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Abstract

Water-soluble organic carbon (WSOC) is a major component of carbonaceous
aerosols. However, the detailed information of WSOC origins is still unclear. In the
current study, fine particles (PM2.5) were collected at one sub-urban and two rural
sites in the Pearl River Delta (PRD) region, south China during fall–winter 2008 to5

measure WSOC and organic tracers of biomass burning (BB) and secondary organic
aerosols (SOA) from isoprene, monoterpenes, β-caryophyllene, aromatics and 2-ring
polycyclic aromatic hydrocarbons (PAHs). WSOC concentrations ranged from 7.63 to
11.5 µgCm−3 and accounted for 38.8–57.9 % of organic carbon (OC). Both WSOC
and water-insoluble organic carbon (WIOC) exhibited higher levels at the sub-urban10

site than the rural sites. Subtracting BB-derived WSOC (WSOCBB) from measured
WSOC, secondary OC (SOC) and primary OC (POC) were estimated that POC ex-
hibited dominance over SOC and contributed 68–79 % to OC. Significant correlation
between WSOC and EC was observed, suggesting that BB could have important con-
tributions to ambient WSOC in the PRD region during fall–winter. Organic tracers were15

applied to do source apportionment of WSOC, which further confirmed that BB was
the dominant contributor, accounting for 42–47 % of measured WSOC. SOC estimated
by SOA tracers totally contributed 22–40 % of WSOC, among which anthropogenic
SOC (sum of aromatics and 2-ring PAHs, 18–25 %) exhibited dominance over biogenic
SOC (sum of isoprene, monoterpenes and β-caryophyllene, 4–15 %). The unexplained20

WSOC (18–31 %) showed a positive correlation with POC, indicating that this portion
might be associated with POC aging.

1 Introduction

Organic aerosols (OA), originated from both direct emission (primary organic aerosol
or POA) and secondary formation (secondary organic aerosol or SOA) (De Gouw and25

Jimenez, 2009), are the major components of fine particulate matter (PM2.5). As a large
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fraction of organic carbon (OC), water-soluble organic carbon (WSOC) is associated
with oxygenated and polar compounds. Due to its potential to modify the hygroscopic
and optical properties of atmospheric particles (Jung et al., 2011; Zhang et al., 2011),
WSOC has caused increasing concerns about its adverse effects on regional air quality
and global climate change. To develop effective control strategies for ambient PM2.5,5

it is important to understand the origins of WSOC. So far, however, there has limited
knowledge of the sources of WSOC, although the rough estimate can split it into SOA
and biomass burning (BB) (Ding et al., 2008a; Snyder et al., 2009; Stone et al., 2008;
Weber et al., 2007).

SOA is produced by condensation of oxidation products of volatile organic com-10

pounds (VOCs) (Claeys et al., 2004) as well as aerosol aging (Jimenez et al., 2009).
Since SOA is primarily composed of oxygenated compounds that are highly water-
soluble (Kanakidou et al., 2005), WSOC is often regarded as an indicator of SOA and
an increase in WSOC to OC ratio (WSOC/OC) is considered as the enhancement of
SOA formation (Weber et al., 2007). However, the origins of SOA itself are still unclear.15

For SOA precursor emissions, biogenic VOCs (terpenes) were dominated over anthro-
pogenic VOCs (e.g. aromatics) on the global scale (Guenther et al., 1995; Piccot et al.,
1992); while anthropogenic SOA could play dominant role, especially in the regions
with high human activities (Ding et al., 2008b, 2012; Spracklen et al., 2011; Volkamer
et al., 2006). Moreover, POA aging that significantly improved model prediction of SOA20

(Robinson et al., 2007) could also enhance anthropogenic contributions to estimated
SOA. Recently, SOA aging mechanism (Donahue et al., 2012) was discovered which
could further short the gap between model prediction and field observation. At the mo-
ment, it is still a challenge to quantitatively identify SOA compositions and sources,
which limits the further understanding of WSOC origins.25

BB aerosol that contributed more than 90 % of global primary OC (POC) emissions
(Bond et al., 2004) also contained a large fraction of highly water-soluble compounds
(Lee et al., 2008; Viana et al., 2008). An increase in WSOC/OC ratio is also expected
when BB events happen. Therefore, the enhancement of WSOC in the ambient can
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result from the influence of either SOA or BB. Moreover, intense BB could not only
deeply influence SOA formation (Ding et al., 2013) but also lead to significant overes-
timate of bulk SOC by EC-tracer method (Ding et al., 2012) which is widely used for
SOC estimation (Turpin and Huntzicker, 1995). To separate SOA and BB contributions
to WSOC and avoid BB influence on SOC estimation, specific organic tracers for SOA5

and BB are essentially needed.
The Pearl River Delta (PRD) is one of the most industrialized and densely populated

regions in China. The rapid growth in economy has led to fast increase in anthropogenic
emissions of air pollutants (Chan and Yao, 2008). Situated in the subtropical area,
biogenic emissions in this region are also expected to be significant during the whole10

year (Zheng et al., 2010). Previous studies all suggested that air quality during fall–
winter was the worst in a year in the PRD region, based on the monitoring of PM2.5,
O3, visibility and other criteria pollutants (Ding et al., 2011; Wang et al., 2012; Zhang
et al., 2012). Additionally, open burning of agriculture residuals often happens in the
sub-urban and rural areas in the PRD during fall–winter (He et al., 2011). Considering15

the high VOC emissions, the high atmospheric oxidative capacity and the high BB
loading, both SOA and BB aerosol should have significant contributions to WSOC in
the PRD during this period. In the current study, 24 h PM2.5 samples were collected
consecutively at three sites in the PRD during fall–winter. WSOC and organic tracers
of BB and SOA from isoprene, monoterpenes, β-caryophyllene, aromatics and 2-ring20

PAHs were measured with the purposes (1) to acquire the spatial distribution of WSOC
over the PRD; (2) to estimate bulk SOC in the significant BB-influence season; and (3)
to apportion WSOC in detail based on the specific organic tracers.
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2 Experimental section

2.1 Field sampling

PM2.5 samples were collected using high volume samplers (Tisch Environmental, Inc.)
at a flow rate of 1.1 m3 min−1 at two rural sites: Wangqingsha (WQS) and Dinghushan
(DHS) and one sub-urban site: Guangzhou institute of geochemistry (GIG). As Fig. 15

showed, WQS site is located in the central of PRD and surrounded by city clusters
(e.g. Hong Kong, Guangzhou, Shenzhen, Foshan and Dongguan) 60 km away and
adjacent to the Pearl River estuary. The sampler was put on the rooftop, about 30 m
above ground, of a seven-floor building in a high school (22◦ 42′ N, 113◦ 32′ E). Since
the surrounding terrain is flat with large farmland nearby and rare traffic, this site serves10

as an ideal location to monitor the regional background levels of air pollutants in the
PRD (Ding et al., 2012). Dinghushan Biosphere Reserve (23◦ 09′–23◦ 11′ N, 112◦ 31′–
112◦ 34′ E) located in the northwest of PRD (Fig. 1), is covered by sub-tropical ev-
ergreen broadleaf forest and pine forest with monsoon climate (Yi et al., 2007). The
sampler was put on the top of a hill (∼ 100 m above ground, 23◦ 10′ N, 112◦ 33′ E) at15

the eastern edge of the reserve. At the foot of the hill are local resident and industry
areas and farmland (Fig. 1). Biogenic VOCs (BVOCs) emitted from local vegetations
could be mixed and reacted here with anthropogenic pollutants transported from the
adjacent region. Observation at DHS site can provide information about the influence
of anthropogenic emissions on forest area. GIG is situated 5 km away from downtown20

Guangzhou and served as a sub-urban site. There are two highways in the south and
west, respectively and farmlands in the northeast (Fig. 1). The sampler was put on
the rooftop, about 20 m above ground, of a four-floor building in the institute (23◦ 09′ N,
113◦ 22′ E).

Field campaigns were carried out during fall–winter (November to December) con-25

sidering the severe air pollution and BB influence (Ding et al., 2011; He et al., 2011).
At WQS site, sampling was undertaken from 10 November to 9 December 2008. After
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that, the sampler was moved to GIG site and collected samples from 10 to 25 De-
cember 2008. At DHS site, samples were collected from 19 November to 25 Decem-
ber 2008. 24 h sampling (19 p.m.–19 p.m.) was taken during all campaigns. Pre-fired
8 inch×10 inch quartz filters were covered with aluminum foil and stored in a bag con-
taining silica gel at 4 ◦C before and −20 ◦C after collection. A total of 82 field samples5

(30 at WQS, 37 at DHS and 15 at GIG) were collected with 2 field blanks for each site.

2.2 Chemical analysis

A punch (1.5cm×1.0cm) of each filter was taken for the measurements of OC and
EC using the thermo-optical transmittance (TOT) method (NIOSH, 1999) by OC/EC
Analyzer (Sunset Laboratory Inc.). An additional punch of 2.54 cm diameter was taken10

from each filter and extracted in 20 mL of 18-Mohm milliQ water and sonicated for
60 min in an ice-water bath (Ding et al., 2008a). After filtered, the extract was analyzed
for WSOC using a TOC analyzer (Shimadzu TOC-VCPH). Ambient OC, EC and WSOC
were corrected using field blanks.

To identify the source contributions of SOA and BB to WSOC, these filters were15

extracted by mixed solvents and analyzed for SOA and BB tracers by GC-MSD
after methylation and silylation. The detailed information of organic tracer analy-
sis is described elsewhere (Ding et al., 2011, 2012). There are eleven tracers in-
volved for SOC estimation, including three isoprene SOA tracers (2-methylthreitol,
2-methylerythritol, 2-methylglyceric acid), five monoterpene SOA tracers (cis-pinonic20

acid, pinic acid, 3-methyl-1,2,3-butanetricarboxylic acid, 3-hydroxyglutaric acid and 3-
hydroxy-4,4-dimethylglutaric acid), one β-caryophyllene SOA tracer (β-caryophyllinic
acid), one toluene SOA tracer (2,3-dihydroxy-4-oxopentanoic acid) and one 2-ring
PAHs SOA tracer (phthalic acid). BB tracer, levoglucosan was also measured for
BB-derived WSOC (WSOCBB) estimation. cis-Pinonic acid, pinic acid, phthalic acid25

and levoglucosan were quantified by authentic standards. Due to lack of standards,
isoprene SOA tracers were quantified using erythritol (Ding et al., 2008a); monoter-
pene SOA tracers (3-methyl-1,2,3-butanetricarboxylic acid, 3-hydroxyglutaric acid and
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3-hydroxy-4,4-dimethylglutaric acid) were quantified using pinic acid; β-caryophyllinic
acid and 2,3-dihydroxy-4-oxopentanoic acid were quantified using octadecanoic acid
and azelaic acid, respectively, due to their approximate retention times (Ding et al.,
2012). Table 1 listed all the tracers and their concentrations at the three sites.

3 Result and discussion5

3.1 Spatial variations

As summarized in Table 2, WSOC levels were higher at sub-urban site (11.5±
4.29 µgCm−3 at GIG) as compared to the rural sites (8.62±3.99 µgCm−3 at WQS and
7.63±2.37 µgCm−3 at, DHS). During fall–winter, the concentrations of WSOC in Chi-
nese megacities were reported as 9.6±3.8 µgCm−3 in Guangzhou, 6.7±3.0 µgCm−3 in10

Shanghai, 7.5±4.9 C µgm−3 in Beijing (Feng et al., 2006) and 20.53–35.58 µgCm−3

in Nanjing (Wang et al., 2002). WSOC observed at four sites in the PRD was in the
range of 2.13 to 4.00 µgCm−3 during winter (Huang et al., 2012a). Our measurements
were comparable with these data in Chinese cities but much higher than those (∼ 1–
2 µgCm−3) in Europe (Viana et al., 2007) and United States (Ding et al., 2008a; Weber15

et al., 2007) during the same season. Although WSOC levels at DHS were the lowest
among the three sites, the shares of WSOC in OC (WSOC/OC) there, were the high-
est (57.9 %); and WSOC exhibited significant correlation with OC (Fig. 2a). All these
indicated the dominant role of water soluble compounds in OC at the forest site. WQS
(38.8 %) and GIG (42.2 %) had the similar OC contributions from WSOC. WSOC/OC20

observed in this study were comparable with those (20–51 %) over the PRD region (Ho
et al., 2006; Huang et al., 2012a), higher than those (∼ 20 %) in Tokyo (Miyazaki et al.,
2006) but lower than those (44–72 %) in the southeastern United States (Ding et al.,
2008a).

It is worth noting that WSOC was significantly correlated with EC (Fig. 2b). EC is25

major from diesel exhaust and BB (Ke et al., 2007) and can be regarded as a primary
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tracer; while WSOC mainly comes from SOA and BB (Ding et al., 2008a). If samples
were deeply influenced by BB, it is expected that WSOC and EC are correlated well
with each other. In fact, fall–winter is the harvest season of crop in the PRD region. Our
previous study observed the great enhancement of BB in the PRD during fall–winter
(Ding et al., 2012). Since SOA could not contain EC, the positive correlation between5

WSOC and EC suggested that BB had significant contributions to WSOC in the PRD
region during fall–winter.

Water-insoluble organic carbon (WIOC) is mostly from primary emissions (Park and
Cho, 2011), such as vehicle exhaust (Miyazaki et al., 2006) and can be calculated as:

WIOC = OC−WSOC (1)10

Among the three sites, the average level of WIOC was the highest at GIG (16.9±
7.96 µgCm−3), largely due to the more influence of primary emissions near urban
Guangzhou. Located in the downwind of the PRD region, WQS site also showed
high WIOC concentration (13.9±5.39 µgCm−3), probably resulting from the transport
of primary pollutants from the adjacent city clusters. The WIOC levels at DHS site15

(5.74±2.56 µgCm−3) were much lower than those at above two sites by a factor of
2–3, indicating the less influence from primary emissions at the forest site. WIOC was
dominated in OC at WQS and GIG with the fractions of WIOC in OC (WIOC/OC) 61.2 %
and 57.8 %, respectively. Moreover, WIOC exhibited higher correlation coefficient with
OC than WSOC at all sites (Fig. 2 a and c). This is more obvious at GIG site that20

only WIOC was correlated with OC. Since WIOC comes from primary emissions, the
higher WIOC/OC and the higher correlation coefficient of WIOC vs. OC as compared
to WSOC implied that OC over the PRD was dominantly from primary sources during
fall–winter.

Since both WIOC and EC are emitted from primary sources, WIOC exhibited good25

correlation with EC (Fig. 3d). Miyazaki et al. (Miyazaki et al., 2006) found the ratios of
WIOC to EC (WIOC/EC) were very stable (1.0±0.1) during the whole year in urban
Tokyo and pointed out that motor vehicle was an important source of WIOC based on
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the significant correlations of WIOC with EC and carbon monoxide (CO). The WIOC/EC
ratios were 3.24±1.03, 2.97±1.12 and 2.59±1.13 at WQS, DHS and GIG, respectively.
Obviously, WIOC/EC ratios in this study were changing from place to place and about
2–3 times higher than those in urban Tokyo, suggesting additional sources of WIOC
other than motor vehicle over the PRD region.5

3.2 Source apportionment of carbonaceous aerosols

Since WSOC is mainly derived from BB and SOC (Weber et al., 2007), SOC can be is
estimated as (Ding et al., 2008a):

SOCtotal = WSOC−WSOCBB (2)

where SOCtotal is the total amount of SOC, including the known precursor-produced10

SOC (Kleindienst et al., 2007) and other processes produced SOC, such as the aging
of POA (Robinson et al., 2007) and SOA (Donahue et al., 2012) as well as aqueous-
phase heterogeneous reactions (Ervens et al., 2011). WSOC is the measured value.
WSOCBB is BB derived WSOC, which can be estimated using ambient tracer con-
centration (Ctracer) and the factor, (ftracer/WSOC)BB, of tracer in WSOC from BB sources15

(Eq. 3).

WSOCBB = Ctracer/(ftracer/WSOC)BB (3)

As a typical BB tracer, levoglucosan is always applied to access the impact of
BB (Puxbaum et al., 2007; Simoneit et al., 1999). The factors of levoglucosan in
WSOC from BB sources were reported as 0.0994 µgµgC−1 (1210 ngm−3 levoglu-20

cosan in 12.17 µgCm−3 WSOC) in a prescribe fire plume (Ding et al., 2008b) and
0.0806 µgµgC−1 (129 ngm−3 levoglucosan in 1.6 µgCm−3 WSOC) in the events of
open burning of rice straw residues (Viana et al., 2008). The spatial distribution of BB
over the PRD region showed that straw burning was the major type of BB in the cen-
tral PRD; while both forest fire and straw burning had significant contributions around25
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DHS (He et al., 2011). Since our campaign was undertaken in the straw burning sea-
son, (ftracer/WSOC)BB of 0.0806 µgµgC−1 was applied to estimated ambient WSOCBB

at WQS and GIG. And the 1 : 1 combination (0.090 µgµgC−1) of forest fire and straw
burning was applied to estimated ambient WSOCBB at DHS.

When WSOCBB is estimated, SOCtotal and POC can be calculated by Eqs. (2) and5

(4), respectively.

POC = OC−SOCtotal = WIOC+WSOCBB (4)

The estimated POC levels were 17.8±7.18 µgCm−3, 9.13±3.08 µgCm−3 and 22.5±
7.73 µgCm−3 at WQS, DHS and GIG, respectively. Such a spatial pattern is similar
as those of primary species, EC and WIOC (Table 2). The dominance of POC was10

observed during the whole campaign (Fig. 3) that the fractions of POC in OC (POC/OC)
were 78±11 %, 68±15 % and 79±9 % at WQS, DHS and GIG, respectively. This
demonstrated that POC was the dominant contributor to OC during fall–winter over
the PRD region. As compared to POC, the estimated SOCtotal was much lower and
the concentrations were 4.78±2.34 µgCm−3 at WQS, 4.18±2.35 µgCm−3 at DHS15

and 5.97±3.41 µgCm−3 at GIG. Previous studies always considered the increase of
OC/EC ratio as the enhancement of SOC (Na et al., 2004; Turpin and Huntzicker, 1995;
Zeng and Wang, 2011). This may be true during summer with intense photochemical
reactions and rare BB influence. However, under BB impact with high OC/EC ratio
(Fine et al., 2002; Zhang et al., 2007), elevated OC/EC ratio could not indicate the20

enhancement of SOC. This was confirmed that there was no significant correlation
observed between OC/EC ratio and SOC/OC at all sites (p > 0.05).

To get insight into the origins of WSOC, SOA tracers were applied to estimate the
precursor-produced SOC (SOCprecursor). Such a SOA-tracer method was first proposed
by Kleindienst et al. (Kleindienst et al., 2007) with the assumption that in the ambient25

the mass fractions of tracers in SOC (ftracer/SOC) remained the same as those from
chamber simulations. When determining the concentrations of these tracers in the am-
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bient, SOC from different precursors can be estimated as:

SOC = Ctracer/ftracer/SOC (5)

where Ctracer is the sum of all tracers’ concentrations for a certain precursor. Table 2
listed the tracers observed at the three sites and the ftracer/SOC for different precursors.
These data were further used to estimate SOC from isoprene (SOCI), monoterpenes5

(SOCM), β-caryophyllene (SOCC), aromatics (SOCA) and 2-ring PAHs (SOCP), respec-
tively. It should be noted that there were nine tracers involved in the source profile of
monoterpene SOC (Kleindienst et al., 2007). However, only five of the nine monoter-
pene SOA tracers were detected in the current study. To lower the uncertainty induced
from different tracer compositions, the ftracer/SOC with five monoterpene SOA tracers10

(Table 2) was calculated based on another chamber simulations (Offenberg et al.,
2007) of the same research group. The ftracer/SOC with five monoterpene SOA tracers
(0.059 µgµgC−1) was one fourth of that with nine tracers (0.231 µgµgC−1) (Kleindienst
et al., 2007).

Figure 4 showed the source apportionment of WSOC over the PRD region during15

fall–winter. BB was the predominant contributor, accounting for 42–47 % of measured
WSOC. And the estimated WSOCBB concentrations were 3.85±2.62 µgC m−3, 3.39±
1.67 µgC m−3 and 5.55± 2.62 µgCm−3 at WQS, DHS and GIG, respectively. In Chinese
city clusters, the sub-urban and rural areas are mostly surrounded and occupied by
farmland, respectively. Open burning of agriculture residues is very often during harvest20

season and leads to deteriorating air quality (Huang et al., 2012b; Qu et al., 2012; Wang
et al., 2009). Thus, BB is an important primary source to carbonaceous aerosols over
the PRD region during fall–winter.

SOCprecursor contributed 22–40 % of WSOC with the highest at DHS and the lowest at
GIG. The shares of SOCA and SOCP in WSOC were 12–18 % and 6–8 %, respectively25

(Fig. 4). Since both aromatics and PAHs are mainly from anthropogenic emissions, the
sum of SOCA and SOCP could be regarded as the SOC from anthropogenic precursors
which contributed 18–25 % of measured WSOC. It is interesting to note that the SOC
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from anthropogenic precursors exhibited little spatial difference that the concentrations
were 2.28±1.58 µgCm−3, 2.06±0.97 µgC m−3 and 2.13± 1.14 µgCm−3 at WQS, DHS
and GIG, respectively. This implied that anthropogenic SOA had regional influence over
the whole PRD. As compared to anthropogenic SOC, biogenic SOC (sum of SOCI,
SOCM and SOCC) had minor contributions, only accounting for 7 % and 4 % of WSOC5

at WQS and GIG, respectively. Significant enhancement of SOCM (11 %) was observed
at DHS. This is expected since DHS site is located in the forest area where pine forest,
one of the major forest types, could emit large amounts of monoterpenes all the year
(Geron et al., 2000). Biogenic SOC contributed 15 % of measured WSOC at DHS. The
dominance of anthropogenic SOC over the PRD region was also observed at WQS10

from summer to winter (Ding et al., 2012).
WSOCBB and SOCprecursor together explained 69–82 % of measured WSOC. The

unexplained fraction ranged from 18 % to 31 % among the three sites. DHS site with low
POC exhibited not only the lowest unexplained fraction but also the lowest unexplained
WSOC concentration; while GIG site with high POC showed the highest values in the15

both. Moreover, the unexplained WSOC displayed a significant correlation with POC
(Fig. 5). All these suggested that the unexplained WSOC might be associated with
POA aging. POA emitted from fossil fuel combustion and BB can form large amounts
of SOA during aging processes (Hennigan et al., 2011; Weitkamp et al., 2007). As
model predicted, POA aging could contribute one third of global OA (Jathar et al.,20

2011). Constrained by aerosol mass spectrometer data, the estimated SOA (23 Tga−1)
from POA aging contributed 16 % of global SOA (140 Tga−1) (Spracklen et al., 2011).
Although it would contain SOC formed by processes uncaptured by the current SOA-
tracer method and POA emitted from sources other than BB, the unexplained WSOC
might be regarded as the upper limit of SOC from POA aging.25

13784

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/13/13773/2013/acpd-13-13773-2013-print.pdf
http://www.atmos-chem-phys-discuss.net/13/13773/2013/acpd-13-13773-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
13, 13773–13798, 2013

Spatial variations
and source

apportionment of
WSOC over PRD

X. Ding et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

4 Conclusions

In this study, spatial variations of WSOC in PM2.5 were determined over the PRD region
during fall–winter and the detailed information about WSOC origins were first reported
based on the specific organic tracers of BB and SOA. WSOC exhibited higher levels
at the sub-urban site than the rural sites and accounted for 38.8–57.9 % of OC. A new5

method was developed to estimate SOC and POC by subtracting BB-derived WSOC
from measured WSOC, which indicated the dominance of POC with the OC contribu-
tion exceeding 70 %. The correlation between WSOC and EC implied that BB could
have significant contributions to ambient WSOC in the PRD region during fall–winter,
which was further confirmed by the source apportionment results that BB accounted10

for 42–47 % of measured WSOC. The WSOC contributions from anthropogenic SOC
were estimated to be 18–25 %; while biogenic SOC had minor contributions to WSOC
(4–15 %). The unexplained WSOC (18–31 %) showed a positive correlation with POC,
indicating that this portion could be largely due to SOC from POA aging.
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Table 1. Organic tracers over the PRD region and the conversion factors for WSOCBB and SOC
estimate.

Organic tracers Tracer concentrations (ngm−3) (ftracer/WSOC)BB or Reference
WQS DHS GIG ftracer/SOC (µgµgC−1)

WSOCBB Levoglucosan 310 (80.5–1156) 305 (25.8–777) 447 (105–792) straw burning 0.0806 Viana et al. (2008)
forest fire 0.0994 Ding et al. (2008a)
0.0900 1 : 1 Combination

Isoprene SOC 2-Methylglyceric acid 4.75 (1.40–16.7) 3.74 (0.42–12.5) 4.55 (1.11–8.17) 0.155 Kleindienst et al. (2007)
2-Methyltetrols 16.0 (2.34–58.3) 13.4 (0.98–72.7) 11.8 (3.92–26.5)

Monoterpene SOC cis-Pinonic acid 6.73 (0.64–39.3) 35.1 (1.78–101) 6.32 (0.93–17.7) 0.059 Offenberg et al. (2007)
Pinic acid 0.99 (0.24–2.52) 2.93 (nd-6.44) 0.87 (0.10–2.81)
3-Methyl-1,2,3-butanetricarboxylic acid 3.56 (0.07–13.9) 9.47 (0.53–21.9) 1.13 (0.09–4.99)
3-Hydroxyglutaric acid 3.57 (0.38–14.7) 3.77 (0.22–8.64) 2.80 (0.68–5.43)
3-Hydroxy-4,4-dimethylglutaric acid 1.59 (nd-7.15) 2.42 (0.05–6.10) 0.94 (nd-3.78)

β-Caryophyllene SOC β-Caryophyllenic acid 3.25 (0.53–13.4) 3.55 (0.11–6.33) 3.56 (1.04–11.63) 0.023 Kleindienst et al. (2007)
Aromatics SOC 2,3-Dihydroxy-4-oxopentanoic acid 13.1 (1.70–48.9) 11.0 (0.94–22.7) 11.1 (3.15–31.2) 0.00797 Kleindienst et al. (2007)
2-Ring PAHs SOC Phthalic acid 24.4 (9.58–38.8) 25.6 (8.74–57.7) 28.0 (13.1–51.2) 0.0388 Kleindienst et al. (2012)
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Table 2. Carbonaceous species at different sites during fall–winter over the PRD (µgC m−3).

WQS (Rural) (10 Nov∼9 Dec) DHS (Rural) (19 Nov∼25 Dec) GIG (Sub-urban) (10 Dec∼25 Dec)
Average Median Min Max SD Average Median Min Max SD Average Median Min Max SD

OC 22.5 22.6 10.1 43.7 8.00 13.4 13.3 6.83 21.3 3.86 28.4 26.7 13.0 44.9 9.14
EC 4.29 4.23 2.47 7.05 1.16 1.92 2.01 0.77 3.03 0.53 7.31 6.54 3.14 21.4 4.38
OC/EC 5.29 5.03 3.74 9.57 1.41 7.08 6.97 5.17 10.5 1.28 4.42 4.22 2.04 7.83 1.56
WSOC 8.62 7.83 3.69 21.6 3.99 7.63 7.38 3.40 13.1 2.37 11.5 10.9 6.38 20.5 4.29
WIOC 13.9 13.5 2.45 27.5 5.39 5.74 5.46 0.54 10.5 2.56 16.9 13.7 6.59 31.1 7.96
WSOC/OC (%) 38.8 34.5 20.4 75.7 11.6 57.9 55.6 37.7 92. 13.5 42.2 44.4 18.8 62.6 13.1
WIOC/EC 3.24 3.18 0.99 6.34 1.03 2.97 3.12 0.71 5.47 1.12 2.59 2.29 1.09 4.35 1.13
SOCI 0.13 0.11 0.02 0.47 0.10 0.11 0.08 0.01 0.51 0.11 0.11 0.10 0.04 0.23 0.05
SOCM 0.28 0.23 0.08 0.72 0.18 0.91 0.82 0.12 2.34 0.44 0.20 0.17 0.08 0.49 0.12
SOCC 0.14 0.12 0.02 0.58 0.12 0.15 0.15 0.00 .28 0.07 0.15 0.12 0.05 0.51 0.12
SOCA 1.65 1.21 0.22 6.19 1.43 1.39 1.31 0.12 2.87 0.77 1.40 1.23 0.40 3.95 0.97
SOCP 0.63 0.63 0.25 1.00 0.20 0.66 0.66 0.23 1.49 0.25 0.72 0.74 0.34 1.32 0.23
SOCPrecursor 2.83 2.44 0.80 8.90 1.88 3.22 3.23 0.75 5.67 1.17 2.59 2.26 1.16 6.17 1.36
SOCtotal 4.78 4.69 0.62 10.6 2.34 4.18 4.40 0.00 9.35 2.35 5.97 5.87 1.08 14.0 3.41
POC 17.8 16.9 4.60 36.5 7.18 9.13 9.12 2.82 14.9 3.08 22.5 22.6 9.69 35.5 7.73
WSOCBB 3.85 3.34 1.00 14.3 2.62 3.39 3.06 0.29 8.63 1.67 5.55 4.63 1.30 9.83 2.62
Other 2.39 2.36 0.00 6.73 2.07 1.39 0.73 0.00 6.06 1.63 3.72 3.10 0.00 12.4 3.30
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Figure 1 Sampling sites in the PRD 
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Fig. 1. Sampling sites in the PRD.
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Figure 2 Correlation analyses among carbonaceous species. (a) WSOC vs. OC, (b) 

WSOC vs. EC, (c) WIOC vs. OC, (d) WIOC vs. EC 
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Fig. 2. Correlation analyses among carbonaceous species. (a) WSOC vs. OC, (b) WSOC vs.
EC, (c) WIOC vs. OC, (d) WIOC vs. EC.
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Figure 3 Day-to-day variations of estimated SOC and POC at three sites 
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Fig. 3. Day-to-day variations of estimated SOC and POC at three sites.
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Figure 4 Source apportionment of WSOC at three sites 
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Fig. 4. Source apportionment of WSOC at three sites.
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Figure 5 Correlation between unexplained WSOC and POC. Green triangle, 

pink circle and red circle represent DHS, WQS and GIG, respectively  
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Fig. 5. Correlation between unexplained WSOC and POC. Green triangle, pink circle and red
circle represent DHS, WQS and GIG, respectively.
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