping the 539 

urban sites (Hamilton, Toronto, and Montréal) against the industrial site at Kitimat.  This 540 

is not unexpected.  Urban areas include complex mixtures of point, area, and mobile 541 

sources that are distributed over distances similar to the scale of the model.  Kitimat 542 

houses industrial operations within a relatively small area of otherwise rural land and 543 

wilderness.  Steep spatial gradients in pollutant concentrations are expected there as a 544 

result. 545 

 546 

Table 2: Average Coefficient of Variation (%) between Contemporaneous 547 

Measurements at Sites Falling Within the Same 42-km AURAMS-PAH Grid Square 548 

 549 

Station PHEN ANTH FLRT PYR BaA C+T BaP O3
2
 TSP 

Kitimat 106 101 96.5 93.7 87.4 91.3 93.2 N/A N/A 

Hamilton 52.1 59.0 59.2 58.8 73.1 117 62.8 24.9 30.5 

Toronto3
1
 36.2 48.7 42.5 39.6 42.2 32.9 43.0 N/A 22.1 

Toronto2
1
 36.5 45.4 39.3 35.7 32.9 25.0 38.0 12.2 24.6 

Montréal 49.2 52.9 45.8 44.6 55.2 55.3 51.6 35.3 29.0 
 550 
` Toronto3 includes data from all three Toronto measurement sites.  Toronto2 includes only data from the Gage Institute and Judson & 551 
Etona because O3 data were not available from Junction Triangle. 552 
2 Ozone data have been aggregated to 24-hour concentrations contemporaneous with PAH measurements. 553 

 554 

The COVs for ozone and total suspended particles (TSP) have also been included in 555 

Table 2 as comparative gaseous and particulate pollutants, respectively.  Both vary less 556 

between sites in the same grid square than do PAHs.  Ozone and a portion of TSP are 557 

secondary pollutants created by the mixing and reaction of precursor compounds.  The 558 

atmospheric residence times required for their creation is consistent with a smoothing of 559 

the spatial variability in their concentrations though ozone variability is further 560 

complicated by reactions with NOx near emissions from mobile sources.  Conversely, 561 



unsubstituted PAHs are primary pollutants whose concentrations would be expected to 562 

vary in space over a finer resolution when multiple sources are found close by.  563 

 564 

The results presented above suggest that a 42-km spatial resolution is not sufficiently fine 565 

to represent PAH concentrations in areas close to sources such as cities and industrial 566 

areas if an average model accuracy better than an order of magnitude is desired.  567 

AURAMS modelling of fine particulate matter has shown substantial improvement when 568 

grid spacing has been reduced to 2.5 km (Stroud et al., 2011), and similar results can be 569 

expected for the modelling of PAHs.  No 42-km model grid squares in rural or 570 

background areas away from sources contain multiple measurement stations and, as a 571 

result, a comparison cannot be made for these areas.  However, it is expected that spatial 572 

variation in PAH concentrations will be less in such areas and, as such, a 42-km 573 

resolution model may be sufficient there. 574 

 575 

3.2 Particle/Gas Partitioning 576 

 577 

As noted in Section 3.1, the choice of partitioning expression (JP or DE) had little effect 578 

on the simulation of total PAH concentrations.  This implies that the partitioning from 579 

each approach is sufficiently similar that regional-scale differences in removal rates 580 

between gaseous and particulate PAHs have little effect.  However, differences between 581 

the two expressions with respect to simulating phase-resolved concentrations were noted. 582 

 583 

3.2.1 Overall Spatiotemporal Domain 584 

 585 

Figure 6 shows frequency distributions of the ratios of individual modelled-to-measured 586 

particulate fraction for all data pairs available to the model evaluation.  Note that only the 587 

eight IADN stations are included since the gas and particle phases are analysed separately 588 

only at those sites. 589 

 590 

Figure 6 shows that PAH particulate fraction is underestimated for all species except 591 

BaP.  The degree of underestimation decreases with increasing molecular weight.  The 592 

particulate fractions of volatile PHEN and ANTH (178 g mol
-1

) are underestimated by 593 

approximately two orders of magnitude whereas equipartitioning BaA and C+T (228 g 594 

mol
-1

) have particulate fractions that are underestimated by only a factor of two. A 595 

similar pattern appears when examining the partition coefficient, Kp (not shown).  596 

 597 

For all species other than BaP, Dachs-Eisenreich partitioning performs slightly better 598 

than Junge-Pankow partitioning in simulating measured particulate fractions.  The all-site 599 

median particulate fraction simulated using DE is between 1.1 (PYR) and 2.9 (ANTH) 600 

times higher than that using JP.  However, the performance of the partitioning 601 

expressions is highly dependent on the physico-chemical property values used.  For 602 

example, estimated soot-air partition coefficients vary by more than an order of 603 

magnitude (Galarneau et al., 2006) and translate directly to variations in predicted 604 

partitioning by the Dachs-Eisenreich expression.  For Junge-Pankow partitioning, the 605 

value of the constant, c, in Eq. 1 and the estimation of aerosol surface area also introduce 606 

uncertainties.  A full analysis of the sensitivity of modelled partitioning is beyond the 607 

scope of this paper and is explored in a separate publication (Galarneau et al., in prep.). 608 



 609 

3.2.2 Site-Specific Performance 610 

 611 

As was the case for total concentration, there is substantial variability in the simulation of 612 

partitioning between sites.  Figure 7 shows the variation in frequency distribution of 613 

individual modelled-to-measured particulate fraction for fluoranthene using Dachs-614 

Eisenreich partitioning.  Model performance for particulate fraction simulation is better at 615 

urban (Chicago) or urban-influenced (Sturgeon Point, Egbert) sites than at those that are 616 

remote (Eagle Harbor).  An analysis of measured partitioning at IADN stations 617 

(Galarneau et al., 2006) found that the proportionality between partitioning and volatility 618 

varied between sites, and in some cases, over the annual cycle.  Volatility is included in 619 

both the JP (through pL
0
) and DE (through KOA and KSA) partitioning expressions and the 620 

proportionality between it and partitioning magnitude is much smaller in model outputs 621 

than in measurements.  As noted earlier, factors involved in the performance of model 622 

partitioning such as modelled particulate matter concentration and composition are 623 

explored in a separate publication (Galarneau et al., in prep.) 624 

 625 

4. Conclusions 626 

 627 

This study described the first known modelling results for atmospheric PAHs at the 628 

regional scale over North America.  Predictions from the AURAMS-PAH model were 629 

compared to roughly 5,000 24-hour average PAH measurements from 45 sites, eight of 630 

which also provided data on particle/gas partitioning which had been modelled using two 631 

different partitioning schemes. 632 

 633 

The evaluation of the model is key to determining its potential utility as an input for 634 

estimating the impacts of PAH inhalation exposure on human health.  Annual average 635 

modelled total (gas + particle) concentrations were statistically indistinguishable from 636 

measured values for fluoranthene, pyrene and benz[a]anthracene, indicating the model’s 637 

potential utility for providing inputs to health impact estimation for these species.  The 638 

model annual average concentrations for phenanthrene, anthracene and 639 

chrysene+triphenylene were biased low.  For these species, the negative bias would have 640 

to be considered if used as inputs to human health impact estimates as the model in its 641 

present form underestimates long-term exposure.   642 

 643 

The utility of the model for prediction purposes may also be considered on a day-to-day 644 

basis though this is less relevant to the chronic health effects associated with carcinogenic 645 

PAHs.  The model simulated total PAH concentrations to the correct order of magnitude 646 

64-86% of the time.  That level of accuracy must be considered when assessing human 647 

health impacts; annual exposure estimates are likely of more utility with the model in its 648 

current state. 649 

 650 

The partitioning approach chosen did not have a significant impact on the model results 651 

for total concentrations though differences resulting form the choice of parametrization 652 

approached the 95% significance level for benzo[a]pyrene.  At this time, neither of the 653 

two approaches used here provided a clear advantage for simulation accuracy of total 654 

concentrations. 655 



 656 

As a first work of this nature, the analysis has suggested several avenues for further 657 

model development and improvement.  Improved temporal emissions estimates for PAHs 658 

are key to improving model simulations of these species; simulated PAHs showed less 659 

temporal variability than the measurements.  The reactions of particulate PAH species 660 

with atmospheric oxidants should be given further consideration since the more reactive 661 

species were overestimated in the current model.  The addition of an air-surface exchange 662 

parametrisation should be evaluated as a potential response to the seasonally varying 663 

prediction capability of the model for the most volatile compounds.  Model resolution has 664 

been shown to be a key factor in improving air pollution estimates in areas with high 665 

human exposures.  While the 42-km horizontal grid spacing used in this study is finer 666 

than that used in global models, it was insufficient to capture the distribution of 667 

concentrations in densely populated areas.  A more detailed analysis of the factors 668 

influencing modelled particle/gas partitioning is needed to improve the distribution of 669 

PAHs between the gas and particle phases in the atmosphere given that both partitioning 670 

schemes used here showed increasing negative biases for particle-bound PAH 671 

concentrations of increasing volatility. 672 
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Figure 4: All-site ensemble of modelled-to-measured concentration ratios for total (gas + particle) PHEN (a) and PYR (b) using JP 1052 

partitioning expression plotted by month. 1053 
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Figure 5: Site-specific modelled-to-measured concentration ratios for total (gas + particle) fluoranthene for JP partitioning1062 
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Figure 6: All-site ensemble of modelled-to-measured PAH particulate fraction ratios for JP and DE partitioning expressions. 1065 
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Eisenreich partitioning. 1070 
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Figure 7: Site-specific modelled-to-measured partition coefficients for fluoranthene for DE partitioning for eight IADN sites. 1076 
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