

Appendix for

Development of a Source Oriented version of the WRF-

Chem Model and its Application to the California Regional

PM10/PM2.5 Air Quality Study

Hongliang Zhang1, Steve P. DeNero1, David K. Joe1, Hsiang-He Lee2, Shu-Hua Chen2, John Michalakes3,and

Michael J. Kleeman1,*

1Department of Civil and Environmental Engineering, University of California, Davis. One Shields Avenue,

Davis CA. 2Department of Land, Air, and Water Resources, University of California, Davis. One Shields

Avenue, Davis CA. 3National Renewable Energy Laboratory, Golden CO

*Corresponding author. Tel.: +1 530 752 8386; fax; +1 530 752 7872. E-mail address:

mjkleeman@ucdavis.edu (M.J. Kleeman).

Description of the source oriented WRF Chem model (SOWC)

This appendix describes the changes made to the original WRF-Chem source code to create the

SOWC, and is separated into the major processes and methods therein. The changes fall within three main

branches of the code: The Registry, the chemistry driver, and the Eulerian-mass conservation dynamic

core. Figures A1, A2, and A3 provide an illustrative view of the flow of information within the

framework of the SOWC model. Figure 1illustrates the WRF call structure that controls this time-looping

behavior. Figure 2 illustrates the call overall call structure of the chemistry driver, and names the files that

were edited or created with the creation of the SOWC model. Figure A3 provides this same insight within

the Eulerian mass conservation dynamic core.

1 THE REGISTRY

The purpose and functionality of the WRF Registry is described in the WRF Tiger Team

Documentation: The Registry (Michalakes and Schaffer, 2004). In brief, the Registry is used to store

information regarding every variable within the modeling framework. The information stored includes the

mailto:mjkleeman@ucdavis.edu

variable’s name, the symbol used model-wide to represent it, the number and specifications of its

dimensions, which sections of WRF-Chem it is to be included in, and the variable’s units. At the time the

code is compiled, the Registry also provides low-level information to the automated scripts which are

responsible for writing most of WRF-Chem’s structure.

The goal of this study was to track source-oriented and size resolved particles across the

modeling domain, and observe their interaction with the regional meteorology. The particle variables

created for this study were therefore configured to have six dimensions; three dimensions for Cartesian

coordinates; one for the particle size bin; one for the source origin; and one final dimension for the

individual chemical species. Particle phase concentrations were stored in a six-dimensional array with

these properties, which was simply named AQC for Air Quality Concentration. Appendix A summarizes

AQC and other variables created within the SOWC model to support source-oriented calculations. In

addition to the AQC array, separate arrays were also created for particulate matter emissions from area

sources (EMIS_AQC), particulate matter emissions from point sources (EMISP_AQC), gas-phase species

(AQCG), gas-phase emissions from area sources (EMIS_AQCG), and a final variable array used for

writing time-averaged particulate matter concentrations to the history files (AQC_OUT).

The EMIS_AQC array has six dimensions, matching AQC in all aspects except the length of the

2
nd

 and 6
th

 dimensions. The 2
nd

 dimension is reserved in both arrays for vertical layers. EMIS_AQC’s 2
nd

dimension has a length of one (1) since all area sources are ground based. The 6
th
 dimension is reserved

for pollutant species and is shorter than that of AQC because EMIS_AQC only describes primary

pollutants while AQC must describe primary and secondary pollutants. The EMISP_AQC array has six

total dimensions. The first two are not used (dimension of 1) but are maintained only for consistency in

the I/O conventions of the SOWC model. This subtle I/O feature is discussed in Appendix Section A.

The AQCG array has four dimensions only as it is not source-oriented. The EMIS_AQCG array has five

dimensions, maintaining its source-oriented information because it is processed at the same time as the

source-oriented particle emissions EMIS_AQC. This feature of the emissions pre-processor is described

in greater detail in Appendix Section C. Emissions of each gas phase pollutant from all sources described

in EMIS_AQCG are summed together within the SOWC emissions framework (see Section 4). Finally,

the AQC_OUT array has six dimensions, matching AQC in all aspects except the length of the 2
nd

“vertical extent” dimension, which has a default value of 1 that can be changed at run-time as required for

each application of the model. The value of 1 represents the ground, surface-layer of the model, and is

used here as a dimension for two purposes. The first of these is that the most relevant pollutant

concentrations are those at the surface. All the monitoring data used in the comparisons are from surface

stations in California. The other purpose for setting this value to 1 is to save on disk memory space. The

output files for these simulations are several gigabytes each, and the removal of one dimension of these

output arrays saves a significant amount of space as well as time spent by the processor writing these

arrays to file.

The arrays described above are defined in the file Registry/registry.aqc. This file was created

specifically for the SOWC model and is incorporated into the main Registry code via an include statement

in the file Registry/registry.chem. Having a separately referenced Registry file for source-oriented

variables provides organizational structure and it facilitates the removal of the source-oriented feature for

testing purposes. Initial testing with the source-oriented AQC array revealed that the process of writing

out the entire 6-dimension array consumed a considerable fraction of the simulation time. Writing the

history output file took approximately 30 times longer using 5 source types, 8 size bins, and 40 individual

pollutant species compared to time required to write history output files with the original WRF CHEM

model. The AQC_OUT array with a maximum vertical dimension of variable ‘KAQC’ was created partly

to reduce the time required for writing output files. The AQC_OUT array averages the content of AQC

with respect to time over all dimensions except that the vertical extent KAQC is typically set lower than

the vertical extent of the full WRF model (default value of KAQC=1 as described earlier). The value of

KAQC can be changed at runtime by editing the ‘KAQC’ value under the ‘&Chem’ section of the

namelist.input file. The value of 1 (one) signifies that only the first (bottom, surface) layer of information

stored in AQC in the Z- (or, interchangeably K-) direction will be transferred from AQC to AQC_OUT,

and then output to the history files. Note that increasing the value of KAQC will lengthen the amount of

time spent on writing history output files, and it will increase the amount of storage space needed to hold

all of AQC_OUT. The SOWC model can write AQC (instantaneous concentrations) and/or AQC_OUT

(time-averaged concentrations) independently to output files depending on the specification of

input/output (I/O) flags in Registry/registry.aqc. Michalakes (2004) provides an overview of each possible

Registry I/O flag.

Several variables related to the dimensions of the source-oriented variables are assigned default

values in Registry/Registry.EM_CHEM that can be changed at runtime through entries in the

namelist.input file under the &time_control section. The variables first_bin and last_bin control the

number of aerosol particle size bins in the simulation, and the variables first_src and last_src allow the

user to control the number of source types in the simulation. First_bin and first_src have a default value

of one (1), last_bin has a default value of eight (8), and last_src has a default value of ten (10). The

max_point variable represents the maximum total number of point sources in the emissions array

EMISP_AQC. Max_point has a default value of 4550, which is the number of point emissions processed

in the current study. Lastly, the variables aqc_adv_opt and aqcg_adv_opt found in namlist.input under the

&dynamics section control the advection options for the species within AQC and AQCG. The treatment

of advection in SOWC will be discussed later on in Section 3.10. Aqc_adv_opt and aqcg_adv_opt have

default values of one (1), which signify positive-definite transport.

The WRF modeling system includes a C program in the ‘external’ directory that reads the

contents of the Registry files and then generates portions of FORTRAN subroutines that are included in

the actual WRF model. A greater overview of this C program and the changes made to it in order to

accommodate the source-oriented variables can be found in Appendix B. The programming approaches

adopted in the C program require that all dimensions past three (which normally correspond to the three

Cartesian coordinate dimension) have their value appended to the end of the variable name. As an

example, the CHEM array included in the original WRF CHEM model has four dimensions whereas

AQC included in the new SOWC model has six dimensions. Both CHEM and AQC contain an entry to

describe concentrations of elemental carbon (EC). In CHEM, the EC index variable is ECJ that is

dimensioned as IKJ. In AQC, the EC index variable is AQCEC that is dimensioned IKJ-Size-Source.

During I/O as well as in any input or output files where these variables are included, the CHEM variable

is still named ECJ, but the AQC variable has the size bin and source type appended to the end. Since these

two dimensions follow the 3
rd

 dimension “J”, a new mechanism to retain the pollutant’s identity is

required. The 6
th
 dimension describing the pollutant species is already accounted for in the name of the

variable (AQCEC). However, the standard WRF-Chem framework would not be able to distinguish

source-types and size bins from one another, and all information would be stored in AQCEC and

overwrite everything preceding it. Therefore, the additional two dimensions are appended to the name of

the variable. As an example, the variable describing AQCEC concentration values from the fifth size bin

and fourth source type is named AQCEC_00005_00004. This methodology is only applied to variable

arrays that exceed four dimensions. These changes were made to the C program that reads in the Registry

files and automatically generates the first few levels of WRF-Chem’s source-code. It was therefore

necessary to add two dummy dimensions to EMISP_AQC in order to push the dimension count above 4.

In doing so, the appropriate variable suffixes were automatically generated by the C program which

corresponds to the target AQC variable. EMISP_AQC will be discussed in more detail in Section 3.

2. CODE CONFIGURATION, COMPILATION FLAGS, AND ENVIRONMENTAL FLAGS

Instructions on how to build and configure the original WRF-Chem code can be found in the

WRF user guide online at http://www.mmm.ucar.edu/wrf/users/docs/. It is important to note that the

SOWC model framework rests entirely within the Eulerian mass-coordinate solver, or EM for short. This

is important because an attempt to build the SOWC model in any of WRF-Chem’s other solver options

would not be successful. The steps taken to configure and compile the SOWC for this specific study will

be discussed here briefly. Also to be covered are the additions to the code and computing environment to

help the user switch back and forth between the original code and the source-oriented version.

The most recent tests for this study have been built and run on 64-bit intel architecture (intel i5

cpu with 8G of RAM) but initial testing demonstrated that the code compiles and runs in the 32-bit

environment. The Intel ‘ifort compiler with icc for distributed memory in parallel’ option was tested in

the 32-bit and 64-bit environment. The “PGI compiler with gcc for distributed memory in parallel’ option

was tested in the 32-bit environment. It was found that the ifort compiler generated slightly faster

executable programs, and this compiler was used to produce results in this report.

The memory allocation demands of the SOWC model required the addition of the “-heap_arrays

1024” flag to the ‘FCBASEOPTS’ group in the file arch/configure.new_defaults when using the ifort

compiler. This flag instructs the compiler to store all arrays >1024 KB and place them in heap memory

instead of stack memory. The default optimization level within the ‘CFLAGS_LOCAL’ and ‘FCOPTIM’

groups was decreased to two (-O2) from the original WRF code default of three (-O3). The –O3 level was

observed through iterative testing to lead to decreased processing performance and slower simulation time.

The environment flag SOURCE_ORIENTED must be set to true in order to build and run the

SOWC model. Setting SOURCE_ORIENTED to false will result in the compilation passing over all the

SOWC code changes, generating the original WRF CHEM executable. Note that SOURCE_ORIENTED

must also be set in the run directory’s environment. This approach follows in the methodology followed

by the WRF_CHEM environment variable in the base model.

3 UPDATING PARTICLE RADII AND NUMBER CONCENTRATIONS

The last two species within the AQC array are number concentration and particle radius,

respectively (see Appendix A). The radius and number concentration values are carried around in AQC

throughout the SOWC model, and are accessible at any point for every simulated size bin and source type.

AQC is processed by many operators in the simulated atmosphere that add or remove mass and number

from each size bin and source type. Coagulation also combines particles in different size bins and sources

types. The radius, mass and number concentration are updated after each operator step in order to

maintain internal consistency. These operator steps include the addition of new mass and number through

emissions, initial conditions, boundary conditions and condensation of gaseous material; the removal of

mass through deposition; the displacement of mass from horizontal and vertical transport; and the re-

distributing of mass through evaporation and coagulation. The densit subroutine is used to recalculate the

radius and number concentration throughout the SOWC model and can be found in the file

‘chem/module_ucd_vvel’. Subroutine Densit generally conserves mass and number, making adjustments

to particle radius due to the operators described above. Densit applies a default radius for each size bin

that contains a mass concentration less than 1x10
-6

 μg/m
3
.

4. EMISSIONS

The process of adding fresh source-oriented emissions into the SOWC variable arrays starts

within ‘chem/emissions_driver’ for AQC and for AQCG. AQCG also uses subroutine

add_anthropogenics found in the file ‘chem/module_emissions_athropogenics’. AQC is fed by both the

area emissions array EMIS_AQC and the point emissions array EMISP_AQC. AQCG is currently only

fed by the area emissions array EMIS_AQCG. The plume heights calculated for point emissions are

calculated by subroutine plumht in the file ‘chem/module_ucd_plume’. This section covers the steps taken

to integrate this process into the SOWC model.

EMIS_AQC has six dimensions corresponding to those used by AQC. The process of adding the

emissions to the concentration array (AQC) is very straightforward. The units of EMIS_AQC coming into

the SOWC model are micro-grams per square meter per second (µg/m
2
/s). AQC has units of micrograms

per cubic meter (µg/m
3
). Therefore, to introduce the emissions into the AQC array, a simple conversion

factor involving the chemistry time step and cell thickness are applied to the EMIS_AQC value. The

product of that operation is then used to update the pre-existing AQC value. It is important to note that the

area emissions match AQC in number of sources and sizes, so that in a test involving more than one

source type and more than one size bin, the emissions from each source type and each size bin are kept

separate as they are added to AQC.

EMISP_AQC technically also has six dimensions. However, as previously reported in section 3.1,

the first two of these dimensions are dummy variables with default lengths of one (1) each, so they don’t

take up additional memory. This is done for the I/O naming convention of variables within the SOWC

model so that EMISP_AQC can be matched easily to AQC. Appendix section A, Source Oriented Array

Description, gives an overview of the EMISP_AQC array and its dimensioning. The third dimension of

EMISP_AQC is equivalent in length to the total number of point emissions taken from the namelist.input

state variable max_point. This use of the number of point sources and two dummy variables instead of the

standard Cartesian coordinates is a memory-saving technique. Most likely very few cells within a given

modeling domain will have point source emissions. Therefore, each point was assigned an index value

ranging from one (1) to max_point. In this way, EMISP_AQC only allocates memory for active point

sources and avoids the allocation of a large number of null values that would be inescapable with

Cartesian dimensioning. The point index value inherent in EMISP_AQC must be accompanied by two

other arrays that store information about the physical location and emissions properties of each point

source. EMISP_INT includes the X and Y grid location of each point source taken from the emissions

pre-processor grid. EMISP_REAL stores site-specific latitude and longitude information as well as

physical characteristics of each stack. Based on these arrays, emissions from each point source are

allocated to their proper x-y grid cell location and the effective plume rise of the emissions can be

calculated, allowing emissions to be injected into the proper location within the given WRF modeling

domain.

5. INITIAL CONDITIONS

The initial conditions for gases and particulate matter were specified using a subroutine

specifically tailored for the target modeling domain and study period. The code for the initial conditions

can be found in ‘chem/module_chemics’. Concentrations measured during the CRPAQS winter field

campaign were interpolated to create a uniform grid following the methods of Goodin et al (1979; 1980).

These initial and boundary conditions were used extensively in previous modeling studies (Ying et al.,

2008a; Ying et al., 2008b; Ying et al., 2009). In the present study, the interpolated concentrations on the

western (upwind) edge of the modeling domain were averaged as a best estimate of background aerosol

concentrations.

The other valid option to generate ICs for model calculations involves the use of a spin-up cycle.

Liu et al (2001) showed that air quality calculations generally become insensitive to initial conditions

after approximately 3 days of time during a typical air pollution episode. Arbitrary initial conditions can

therefore be specified if an additional three day period is added to the beginning of the model episode.

(for example, starting the test on December 12
th
 instead of December 15

th
 in the present study). The

concentration field at the end of the three day initialization period can optionally be saved to efficiently

start new calculations. If a spin up period cannot be simulated, an alternative procedure involves using

the first three days of the actual episode to create a restart file that is then renamed to the date and time

corresponding to the start of the episode. For example, if December 15
th
 were the first day of the episode,

then the user would initialize the model with arbitrary concentrations and perform calculations to create a

restart file on December 18
th
. After the December 18

th
 restart file is created, rename that file as December

15
th
 and then start the test anew with the restart namelist flag turned on. This will load concentrations

from the third day of simulation into the model at the beginning of the first day and the test can then start

as if valid ICs had been written into the code structure. This second option is the preferred treatment of

this issue when measured initial conditions are not available.

6. BOUNDARY CONDITIONS

Boundary conditions for the current study are based on measured concentrations interpolated

using the methods of Goodin et al (1979). All boundary conditions have been used extensively in

previous air quality studies. New routines to apply boundary condition to gas and particulate matter

concentrations were created within the original WRF framework and implemented for the SOWC model.

Calls to the routines flow_dep_bdy_aqc and flow_dep_bdy_aqcg were added to the file

‘dyn_em/solve_em’. The routines themselves are found in ‘chem/module_input_chem_data’. The new

routines take in the concentration arrays AQC and AQCG one species at a time, determine where the MPI

process lies within the modeling domain, and then determines whether to implement boundary conditions

to the current grid cell based on wind direction. In order for boundary conditions to be applied in a given

grid square, a number of criteria have to be met. First of all, the domain under consideration must be

flagged as “specified”. This is a flag in the namelist run-time file. Only the outer-most domain is normally

specified. Next, the MPI process in question must have an edge that is part of the outer boundary of the

domain. Then the grid square being considered must also fall on that outer edge boundary. Finally, the

winds at that boundary edge/square must be blowing into the domain. If the grid square in question is not

on an outer edge of a specified domain with inward blowing winds, then boundary conditions are not

applied to the cell. Boundary conditions are not source-oriented. All boundary conditions are mapped to

the largest source-type simulated by the SOWC model. This feature does not apply to flow_dep_bdy_aqcg

because AQCG is not source-oriented.

flow_dep_bdy_aqc and flow_dep_bdy_aqcg call set_aer_bc_ucd and set_gas_bc_ucd,

respectively. Subroutines set_aer_bc_ucd and set_gas_bc_ucd apply the boundary conditions specified by

Ying et al. (2008a; 2008b; 2009) for the CRPAQS field study. The general framework allows the user to

specify any value for boundary conditions, including zeroing out these concentrations (normally used for

debugging). The same boundary conditions were specified along all four boundaries in the current study,

but a framework exists to specify unique boundaries along each edge. A range of boundary conditions can

also be specified along the same edge.

7 DRY DEPOSITION

New routines were added to the original WRF framework to perform source-oriented aerosol

calculations in the SOWC model. The AQCG gaseous species follow the framework already present in

the original WRF chemistry code. The dry deposition of gas and PM routines starts in the file

‘chem/dry_dep_driver’. Both PM and gas deposition use the vertmx subroutine found in

‘chem/module_vertmx_wrf’. Gas deposition also uses subroutine wesely_driver in

‘chem/module_dep_simple’, while the SOWC treatment of PM dry deposition uses subroutine drydep

from ‘chem/module_ucd_vvel’. This sub-section will discuss the treatment of the AQC and AQCG

concentration arrays within these subroutines.

There are two main steps involved in the treatment of particulate matter dry deposition. The first

step involves calculating the deposition velocity in subroutine drydep. drydep takes in various physical

characteristics of the particles and environment as inputs including particle density and radius, surface

roughness, and friction velocity. The deposition velocity calculated for each particle is assumed to hold in

any vertical layer. The drydep subroutine itself is a version of the dry deposition scheme found in the

UCD/CIT model (Kleeman, 2001) that was modified to work in the WRF framework. The deposition

velocities calculated in drydep are then passed on to the subroutine vertmx that handles vertical mixing

and species removal due to surface deposition.

Deposition of gaseous AQCG species follows the treatment used for the CHEM variable in the

original WRF-CHEM model. Subroutine wesley_driver takes information from the physical surroundings

and outputs a dry deposition velocity for each chemical species. It does this in a three-step process that

follows as (1) calculation of surface resistance, (2) calculation of surface deposition velocity, and (3)

calculation of species-specific deposition velocity based on local meteorology and land use. The

deposition velocities for AQCG species are passed into subroutine vertmx that calculates the vertical

mixing and dry deposition loss rates.

There was no precipitation during the CRPAQS winter intensive period, and so there was no wet

deposition of the particles or gases from December 15 – 30, 2000. The source code mechanism to carry

out this process has therefore not yet been fully implemented into the SOWC model but this model exists

in other source-oriented chemical transport models (Mahmud et al., 2010) and can be easily ported to the

WRF code.

8. THE SAPRC90 GAS-PHASE MECHANISM

One of the largest additions of new code to develop the SOWC model was the addition of the

SAPRC90 gas-phase mechanism. The standard WRF-Chem model has several options for gas-phase

reaction mechanisms, but the SOWC model represents the first application of the SAPRC mechanism in

WRF. The driving subroutine for the SAPRC90 mechanism, named saprc90_driver, is referenced from

‘chem/mechanism_driver’ and is found in ‘chem/module_saprc90’. There are also four (4) data modules

that work in conjunction with the SAPRC90 mechanism. They are module_modlspc, module_parameter,

module_gaskin, and module_common. These are all found in ‘chem/module_data_saprc90’ and are

referenced in multiple places throughout module_saprc90. The following sub-section will provide an

overview of the flow of information in the SAPRC90 mechanism in the SOWC model. There are also

mechanism versions from 1999 and 2007 that, with a few minor changes discussed later on in this sub-

section, could be implemented with relative ease.

The saprc90_driver subroutine is referenced from the mechanism_driver subroutine, which acts

as a hub for all other possible gas-phase mechanisms. In order to successfully run the SOWC model with

SAPRC90, the user’s run directory must have two (2) files prior to starting the simulation. The files are

referenced within the subroutine rdmod, which is called from saprc90_driver and are named

‘soam_rev29c.mod’ and ‘soam_ims95a.rxp’. The ‘soam_rev29c.mod’ file stores properties pertaining to

the species involved in the mechanism. For example, it contains the number of active, buildup, constant,

and total species in the mechanism as well as a list of all species involved with initial conditions for the

constant species. It also contains molecular weights of all species involved, steady state variable names,

variable and constant coefficient names, wavelength-dependent light absorption coefficient and quantum

yield values, and information regarding the reaction rates. Finally, it lists out all the reaction pathways

used in SAPRC90. The ‘soam_ims95a.rxp’ file meanwhile contains information on the mechanistic and

kinetic parameters for lumped species. Once this information is read in, a third file (soam_rev29c.doc,

‘status=unknown’) will be created in the run directory that gives a full description of the mechanism

including everything that is found in the SAPRC input files.

The process of reading from and writing to the files listed above only needs to be performed once.

There are two main subroutines that are utilized to read in and set-up the reaction mechanisms, but only

need to be called on the first pass through the mechanism. The first subroutine is rdmod which is

responsible for reading in the kinetic model and the species parameters that are used within the kinetic

model. The other subroutine that is called only on the first pass is named constr. Subroutine constr

calculates the values of the reaction rate constants and variable and constant coefficients. A logical

variable was therefore created in ‘registry.aqc’ named ‘saprc_first_call’. It has a default value of ‘true’

that is switched to ‘false’ after constr to prevent further calling of the initialization routines.

Once the mechanism files are read in, the mechanism goes on to start the reaction calculations.

These can be broken down into three main parts: calculation of photolysis rates, updating the temperature-

dependent rate constants, and integrating the chemical reaction system. All three of these routines are

looped over for each grid box within the Cartesian domain of each MPI process.

The subroutine citphk is implemented to compute the photolysis rate constants during the daylight

hours. This routine takes in much of the basic species information read in from the MOD file as well as

the cosine of the solar zenith angle, grid square latitude and longitude, and the solar declination angle.

Note that citphk is only called from saprc90_driver when the sun is above the horizon.

 The subroutine newrk is used to calculate rate constants based on the most recent temperature

values for each grid square. The integration of the system over the operator time step is carried out in

subroutine integr2. This routine makes use of a predictor/corrector scheme to converge on gaseous

concentration values (Young and Boris, 1977). Most of the inputs into integr2 are parameters that control

the numerical integration that have been tuned based on past experience with photochemical mechanisms.

Among them is the convergence criterion and minimum concentration threshold. The detailed list of the

control parameters used for integr2 can be found within the comments section of that subroutine. Other

inputs to integr2 include the gaseous concentration array, the number of equations to integrate over, and

the integration time. In this study, the integration time was set equal to the WRF chemistry time, typically

3-4 minutes. The actual time step used inside integr2 is variable depending on the convergence of the

implicit equation solver as it spans the total integration time.

 This study utilized the 1990 version of the SAPRC gas-phase mechanism so that the results could

be directly compared to previous air quality modeling studies. There are a few fairly easy steps the user

can take to update this mechanism to either the 1999 or 2007 versions if they choose. The user must

substitute the appropriate versions of the ‘.mod’ and ‘.rxp’ files found in the simulation run directory as

well as the subroutines constr, bldup, and difun. Subroutine bldp calculates the formation rates of non-

reacting species while difun calculates the formation and loss rates for active model species (those that act

as either reactants or products). The rest of the mechanism’s structure is independent of the mechanism

version.

9. GAS-PARTICLE PARTITIONING IN ISORROPIA AND COAGULATION

Gas-particle interaction is a complex process that consumes a sizeable fraction of the total

chemistry-related computing time in the SOWC model. The file ‘chem/aerosols_driver’ contains

subroutine aerosol_driver, which is the starting point for all the aerosol packages included in WRF. The

SOWC model was introduced through the framework of the Secondary Organic Aerosols Module

(SORGAM) and was built-up by replacing the SORGAM subroutines with source-oriented SOWC

subroutines. The original SORGAM routines are found in the standard WRF-Chem package. The

subroutines used to prep the input for these gas-particle partitioning calculations are found in

‘chem/module_aerosols_sorgam’, and the thermodynamic calculations are performed in

‘chem/module_isrpia’ in subroutine isoropia. The algorithm employed in sorgam_driver pre-screens

AQC and AQCG concentrations within each MPI process to determine if concentrations are sufficiently

large to merit gas-particle conversion calculations. Concentrations are copied to a working array and the

units are converted from µg m
-3

 to µmoles m
-3

, which is the standard unit base for aqueous chemistry.

Each particle size bin and source type corresponding to diameters larger than 100 nm are copied to the

working variable. The SOWC model uses the APDC approach outlined by Jacobson (2005) for gas-

particle conversion of inorganic species. In this approach, the ammonium ion is held in equilibrium while

the anion concentrations are solved dynamically. Mass and charge balance equations are then used to

determine final concentrations of each component. This numerical solution is stable at larger time steps

(150-300s as compared to 5-30s), which greatly reduces the computational burden of gas-particle

conversion. The vapor pressure of inorganic gases HNO3, HCl, H2SO4, and NH3 immediately above the

particle surface are calculated using the ISORROPIA equilibrium solver (Nenes et al., 1998). The

concentration of particulate water is calculated during these steps using the Zdanovskii-Stokes-Robinson

(ZSR) approach by the isoropia thermodynamics solver (Stokes and Robinson, 1966). These

concentrations are updated for every particle source and size bin at each time step taken. This procedure

updates particle water content based on a rigorous thermodynamic calculation that depends on the particle

composition. The ZSR method has been widely used in other studies (Clegg and Seinfeld, 2004). The

current study resolves the distribution of aerosol water among source-oriented aerosols, which may result

in modified optical properties (Beaver et al., 2010) provided that there is a difference in chemical

composition between the particles being surveyed (Fuller et al., 1999). This will be discussed further in

section 11.

 A source-oriented coagulation calculation is performed immediately following the gas-particle

exchange calculations. The subroutine coagrate_ucd and the subroutines that follow are all originally

from the UCD/CIT model (Ying et al., 2008a). The fastest coagulation rates occur between the smallest

particles that have high Brownian diffusivity and the largest particles that provide a large target for

collisions. The source-oriented algorithm transfers the mass of smaller particles involved in coagulation

events to the larger particles, and reduces the number concentration of the smaller particles. The “source-

origin” of the larger particles is preserved, at least approximately, since the mass added by coagulation

events is generally small relative to the total mass in these size fractions. The integration time in this

process matches that of the rest of the chemistry code, which in this test was four (4) minutes. All

coagulation routines are located entirely within ‘chem/module_aerosols_sorgam’ and start out of

subroutines aeroproc and coagrate_ucd.

10. ADVECTION AND DIFFUSION

 Mass transport of the scalar arrays is performed within the dynamic core of the WRF model. The

SOWC model can only be used with the Eulerian mass-conservation dynamic core (EM_CORE) at

present. All of the mass transport and inter-processor communications occur either directly

within ’dyn_em/solve_em’, or in a routine referenced by solve_em. A Runge-Kutta (RK) algorithm is

employed within solve_em to solve the set of ordinary differential equations pertaining to the tendency

(dC/dt) of the scalar arrays. The RK solver allows for first, second, or third-order time integrations

choices based on a run-time selection in the ‘namelist.input’ file. The default value for time integration is

third-order. The purpose of this subsection is to describe how the scalar array AQC was introduced into

this branch of the WRF code, and to illustrate the flow of information that occurs through solve_em. Note

that the treatment of the AQC and the AQCG variables in this section of the code is identical.

The mediation level routine solve_interface calls solve_em every ‘time_step’ seconds and

chem_driver every ‘chemdt’ seconds. Figure A1 illustrates the WRF call structure that controls this time-

looping behavior. The main sections of solve_em that concern scalar array AQC are the communications

between MPI processes and the RK-solver loop. MPI processes communicate in WRF through calls to the

HALO routine using the portion of the scalar variable in the ‘Memory’ grid domain. Each MPI process

has a “Memory” grid that overlaps with the “Tile” grid of the neighboring process. Communication with

neighboring processes occurs both before and after horizontal transport and the RK loop so that the scalar

arrays are updated with the most current information. The file ‘Registry/Registry.EM_CHEM’ lists all of

the variables that are exchanged between neighboring MPI processes, as well as the specific HALO

routine that is used for each communication.

The Runge-Kutta loop within solve_em is used to calculate the tendency of each scalar array

variable, and then solve the corresponding ordinary differential equation in order to update the scalar

value at the next time step. AQC is passed through many different subroutines within the RK loop (see

Figure A3). These subroutines can be separated into three groups: tendency calculations, scalar updates,

and boundary condition updates.

The tendency calculation routines include all the processes involved in mass transport and solar

radiation. Long- and Short-wave radiation calculations, which are classified here as a tendency

calculation routine, will be discussed in the following sub-section. Subroutines first_rk_step_part1,

first_rk_step_part2, and rk_scalar_tend are the routines responsible for calculating the tendency values

for each variable integrated by the WRF dynamic core. These tendency calculation routines were not

modified in the SOWC model. The first two subroutines are only referenced during the first time step

within the RK solver loop. Subroutine first_rk_step_part1 initializes the scalar tendencies of AQC with a

call to subroutine zero_tend, and then follows this by referencing the short-wave and long-wave radiation

modules. Subroutine first_rk_step_part2 is calculates the first set of scalar horizontal and vertical

diffusion tendencies. rk_scalar_tend is called during every time-iteration of the RK loop to calculate

tendency associated with horizontal and vertical advection and diffusion. All tendencies related to AQC

are stored in aqc_tend. This variable has the same dimensions as AQC, representing a significant memory

burden in the calculation.

The AQC variable (and all scalar variables) are updated in the dynamic core with a call to

rk_update_scalar and/or rk_update_scalar_pd. Both of these subroutines take in the scalar tendency array,

aqc_tend, and use it to update a scalar array. rk_update_scalar_pd also requires the current value of the

scalar array as an input. The AQC example of this input is named AQC_OLD which must be

dimensioned identically to AQC, representing yet more memory burden. The rk_update_scalar_pd

routine updates the values within the AQC_OLD array through use of a positive-definite routine. The

subroutine rk_update_scalar meanwhile takes in the previous time step scalar array (aqc_old), the

tendency array (aqc_tend), and the next time step’s scalar array (aqc). rk_update_scalar uses the old and

tendency values to update AQC in the next time step array with the most current value.

The routines that update boundary conditions are the last main group within the Runge-Kutta

integration solver. Depending on the configuration of the grid domain being processed, the AQC scalar

array can be processed by several different routines. The main distinction for the domain in question is

whether it is the outer-most parent domain, where the boundary conditions are considered to be

‘specified’. A nested domain is one that sits inside another, larger domain. Error! Reference source not

found. illustrates the idea of parent and nested domains with the configuration used in the preliminary

simulations for the current study. The domain identifiers for ‘parent’ and ‘nested’ are defined by the user

at runtime and can be found in the &bdy_control section of the namelist.input file in Appendix Section D:

Runtime Configuration.

If the domain under consideration is the parent, specified domain, then the AQC array will be

processed through subroutine flow_dep_bdy_aqc to have its boundary conditions updated. Note that

flow_dep_bdy_aqc (as well as flow_dep_bdy_aqcg for the AQCG array) were created specifically to

support the boundary condition calculations of the SOWC model arrays. If the domain in question is a

nested domain then the scalar arrays will be passed into two other subroutines: relax_bdy_scalar and

spec_bdy_scalar. The purpose of these routines is to add tendency values in the boundary relaxation and

boundary specified regions. The specified boundary width is a feature of each MPI process domain

regardless of whether or not the domain is ‘specified’ in the sense used above. The specified boundary

width is controlled by the namelist option ‘spec_bdy_width’ and has a default value of five (5). This

means that on the edge of every processor domain, five extra cells are added for boundary condition. The

outermost one (1) cell of those five is the ‘specified zone’ (see namelist variable ‘spec_zone’). The next,

inside four (4) cells are considered the ‘relaxation zone’ (see namelist variable ‘relax_zone’). These two

routines therefore add tendencies to the outermost edges of nested domains.

11 LONG-WAVE AND SHORT-WAVE PHYSICS / AEROSOLS-RADIATION FEEDBACK

The SOWC model currently uses the radiation modules developed by the Goddard Space Flight

Center (GSFC). The standard WRF source code comes with the GSFC short-wave radiation module. The

current study introduced a comparable GSFC long-wave radiation module to the SOWC model

framework (Chen et al., 2010). The radiation routines are called from subroutine radiation_driver located

in ‘phys/module_radiation_driver’ which is called from subroutine first_rk_step_part1. The short-wave

routine is found within the file ‘phys/module_ra_gsfcsw’ and the long wave routine is found within

‘phys/module_ra_gsfclw’. The radiation scheme is specified at runtime through an entry in the

namelist.input. The SOWC model is currently only configured to work properly when the GSFC radiation

schemes are selected. The ability to calculate feedback effects of source-oriented aerosol concentrations

on the radiation budget is enabled by setting the namelist parameter ‘aer_ra_feedback’ to 2.

The standard WRF code used a pre-defined concentration profile of internally mixed pollutants for

all aerosol optics calculations. A new subroutine was implemented within the SOWC model to calculate

layer-averaged optical properties of the size and source resolved aerosols. The new source-oriented

routines represent a major improvement in simulating realistic aerosol feedback effects on meteorology.

Subroutine aerosol_opt_ucd in ‘phys/module_ra_gsfcsw’ is responsible for calculating the layer-averaged

optical properties for both the long-wave and short-wave routines. The refractive index for each particle

size and source within each layer is calculated using a core and shell approach. Each refractive index

contribution from each source and size is then summed together to give an averaged value for that cell.

The refractive index of the non-black carbon components is calculated and then combined into a volume-

weighted value. This averaged refractive index is applied as the shell to the particle core. This framework

is discussed thoroughly in Stelson (1990) which also provides the values for the individual-component

refractive index values used in the current study. Any water that is added to the particle through the gas-

particle conversion routines discussed in section 9 also contributes to the refractive index of the shell

layer. From this averaged refractive index calculation, values for single scattering albedo, asymmetry

parameter, and optical thickness are calculated using Mie scattering theory. These three optical

parameters are then used as inputs with the standard radiation transfer code that is part of the standard

WRF model.

References:

Beaver, M.R., Freedman, M.A., Hasenkopf, C.A., Tolbert, M.A., 2010. Cooling Enhancement of Aerosol
Particles Due to Surfactant Precipitation. J Phys Chem A 114, 7070-7076.
Chen, S.H., Wang, S.H., Waylonis, M., 2010. Modification of Saharan air layer and environmental shear
over the eastern Atlantic Ocean by dust-radiation effects. J. Geophys. Res.-Atmos. 115.
Clegg, S.L., Seinfeld, J.H., 2004. Improvement of the Zdanovskii−Stokes−Robinson Model for Mixtures
Containing Solutes of Different Charge Types. The Journal of Physical Chemistry A 108, 1008-1017.
Fuller, K.A., Malm, W.C., Kreidenweis, S.M., 1999. Effects of mixing on extinction by carbonaceous
particles. J. Geophys. Res.-Atmos. 104, 15941-15954.
Goodin, W.R., McRa, G.J., Seinfeld, J.H., 1979. A Comparison of Interpolation Methods for Sparse Data:
Application to Wind and Concentration Fields. Journal of Applied Meteorology 18, 761-771.
Goodin, W.R., McRae, G.J., Seinfeld, J.H., 1980. An Objective Analysis Technique for Constructing Three-
Dimensional Urban-Scale Wind Fields. Journal of Applied Meteorology 19, 98-108.
Jacobson, M.Z., 2005. A solution to the problem of nonequilibrium acid/base gas-particle transfer at
long time step. Aerosol Sci. Technol. 39, 92-103.
Kleeman, M.J., Cass, G. R., 2001. A 3d Eulerian source-oriented model for an externally mixed aerosol.
Environmental Science and Technology 35, 4834.
Liu, T.-H., Jeng, F.-T., Huang, H.-C., Berge, E., Chang, J.S., 2001. Influences of initial conditions and
boundary conditions on regional and urban scale Eulerian air quality transport model simulations.
Chemosphere - Global Change Science 3, 175-183.
Mahmud, A., Hixson, M., Hu, J., Zhao, Z., Chen, S.H., Kleeman, M.J., 2010. Climate impact on airborne
particulate matter concentrations in California using seven year analysis periods. Atmos. Chem. Phys. 10,
11097-11114.
Michalakes, J., Schaffer, D., 2004. WRF Tiger Team Documentation.
Nenes, A., Pandis, S., Pilinis, C., 1998. ISORROPIA: A New Thermodynamic Equilibrium Model for
Multiphase Multicomponent Inorganic Aerosols. Aquatic Geochemistry 4, 123-152.
Stelson, A.W., 1990. Urban aerosol refractive index prediction by partial molar refraction approach.
Environmental science & technology 24, 1676-1679.
Stokes, R.H., Robinson, R.A., 1966. Interactions in Aqueous Nonelectrolyte Solutions. I. Solute-Solvent
Equilibria. The Journal of Physical Chemistry 70, 2126-2131.
Ying, Q., Lu, J., Allen, P., Livingstone, P., Kaduwela, A., Kleeman, M.J., 2008a. Modeling air quality during
the California Regional PM10/PM2.5 Air Quality Study (CRPAQS) using the UCD/CIT source-oriented air
quality model – Part I. Base case model results. Atmospheric Environment 42, 8954-8966.
Ying, Q., Lu, J., Kaduwela, A., Kleeman, M., 2008b. Modeling air quality during the California Regional
PM10/PM2.5 Air Quality Study (CPRAQS) using the UCD/CIT Source Oriented Air Quality Model - Part II.
Regional source apportionment of primary airborne particulate matter. Atmospheric Environment 42,
8967-8978.
Ying, Q., Lu, J., Kleeman, M.J., 2009. Modeling air quality during the California Regional PM10/PM2.5 Air
Quality Study (CRPAQS) using the UCD/CIT sourceoriented air quality model – part III. Regional source
apportionment of secondary and total airborne particulate matter. Atmospheric Environment 43, 419-
430.
Young, T.R., Boris, J.P., 1977. A numerical technique for solving stiff ordinary differential equations
associated with the chemical kinetics of reactive-flow problems. The Journal of Physical Chemistry 81,
2424-2427.

Figure A1. Schematic of WRF's overall time-looping structure, showing the alternation between dynamic-core

calculations and the chemistry-core calculations. At every time step advance of variable length time_step the WRF model

(and therefore SOWC model) will call the dynamic Eulerian mass conservation core. With ever time step advance of

variable length chemdt, the WRF-Chem (and SOWC) model will call the chemistry driver.

main/wrf
main/

module_wrf_top

frame/

module_integrate

share/

solve_interface

time_step

chem/

chem_driver

dyn_em/

solve_em

chemdt

Figure A2. Schematic showing the flow of information within the SOWC model’s chemistry driver. All files, routine calls,

and modules listed here were altered or newly added to the WRF framework to build the SOWC model just within the

chem driver section of the original WRF code.

chem/chem_driver

chem/

emissions_driver

chem/

dry_dep_driver

chem/

mechanism_driver

chem/

aerosols_driver

densit

add_anthropogenics

plumht

chem/

module_emissions_

anthropogenics

chem/

module_ucd_plume

chem/

module_ucd_vvel

densit

drydep

vertmx

wesely_driver

chem/

module_dep_simple

chem/

module_ucd_vvel

chem/

module_ucd_vvel

chem/

module_ucd_vvel

saprc90_driver chem/

module_saprc90
chem/

module_phot_saprc90

chem/

module_data_saprc90

sorgam_driver

aeroproc

aeropr

aerfn2

isoropia
chem/

module_isrpia

iso_check_err

Driver Level

Files &

Subroutines

Secondary

Level

Subroutines

Secondary

Level Files

Supporting

Data Modules

Figure A3. Schematic showing the flow of information within the SOWC model’s dynamic-Eulerian mass conservation

core. All files, routine calls, and modules listed here were altered or newly added to the WRF framework to build the

SOWC model just within the dynamic driver section of the original WRF code.

dyn_em/solve_em

dyn_em/

module_first_rk_step_part1

- first_rk_step_part1

dyn_em/

rk_scalar_tend

- rk_scalar_tend

dyn_em/

module_em

- rk_update_scalar_pd

dyn_em/

module_em

- init_zero_tend

phys/

module_radiation_driver

 - radiation_driver

dyn_em/

module_diffusion_em

- horizontal_diffusion2

dyn_em/

module_diffusion_em

- vertical_diffusion2

share/

module_bc

 - set_physical_bc3d

dyn_em/

module_big_step_utilities_em

 - vertical_diffusion

dyn_em/

module_advect_em

 - advect_scalar

dyn_em/

module_big_step_utilities_em

 - horizontal_diffusion

dyn_em/

module_first_rk_step_part2

 - first_rk_step_part2

dyn_em/

module_big_step_utilities_em

 - zero_tend

phys/

module_fddaobs_driver

- fddaobs_driver

1
s
t R

K
 S

te
p

 O
n

ly
R

u
n

g
e

 K
u

tt
a

 L
o

o
p

dyn_em/

module_em

- rk_update_scalar

dyn_em/

module_bc_em

- relax_bdy_scalar

dyn_em/

module_bc_em

- spec_bdy_scalar

chem/

module_input_chem_data

- flow_dep_bdy_aqc(g)

share/

module_bc

- set_physical_bc3d

HALO for AQC(G)

HALO for AQC(G)

HALO for AQC(G)

share/

module_bc

- set_physical_bc3d

PERIOD for AQC(G)

chem/

module_input_chem_data

 - set_aer_bc_ucd

- set_gas_bc_ucd

PERIOD for AQC(G)

share/

module_bc

- set_physical_bc3d

HALO for AQC(G)

PERIOD for AQC(G)

L
o

o
p

 o
v
e

r
S

p
e

c
ie

s

chem/

module_data_sorgam

Mediation

Level Files w/

Subroutines

Secondary

Level Files w/

Subroutines

Tertiery Level

Files w/

Subroutines

Supporting

Data Modules

phys/

module_ra_gsfclw

 - gsfclwrad

phys/

module_ra_gsfcsw

 - gsfcswrad phys/

module_ra_gsfcsw

 - aerosol_opt_ucd

