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Abstract

Mineral dust aerosols exert a significant effect on both solar and terrestrial radiation.
By absorbing and scattering the solar radiation aerosols reduce the amount of energy
reaching the surface. In addition, aerosols enhance the greenhouse effect by absorbing
and emitting outgoing longwave radiation. Desert dust forcing exhibits large regional5

and temporal variability due to its short lifetime and diverse optical properties, further
complicating the quantification of the Direct Radiative Effect (DRE). The complexity of
the links and feedbacks of dust on radiative transfer indicate the need of an integrated
approach in order to examine these impacts.

In order to examine these feedbacks, the SKIRON limited area model has been10

upgraded to include the RRTMG (Rapid Radiative Transfer Model – GCM) radiative
transfer model that takes into consideration the aerosol radiative effects. It was run for
a 6 yr period. Two sets of simulations were performed, one without the effects of dust
and the other including the radiative feedback. The results were first evaluated using
aerosol optical depth data to examine the capabilities of the system in describing the15

desert dust cycle. Then the aerosol feedback on radiative transfer has been quantified
and the links between dust and radiation have been studied.

The study has revealed a strong interaction between dust particles and solar and
terrestrial radiation, with several implications on the energy budget of the atmosphere.
A profound effect is the increased absorption (in the shortwave and longwave) in the20

lower troposphere and the induced modification of the atmospheric temperature profile.
These feedbacks depend strongly on the spatial distribution of dust and have more
profound effects where the number of particles is greater, such as near their source.

1 Introduction

Mineral dust produced from arid and semi-arid areas of the world is injected into the at-25

mosphere under favorable meteorological conditions. Aerosols exert a significant effect
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on both solar and terrestrial radiation (Tegen et al., 1996; Sokolik et al., 2001; Haywood
et al., 2003; Yoshioka et al., 2007; IPCC, 2007; Kallos et al., 2009), also known as “Di-
rect Aerosol Effect – DRE” (IPCC, 2007). By absorbing and scattering solar radiation,
aerosols reduce the amount of energy reaching the surface (Kaufman et al., 2002;
Tegen, 2003; Kallos et al., 2009; Spyrou et al., 2010). Moreover, aerosols enhance the5

greenhouse effect by absorbing and emitting outgoing longwave radiation (Dufrense et
al., 2001; Tegen, 2003; Heinold et al., 2008; Pandithurai et al., 2008).

As a second type of effect, aerosols function as particles on which water vapor ac-
cumulates during cloud droplet formation, acting as cloud condensation nuclei (Levin
et al. 2005; Solomos et al., 2011). Modifications of the number concentration or the10

hygroscopic properties of dust tend to modify the physical and radiative properties of
clouds (Twomey, 1977; Khan et al., 2009) and the possibility and intensity with which
a cloud can precipitate (e.g. Liou and Ou, 1989; Albrecht, 1989; Solomos et al., 2011).
All the various changes in cloud processes imposed by aerosols are referred to as
“aerosol indirect effects” (e.g. Solomos et al., 2011). Finally by absorbing solar radia-15

tion, particles contribute to the reduction in cloudiness, a phenomenon referred to as
the semi-direct effect (Khan et al., 2009).

The magnitude of the feedback on the radiative transfer depends strongly on the op-
tical properties of particles (single scattering albedo, asymmetry parameter, extinction
efficiency), which in turn depend on the size, shape and refractive indices of dust par-20

ticles (Tegen, 2003; Pace et al., 2006; Helmert et al., 2007). The mineral composition
of the dust source areas, as well as the chemical composition and transformation of
aerosols during their transportation, are all factors that influence the optical intensity of
dust (Tegen, 2003; Wang et al., 2005; Astitha et al., 2010). Furthermore, the vertical
distribution of dust, the presence of clouds and the albedo of the surface all contribute25

to the DRE (Sokolik and Toon, 1996; Tegen and Lacis, 1996; Liao and Seinfeld, 1998;
Helmert et al., 2007).

Several studies have focused on calculating the radiative feedback of dust on a
global scale: Liao et al. (2004) found a decrease in the incoming shortwave radiation
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of 0.21 W m−2, while the longwave radiation increased by 0.31 W m−2. Reddy et
al. (2005) simulated a decrease of 0.28 W m−2 on the shortwave and an increase of
0.14 W m−2 on the longwave. Other studies and measurements have produced similar
values for the global dust radiative effect (IPCC, 2007). However, little work has been
done to incorporate the dust radiative feedback in regional and mesoscale models5

(Stokowski, 2005).
If we look at the radiative impacts at a local scale during dust episodes, the DRE ex-

hibits much stronger signals. Haywood et al. (2003) measured a decrease of incoming
shortwave radiation up to 130 W m−2 (instantaneous value) at the coast of West Africa
during the passage of a dust storm in September 2000. During a severe dust episode10

in Niger on 3–12 March 2006 the ARM (Atmospheric Radiation Measurement) mobile
facility detected a maximum shortwave decrease of 250 W m−2 on the surface, where
at the same time the reflected radiation at the top of the atmosphere increased by
100 W m−2 (Slingo et al., 2006). For the same episode, the emitted longwave radiation
at the surface decreased by approximately 100 W m−2, corresponding to the “cooling”15

imposed by dust shading.
The local effects of airborne dust have been thoroughly examined in a number of

other studies. The main purpose of this work is to examine the long-term implications
of the dust-radiation interactions. In order to model these diverse feedbacks on the
radiation balance, the SKIRON/Dust limited area model has been used (Kallos et al.,20

1997a, b, 2006; Papadopoulos et al., 2002; Spyrou et al., 2010). Continuing from these
studies the model has been updated further to include the Rapid Radiative Transfer
Model – RRTMG (Mlawer et al., 1997; Oreopoulos et al., 1999; Iacono et al., 2003;
Pincus et al., 2003; Baker et al., 2003; Clough et al., 2005; Morcette et al., 2008; Iacono
et al., 2008). The addition of the RRTMG scheme has made it possible to model and25

study the effects of desert dust particles on the radiation balance of the atmosphere.
The following section summarizes the main characteristics of the modelling system

while Sect. 4 outlines the new radiative transfer scheme that was incorporated in SK-
IRON/Dust system. Section 5 depicts the optical properties of suspended particles and

1330

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/13/1327/2013/acpd-13-1327-2013-print.pdf
http://www.atmos-chem-phys-discuss.net/13/1327/2013/acpd-13-1327-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
13, 1327–1365, 2013

Radiative effects of
desert dust on

weather and regional
climate

C. Spyrou et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

in particular dust aerosols that are discussed in the present study. The experimen-
tal setup that was designed for the present simulations is described in Sect. 6. The
model evaluation and the sensitivity tests for the estimation of the energy impact are
analysed in Sects. 7 and 8, respectively. Finally, the last section summarizes the main
conclusions of the study.5

2 SKIRON/Dust modelling system

The SKIRON/Dust modeling system is based on the atmospheric model SKIRON,
which has been developed at the University of Athens from the Atmospheric Modelling
and Weather Forecasting Group (Kallos et al., 1997, 2006; Nickovic et al., 2001; Spy-
rou et al., 2010) in the framework of a number of projects (SKIRON, MEDUSE, ADIOS,10

CIRCE and recently MARINA Platform). A dust module that simulates the production
and removal of the desert dust aerosol is directly coupled with the host model. The dy-
namical core of the model is based on the ETA concept, which was originally developed
by Mesinger (1984, 1988) and Janjic (1990, 1994). The SKIRON atmospheric model
includes several sophisticated parameterization schemes, such as the OSU (Oregon15

State University) scheme (Ek and Mahrt, 1991) for simulation of the surface processes,
including a data assimilation scheme for soil temperature and soil wetness, and the
option of choosing among Betts-Miller-Janjic (Betts, 1986) and Kain-Fritsch (Kain and
Fritsch, 1990) convective parameterization schemes for the representation of moisture
processes. During the SKIRON/Dust runs, the prognostic atmospheric and hydrological20

conditions are used in order to calculate the effective rates of the injected dust concen-
tration based on the viscous/turbulent mixing, soil composition, soil moisture, shear-
free convection and diffusion (Papadopoulos et al., 2002). The dust module includes a
particle size distribution in order to simulate more accurately the size-dependent pro-
cesses. In the current form of the modelling system, the transport mode uses eight size25

bins (log-normally distributed) with effective radius 0.15, 0.25, 0.45, 0.78, 1.3, 2.2, 3.8,
7.1 µm (Table 1).
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Recently, the modelling system was significantly upgraded in order to improve the
model prediction efficiency meeting the current needs for accurate simulation of the
mineral dust cycle and the interaction mechanisms with various atmospheric pro-
cesses. New features include improvements in the description of the bottom boundary
(ground or sea surface) characteristics of the atmospheric model and the dust aerosol5

properties (Spyrou et al., 2010). The new model version includes a 16-category soil
characteristics dataset (Miller and White, 1998) that provides detailed information on
soil physical properties, such as porosity and available water capacity. A high-resolution
(30 s) global land use/land cover database including urban areas and classified ac-
cording to the 24-category USGS land use/land cover system (Anderson et al., 1976)10

is utilized. For the more accurate description of the topographic variability that deter-
mines the incoming solar radiation reaching the surface, in the upgraded SKIRON/Dust
model a new preprocessor was developed that derives statistics for the slope steep-
ness and orientation, from the high resolution topography datasets. The dust aerosol
is described by using the three-modal lognormal function of D’Almeida (1987) for the15

aerosol mass distribution at the source areas and the 8-size bin transport mode of
Schulz et al. (1998) for the long-range transported particles. The dust particles are
assumed to be mobilized through the process of saltation bombardment (Marticorena
and Bergametti, 1995) and deposited via dry (diffusion, impaction, gravitational set-
tling) and wet (in-cloud and below-cloud removal) mechanisms. More details on the20

specific characteristics of the atmospheric model are provided in Spyrou et al. (2010)
and Mesinger et al. (2012).

3 Rapid Radiative Transfer Model – RRMTG

Longwave and shortwave radiative transfer in the SKIRON/Dust model are parameter-
ized with RRTMG (Mlawer et al., 1997; Iacono et al., 2003, 2008), a broadband cor-25

related k-distribution radiation model developed at AER, Inc. with support from the US
Department of Energy. Both RRTMG and the related single-column, reference radiation
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model, RRTM, were developed in the context of continual comparison to Line-by-line
Radiative Transfer Model – LBLRTM, which is an accurate and highly flexible model
that continues to be validated with measured atmospheric radiance spectra from the
sub-millimeter to the ultraviolet (Clough et al., 2005; Turner et al., 2004). This ap-
proach realizes the goal of providing an improved radiative transfer capability that is5

directly traceable to measurements. Molecular absorbers in RRTMG include water va-
por, ozone, carbon dioxide, nitrous oxide, methane, oxygen, nitrogen and four halocar-
bons (CFC11, CFC12, CFC22, and CCL4) in the longwave and water vapor, carbon
dioxide, ozone, methane and oxygen in the shortwave. The water vapor continuum is
based on CKD v2.4, and molecular line parameters are based on HITRAN 2000 for10

water vapor and HITRAN 1996 for all other molecules (Iacono et al., 2008; Rothman
et al., 2009). RRTMG uses sixteen spectral bands to represent the longwave region,
while the shortwave band is represented by fourteen spectral intervals. Absorption and
emission from aerosols and clouds are included in the longwave, and the shortwave
treatment includes extinction (absorption plus scattering) from aerosols, clouds and15

Rayleigh scattering. Aerosol radiative effects are treated in RRTMG through the speci-
fication of their optical properties within each spectral interval.

RRTMG incorporates several modifications to RRTM (while retaining the same basic
physics and absorption coefficients) in order to improve computational efficiency, to up-
date the code formatting for easier application to global and limited area models, and20

to represent sub-grid scale cloud variations. The complexity of representing fractional
cloudiness and cloud overlap in the presence of multiple scattering is addressed in
RRTMG with the use of McICA, the Monte-Carlo Independent Column Approximation
(Pincus et al., 2003), which is a statistical technique for representing representing ra-
diative impacts of sub-grid scale on cloud variability including cloud overlap. Although25

this method introduces a certain random noise to the cloudy calculation of radiance, the
result is unbiased. This approach provides a much needed flexibility in representing the
vertical correlation of clouds (cloud overlap) in some detail by imposing an assumed re-
lation (random or maximum-random) among the stochastic cloud arrays in the vertical
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dimension. The maximum-random cloud overlap assumption, in which adjacent cloud
layers in the vertical are presumed to overlap maximally and non-adjacent cloudy lay-
ers are assumed to overlap randomly, is applied within RRTMG in the SKIRON/Dust
model.

4 Optical properties of dust5

The absorption and scattering of light by a spherical particle is a classic problem in
physics, the mathematical formulation of which is referred to as Mie theory (Bohren
and Huffman, 1983). The most important factors that govern these processes are the
wavelength of the incident radiation, the size of the particle, the ratio of the circum-
ference of the particle to the wavelength and the complex refractive index, expressed10

as RI=n+ik. The real part n expresses attenuation due to scattering (non-absorbing),
while the imaginary part is related to the absorption of light by the medium (Helmert et
al., 2007).

The refractive indices of various spectral ranges, for all the particle sizes, have been
determined using the OPAC (Optical Properties of Aerosols and Clouds) software pack-15

age (Hess et al., 1998), which in turn utilizes the Mie theory for its calculations (Quenzel
and Muller, 1978). The same package was used for the definition of the aerosol single
scattering albedo ω and the asymmetry parameter g for the same wavelengths. For the
550 nm spectral window, where the extinction of the incoming solar radiation is most
intense, a single scattering albedo value of 0.95 was used instead of the smaller value20

(0.83) provided by OPAC, for transported mineral dust. Field measurements suggest
this value as more realistic for desert dust in the mid-visible (Kalashnikova et al., 2005;
R. Kahn personal communication, 2009).

For the calculation of the extinction efficiencies Qext,i for each size bin i , at each
wavelength λ, the Wiscombe Mie algorithm was used (Wiscombe, 1980; Mishchenko25

et al., 2002). Although dust particles are known to be non-spherical (Nakajima et al.,
1989; Meloni et al., 2004), Mie calculations can be used to compute the radiative
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parameters for equivalent volume spheres and provide very good representation for
non-spherical scattering (Tegen and Lacis, 1996).

The aerosol optical thickness at each wavelength τ(λ) was calculated by the following
formula:

τ(λ) =
N∑
i=1

3
4ρri

DLiQext,i
(λ) (1)5

where N = 8 is the number of particle size bins, ρ = 2.65 Kg m−3 is the particle density,
r is the particle radius, DL is the layer dust load and Qext,i (λ) is the extinction efficiency
calculated from the Mie theory (Tegen and Lacis, 1996; Perez et al., 2006).

5 Experimental design

In order to evaluate and quantify the effects of desert dust particles on the radiation10

budget in the atmosphere, a series of test runs were carried out. The model was inte-
grated for a period of 6 yr (2002–2007) over an extended area that covers the European
continent, the Mediterranean Sea and northern Africa, as well as a major part of the
Middle East and Turkey. The horizontal grid increment was 0.25. A vertical dimension
of 38 levels was used stretching from the surface up to 20 km. The ECMWF operational15

analysis dataset (horizontal resolution of 0.25 degree) was used for the initial and lat-
eral boundary conditions for the meteorological parameters. The timestep was set at
60 s and the radiation driver was invoked every 15 min.

The model runs were carried out under two different setups: (a) by neglecting the
effects of dust particles on the radiative parameters (NDE) and (b) by including the dust-20

radiation interaction mechanisms (WDE). Between the two setups, the differences in
the radiative fluxes and heating/cooling rates, as well as other atmospheric parameters,
are calculated and discussed in the following paragraphs.
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6 Model evaluation – qualitative study and statistical techniques

To estimate the impact on model performance of dust-radiation interaction processes,
a specific case of desert dust transport towards the SE Europe was examined. On the
5 April 2006 strong winds originating from across the Southeastern side of the Atlas
mountain range injected large quantities of mineral dust particles into the atmosphere.5

The particles were transported over the Mediterranean Sea and two days later, on the
7 April 2006, reached Crete on the Eastern Mediterranean (Fig. 1). To evaluate the ef-
fects of dust on the radiative transfer, solar radiation data retrieved from a pyranometer
located at the Technological University (TEI) of Crete were used. Model runs with the
two different setups (NDE, WDE) were carried out for the simulation of this test case.10

During the passage of the dust plume, the incoming solar radiation decreased by
approximately 200 W m−2 (Fig. 2). This abrupt change is depicted by the WDE simula-
tion to a certain extent, but cannot be attributed solely on the shading effect of desert
dust particles. One viable explanation is that the change in the radiation balance of the
atmosphere, due to the presence of dust particles, led to cloud formation in the area15

that is blocking the incoming solar radiation observed at the station in Crete.
To further investigate this hypothesis the vertical profiles of the cooling rates have

been derived. In Fig. 3, the cooling rates together with the vertical extent of dust con-
centration are shown. The cooling rates of the WDE simulation exhibit a sharp decrease
of 4 K day−1 just above the dust plume in a layer about 9 km high. The dust particles20

seem to have an albedo effect, partly reflecting back the incoming solar radiation. As
a side effect of this reflection, cooling of the adjacent atmospheric layer over the dust
plume is simulated. This temperature decrease drives the air temperature closer to the
dew point temperature and leads to the formation of a cirrus cloud over the station in
Crete, as shown in Fig. 4. The SKIRON/Dust model (WDE run) appears to capture this25

feature and the formation of a high altitude cloud over the station in Crete (Fig. 4 right),
which in turn leads to the decrease of the simulated incoming solar radiation.
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For a more thorough evaluation of the model performance, a series of statistics were
derived. At first, in order to evaluate the radiation calculations, the model outputs were
compared with measurements obtained from three of the AERONET network stations
(Crete, Sede Boker and Moldova) for the year 2006. The characteristics of the stations
(geographical location and altitude), as well as the statistical parameters (regression5

trend lines, correlation coefficients) determined from the analysis, are shown in Ta-
ble 2. The flux comparisons were performed for the days of increased values of aerosol
optical depth (AOD). Thus, AOD measurements at 500 nm from the AERONET sta-
tions were also obtained and the 95th and 99.5th percentiles were calculated for each
dataset in order to detect the periods of increased aerosol optical depth in the atmo-10

sphere. The 95th percentile of AOD was found at about 0.3, while the 99.5th percentile
fluctuated between 0.5 and 0.6 for the three studied sites. In general, the SKIRON/Dust
model produces accurate simulations of the incoming radiation, since the correlation
coefficients calculated for the compared datasets have high values and the linear re-
gression slopes of the trend lines are close to unity.15

However, the intercept of the regression lines, which indicate the difference between
the simulated and the observed values, are very high and exceed 50 when the dust
effects on radiation are not considered. This overestimation of the observed radiation
fluxes by the model in the NDE setup, is directly related to the neglection of the ra-
diative effects of the dust aerosols. On the other hand, the inclusion of dust-radiation20

interaction processes appears to diminish significantly this overestimation at Crete and
Sede Boker, with a complete elimination noticed at Sede Boker (−0.8) for AOD values
greater than 0.6. The decrease of the model overestimation in Moldova (the most north-
ern site out of the three) with the incorporation of dust effects appears to be negligible.
Since the dust load that reaches Moldova is reduced compared to the amounts that25

affect the more south sites, the radiative forcing due to the suspension of dust particles
is expected to be reduced.

To evaluate the impact of dust particles on the model calculation of air tempera-
ture, simulation runs for a 6 yr period (2002–2007) were carried out with the same

1337

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/13/1327/2013/acpd-13-1327-2013-print.pdf
http://www.atmos-chem-phys-discuss.net/13/1327/2013/acpd-13-1327-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
13, 1327–1365, 2013

Radiative effects of
desert dust on

weather and regional
climate

C. Spyrou et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

implementation of the SKIRON modeling system. The observations of air temperature
close to the surface were collected from about 600 monitoring stations of the World
Meteorological Organization network (WMO). For the two model setups (NDE, WDE),
the Bias, the Root Mean Square Error (RMSE) and the Correlation Coefficient r were
computed for each season of the year for the entire 6 yr simulation period (Fig. 5),5

as described in Wilks (1995). It appears that the correlation coefficient is higher with
the new modifications incorporated in the model and exceeds 0.90 throughout the year.
The Bias is reduced when the impacts of desert dust on radiation are considered (WDE
case). This reduction is larger during Northern Hemisphere spring (MAM) and summer
(JJA), two seasons with the highest number of Saharan dust intrusions towards Europe10

and smaller during winter (DJF) and autumn (SON). The improvement in the statistical
scores for winter and autumn is attributed mostly to the stations near the source areas,
where dust clouds are always present and constantly modify radiative transfer. The
RMSE-values show respective decreases with the incorporation of the dust-radiation
interaction mechanisms ranging from ∼28 % in autumn (SON) to ∼36 % during the15

spring transitional period (MAM).
In general, the inclusion of dust-radiation interaction processes appears to enhance

the model performance in estimating the radiative fluxes and near surface air tempera-
ture.

7 Model sensitivity analysis – estimation of the impact on energy budget20

The life cycle of dust is defined as the emission, atmospheric loading and surface
deposition of the desert dust particles. Quantification of the dust mass over the selected
model domain is essential for the determination of the modified amounts in the energy
budget due to the suspension of desert dust particles. To estimate the desert dust
impact on the energy budget over the studied area, the 6 yr model runs covering the25

period 2002–2007 were extensively analyzed. For this evaluation, the NDE model runs
represent the radiation transfer parameters in clean (free of dust particles) atmospheric
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conditions, while the WDE simulations represent the dust transport events by taking
into consideration the dust-radiation interaction processes.

Firstly, the areas that are mostly affected by the emission and transport of desert
dust particles were detected. In Fig. 6a–d, the dust load (integrated column) values
for the different seasons of the year are depicted across the studied area. Significant5

dust amounts appear to be over Chad with dust load values exceeding 1 g m−2 and
at the northwestern part of the African continent over Mauritania and Algeria. The
suspension of desert dust particles is also present across and around the Red Sea in
the spring and summer periods. As reported by many studies (e.g. Moulin et al., 1997;
Nickovic et al., 2001), the Saharan dust transport events are characterized by a strong10

seasonal variability. In particular, maximum dust impact is observed in central-eastern
Mediterranean in spring, while the maximum is shifted in summer (and early autumn)
to the central-western Mediterranean (Querol et al., 2009).

The seasonal differences in the incoming shortwave and longwave radiation fluxes
reaching the surface are illustrated in Figs. 7 and 8. The differences in the shortwave15

fluxes appear to be negative during all periods of the year and greater during the warm
spring and summer periods approaching the value of 70 W m−2 over the extended
desert areas of Chad (this value corresponds to an area of approximately 40 000 Km2),
a very strong dust source. On the other hand, the depicted deviations over Europe
and Mediterranean are negligible during the cold periods, because there is no signif-20

icant dust transport. However, in spring, the discrepancies over European land areas
is found as high as 10 W m−2 over the south and 5 W m−2 near the central European
countries. Another region of increased differences in the incoming shortwave radiation
that are at a maximum during summer is the northwestern African continent and in
particular over the southern desert areas of Morocco, where deviations greater than25

40 W m−2 are modeled (Fig. 7c). As expected, the deviations between the two model
setups (NDE and WDE) are more noticeable during the periods and in the areas with
high dust productivity. In all cases, the suspension of dust aerosols leads considerable
reduction of the incoming shortwave radiation due to scattering and absorption of the
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solar radiation. As illustrated in Fig. 8a the total annual reduction of the incoming solar
radiation (temporally integrated throughout the year) can be as high as 500 KWh m−2,
which represents a significant portion of the total available solar radiation (by tempo-
rally integrating the hourly flux values – Fig. 8b). This reduction should be taken into
consideration when modeling radiative fluxes for solar energy applications.5

According to the model results the incoming longwave radiation fluxes with the pres-
ence of dust particles are increased during all periods of the year (Fig. 9) with greater
differences noticed in the spring. The longwave radiation emitted by the dust layer to-
wards the surface during night-time is superimposed with the incoming solar radiation
during the day. As a result the incoming flux that reaches the surface is enhanced. This10

increase could approach 35 W m−2 over Chad and 25 W m−2 over southern Morocco
during the warm seasons. Smaller differences are modeled over the Mediterranean
Sea.

To better understand the annual variability of desert dust feedback at regional scales,
the monthly average radiative forcing has been calculated over the entire model do-15

main, for the incoming shortwave (Fig. 10a) and incoming longwave (Fig. 10b) radi-
ation. As expected the most profound effects are modeled during the spring, espe-
cially in May, reaching a maximum of approximately −14W m−2 for the shortwave, and
+6 W m−2 for the longwave.

The net atmospheric forcing by the mineral dust aerosols in the model simulations20

can be estimated as the difference in the radiative flux absorbed by the atmosphere
between the two model configurations (WDE–NDE) over the model domain. This was
derived for each season and the result is illustrated in Fig. 11a–d.

The radiative flux that is absorbed by the atmosphere can be determined through:

F = (FTOA ↓ −FTOA ↑)WDE − (FTOA ↓ −FTOA ↑)NDE. (2)25

If we consider that the dust particles exert a negligible effect on the incoming radiation
at the top of the atmosphere, then F can be expressed as F = FTOA ↑NDE −FTOA ↑WDE. In
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effect, negative values in Fig. 11a–d denote an increase in the atmospheric absorption
due to dust feedback and positive values a decrease.

The modeled absorbed fluxes increase over the desert areas of the northern African
continent, while during the summer months differences can be also noticed over south-
ern and central European areas. The energy amounts absorbed by the dust aerosols5

approach 10 W m−2 over land areas, while over the Red Sea the increase in the ab-
sorbed energy exceeds 20 W m−2 during the summer period. This can be attributed to
the fact that the warm water of the Red Sea emits a large amount of longwave radiation
that is trapped between the sea surface and the dust layer when there are increased
concentrations of dust particles (greenhouse effect). On the contrary, the cold water10

of the North Atlantic emits less longwave radiation and the difference in atmospheric
absorption detected is attributed to the emission from dust clouds (especially during
the summer where dust particles move towards the Atlantic). The absorbed energy
amounts by the dust particles can influence significantly the atmospheric stability by
heating the lower tropospheric layer.15

The analysis of the 3-D distributions of dust concentration reveals the vertical char-
acteristics of the dust transport and suspension over the surface. Two vertical cross-
sections of averaged dust concentration along the pathlines at 2◦ W for summer and
18◦ E for spring are illustrated in Figs. 12a and 13a respectively. The greatest dust con-
centration values are obtained over the main dust sources and in particular at about20

20–25◦ N over the western part (2◦ W) and over Chad in the central part (18◦ E) of the
north-African region. The area of increased dust concentrations close to the surface is
more extended in the western part of the African continent (Fig. 12a), which is related
to the existence of more wide-ranging dust source areas over this part. On the other
hand, the high mountains in the central region of northern Africa (Fig. 13a) limit the25

extent of the dust source areas.
The vertical cross-sections of the temperature difference between the two model se-

tups (WDE-NDE), as illustrated in Fig. 12b for the summer months and Fig. 13b for
the spring months of the 6 yr study period, reveal the importance of the dust radiative
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feedback: first of all dust particles reflect incoming radiation at high altitudes. This
mechanism is reproduced by the model as a mid-tropospheric cooling of ∼0.1 K at
∼300 hPa. At the same time these particles increase the temperature of the dust layer
through atmospheric absorption of the incoming SW radiation. According to the model
results this increase in the air temperature profile reaches ∼0.2 K at about 600 hPa5

(mid-tropospheric heating).
Temperature decreases in the lower troposphere (925 hPa up to 825 hPa) up to 0.3 K

are due to extinction of the incoming solar radiation, which is more profound in the
western part of the African continent (Fig. 12b). An interesting feedback is that near
source areas the modeled temperature of the atmospheric layer near the ground in-10

creases by ∼0.4 K during the summer (Fig. 12b) and even up to ∼0.5 K during spring
(Fig. 13b), even though the extinction of the incoming solar radiation is more profound
there. This can be attributed to two superimposed factors: (1) during the day the dust
particles absorb significant amounts of incoming solar radiation (as seen also in Fig. 9),
raising the temperature of the near surface layer and (2) during the night this dust layer15

“traps” longwave radiation emitted from the ground (greenhouse effect). As a result,
the air temperature close to the surface increases, while a cooling of up to −0.2 K is
produced by the model inside the dust layer.

Far from the desert areas over the Mediterranean Sea the surface temperature de-
creases due to scattering and absorption by the dust cloud. According to the model20

results this reduction reaches −0.2 K on average (Figs. 12b and 13b).

8 Conclusions

This work represents a modelling study of the direct radiative effects of desert particles
on the radiation budget of the atmosphere across the greater Mediterranean Region.
The DRE is investigated with the aid of the SKIRON/Dust modelling system. New radia-25

tive transfer mechanisms were incorporated in the atmospheric model and an exten-
sive study was performed with the aid of radiation fluxes and temperature observational
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data. Using the updated system the effects of desert dust particles on radiative transfer
have revealed important findings, as summarized below: the presence of dust particles
in the atmosphere has a significant regional influence on the radiative transfer and en-
ergy distribution. Therefore, variations in dust particle production can have impacts on
radiative properties, cloud formation and water budget. These interactions are not one-5

way; there are feedbacks that are critical for both regional and climatological – scale
phenomena.

An extensive statistical evaluation with temperature data from more than 600 stations
of the ECMWF operational analysis has shown the improvement in the description of at-
mospheric processes when the dust-radiation feedback is included. This improvement10

is evident in all the statistical scores used and is most profound during the transitional
seasons.

According to the model the suspension of desert dust particles decreases the
amount of radiative energy reaching the surface. At the same time the atmospheric
absorption is increased throughout the simulation domain, as the dust particles absorb15

both the incoming solar radiation and part of the longwave radiation emitted from the
surface during the night.

In the vertical dimension, the phenomena are more complicated, as the redistribution
of the energy has profound effects on the temperature profile: at high altitudes cooling is
evident due to reflection from the dust clouds below. At the same time the temperature20

of the mid-tropospheric layers is increased due to absorption and the near-surface layer
temperature drops due to extinction from above.

A notable attribute of dust is the greenhouse effect on areas with high particle con-
centrations. Even thought the shading effect is dominant in these areas the longwave
trapping imposed by dust leads to an increase of the near surface temperature, rather25

than the expected reduction. This phenomenon is superimposed to the emission of in-
frared radiation by the dust cloud itself, further intensifying the heating effect. The latter
is an indication that the links and feedbacks between dust and climate are very com-
plicated. It must also be noted that in this study the indirect effects of natural particles
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are not included and the total contribution of desert dust on a regional scale remains
to be identified.

In general, the presence of desert dust particles in the atmosphere plays a key role
in the energy distribution and the formation of the regional climate over the affected
areas. The effects of airborne dust on the shortwave and longwave radiative fluxes5

at the surface should be carefully considered, including indirect effects, when model
data is used to assess the available solar energy for power plant applications in desert
areas. Finally the dust influence on the energy parameters has a seasonal variability
that is in line with the seasonality of the dust cycle events.
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Table 1. The 8 transport size bins used by the SKIRON/Dust model. rmin and rmax are the
minimum and maximum radius of each bin, rn the mass median diameter, reff the effective
radius and σg the standard deviation of the lognormal distribution.

Bin rmin rmax reff rn σg

1 0.1 0.18 0.15

0.2986 2

2 0.18 0.3 0.25
3 0.3 0.6 0.45
4 0.6 1 0.78
5 1 1.8 1.3
6 1.8 3 2.2
7 3 6 3.8
8 6 10 7.1
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Table 2. Trend lines and correlation coefficients between modeled and measured incoming
solar flux at Crete, Sede Boker and Moldova taking into account days with increased AOD.

Station Latitude/Longitude Altitude (m) AOD values Trend lines Correlation coefficient

AOD>95% AOD>99.5% AOD>95% AOD>99.5% AOD>95% AOD>99.5%

Crete N35 20′/E25 17′ 20 0.28 0.52 No dust effect y = 0.95x+96 y = 0.86x+153 R2 = 0.87 R2 = 0.74
Dust effect y = 0.96x+63 y = 0.88x+87 R2 = 0.88 R2 = 0.72

Sede Boker N30 51′/E34 47′ 480 0.30 0.63 No dust effect y = 1.03x+50 y = 1.06x+62 R2 = 0.97 R2 = 0.97
Dust effect y = 0.99x+20 y = 1.04x−0.8 R2 = 0.96 R2 = 0.98

Moldova N47 00′/E28 49′ 205 0.26 0.48 No dust effect y = 0.94x+91 y = 0.89x+143 R2 = 0.75 R2 = 0.68
Dust effect y = 0.93x+90 y = 0.91x+142 R2 = 0.76 R2 = 0.73
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Figure 1 
 
 

Crete TEI

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. AOD at 550 nm from the SKIRON/Dust model on 7 April 2006. The location of the
measuring station in Crete is marked on the figure.
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Fig. 2. Aerosol Optical Depth at 550 nm at the station in Crete (top). Comparison of the Incom-
ing Solar Radiation at the surface in W m−2 (bottom) as measured from the station in Crete and
as simulated by the SKIRON/Dust system with the two model setups (WDE and NDE).
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Figure 3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 

(a) 

Fig. 3. Vertical distribution of (a) cooling rates and (b) cloud water mixing ratio (mgr Kgr−1)
over the solar radiation station in Crete on 7 April 2006 at 12:00 UTC, for both model setups
(black line denotes WDE). For the NDE simulation cloud water mixing ratio is zero. The vertical
distribution of dust concentration in mgr m−3 is also shown (red line).
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Figure 4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Cloud cover distribution over the simulation domain on 7 April 2006 at 12:00 UTC, for
both model setups, on the left figure the NDE simulation and on the right panel the WDE
simulation. On the bottom the actual cloud formations from the MODIS satellite are shown.
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Figure 5
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 Fig. 5. Statistical parameters: Bias (upper), RMSE (middle), correlation coefficient (lower) for

the 6 yr period of simulations (2002–2007) with dust effects (WDE) and without dust effects
(NDE) for the surface temperature.
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Fig. 6. Dust load as averaged during the 6 yr period for the different seasons of the year, namely
(a) winter, (b) spring, (c) summer and (d) autumn.
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Figure 7 
 
 
 
 
 
 (a) (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (c) (d) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

Fig. 7. Spatial difference between the model simulations (WDE-NDE) in the incoming short-
wave radiation at the surface, as averaged during the winter (a), spring (b), summer (c) and
autumn (d) seasons of the 6 yr period.
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Figure 8 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) 

(b) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. Total reduction of the incoming solar radiation (integrated hourly throughout the year)
for the year 2006 due to the scattering and absorption of desert dust particles (a) and the total
available solar radiation for the same year (b).
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Figure 9 
 
 
 
 
 
 (a) (b) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (c) (d) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9. Spatial difference between the model simulations (WDE-NDE) in the incoming longwave
radiation at the surface, as averaged during the winter (a), spring (b), summer (c) and autumn
(d) seasons of the 6 yr period.
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Figure 10 
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Fig. 10. Monthly average dust radiative forcing over the entire domain in (a) the incoming short-
wave radiation and (b) the incoming longwave radiation on the surface.
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Figure 11 
 
 
 
   
 
  

(a) (b) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c) (d) 

 
 
 
 
 
 
 
 
 
  

Fig. 11. Differences between the model simulations (WDE-NDE) in the atmospheric absorption
at the top of the atmosphere, as averaged during the (a) winter, (b) spring, (c) summer and (d)
autumn periods of the 6 yr period.
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Figure 12 
 

 
 
 

(a) (b)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Fig. 12. Vertical cross-sections of (a) dust concentration at 2 W and of (b) temperature differ-
ence at 2 W (WDE-NDE), as averaged for the summer months of the 6 yr period from the model
simulations before and after incorporating dust-radiation interactions. The white color denotes
the orography.
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Figure 13 

 

 
 
 

(a) (b)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13. Vertical cross-sections of (a) dust concentration at 18◦ E and of (b) temperature dif-
ference at 18◦ E (WDE-NDE), as averaged for the summer months of the 6 yr period from the
model simulations before and after incorporating dust-radiation interactions. The white color
demotes the orography.
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