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Abstract

Data assimilation (DA) approaches, such as the variational and the ensemble Kalman
filter, provide a computationally efficient framework for solving the CO2 source-sink
estimation problem. Unlike DA applications for weather prediction and constituent as-
similation, however, the advantages and disadvantages of alternative DA approaches5

for CO2 flux estimation have not been extensively explored. In this study, we compare
and assess estimates from two advanced DA methods (an ensemble square root filter
and a variational technique) using a simple 1-dimensional advection-diffusion inverse
problem that has been designed to capture the nuances of a real CO2 flux estimation
problem. Experiments are specifically designed to identify the impact of the observa-10

tional density, heterogeneity, and uncertainty, as well as operational constraints (i.e.,
ensemble size, number of descent iterations) in order to isolate the degradation in the
DA estimates relative to the estimates from a batch inverse modeling scheme. No dy-
namical model is explicitly specified for the DA methods to keep the problem setup anal-
ogous to a real CO2 flux estimation problem. Results demonstrate that the performance15

of the DA approaches depends on a complex interplay between the measurement net-
work and the operational constraints imposed to make the DA algorithms practically
feasible. The overall advantages/disadvantages of the two examined DA approaches
are complementary and highlight that, specifically for CO2 applications, selection of
one method over the other should be dictated by the carbon science questions being20

asked, and the inversion conditions under which the approaches are being applied.

1 Introduction

Data Assimilation (DA) is best known as a tool in Numerical Weather Prediction (NWP;
e.g. Swinbank, 2010) and has been applied to analyze complex datasets and estimate
parameters in a variety of fields, including atmospheric constituent (e.g. Lahoz and25

Errera, 2010; Elbern et al., 2010), oceanographic (e.g. Haines, 2010), and land surface
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(e.g. Reichle, 2008; Houser et al., 2010) assimilation problems. In all such applications,
a DA system aims to optimally combine the information from available observations
with a prior model estimate (or the background derived from a model forecast), based
on their respective uncertainty estimates.

DA methods for estimating CO2 fluxes aim to constrain the spatial and temporal dis-5

tributions of CO2 sources and sinks by integrating atmospheric, terrestrial and oceanic
data together into a common analysis framework. CO2-DA applications (e.g. ensemble
filter based methods – Peters et al., 2005; Feng et al., 2009; Miyazaki et al., 2011; Chat-
terjee et al., 2012; Kang et al., 2012, variational based methods – Rayner et al., 2005;
Chevallier et al., 2005; Rödenbeck, 2005; Baker et al., 2006, or hybrid approaches such10

as the Maximum Likelihood Ensemble Filter – Zupanski et al., 2007; Lokupitiya et al.,
2008) have been in vogue for nearly a decade and are viewed as an alternative to more
traditional batch inverse modeling schemes. Unlike DA, which uses a combination of
numerical approximations and time-stepping approaches, the batch schemes directly
solve the linear system of equations relating the fluxes and the atmospheric CO2 ob-15

servations in a single step. The DA approaches are attractive because of their com-
putational efficiency (e.g. Rayner, 2010) but the impact of their underlying numerical
approximations on the final estimates and their associated uncertainties is ambiguous.

Recently, Chatterjee et al. (2012) pointed out that because of fundamental dif-
ferences between the carbon flux estimation (i.e., the inverse framework) and the20

NWP/constituent (i.e., assimilation framework) problems: (a) the performance of the
DA methods are not necessarily equivalent for the two frameworks, and (b) only under
specific inversion scenarios are the DA methods able to perform optimally. Differences
between the two frameworks are mainly driven by the ill-conditioned and highly diffu-
sive nature of the flux estimation problem, and the absence of an explicit dynamical25

model that can evolve a set of estimated fluxes forward in time. The lack of a dynami-
cal model represents a loss of valuable information to the DA system. By propagating
the state vector between different assimilation time steps, a dynamical model directly
contributes to the growth of the eigenvalue spectrum of the state covariance matrix
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in certain preferred directions and decay in others (Bengtsson et al., 2003; Furrer and
Bengtsson, 2007). For the CO2 inverse problem, however, the dynamics are embedded
within the atmospheric transport, and cannot be used explicitly to inform the temporal
evolution of the state vector. The absence of this information, coupled with the availabil-
ity of only sparse observational datasets, may result in the DA approaches performing5

sub-optimally.
The authors are not aware of any study specifically related to the CO2 flux esti-

mation problem that attempts to evaluate the performance of DA techniques. This
is unlike the weather forecasting community, where several studies have evaluated
the strengths and weaknesses of ensemble and variational approaches for differ-10

ent weather-related applications ranging from simple to chaotic non-linear systems
(e.g. Lorenc, 2003; Caya et al., 2005; Fertig et al., 2007; Kalnay et al., 2007; Liu
et al., 2008; Whitaker et al., 2009; Buehner et al., 2010a,b; Jardak et al., 2010;
Zhang et al., 2011; also see the special collection of papers on inter-comparison
at http://journals.ametsoc.org/page/Ensemble Kalman Filter). Apart from NWP-related15

comparison studies, DA methods have also been inter-compared for chemical (e.g.
Carmichael et al., 2008) and constituent (e.g. ozone – Wu et al., 2008) assimilation
problems. These comparison studies cannot be used as a baseline, however, because
of differences between the flux estimation and the NWP/constituent data assimilation
frameworks, as stated earlier.20

The main purpose of this work is thus to fill this gap and build on the existing body
of inter-comparison studies from the perspective of the CO2 flux estimation problem.
Specifically, this study aims to answer the following two questions: (a) what is the rela-
tive performance of two state-of-the art DA approaches (Ensemble Square Root Filter,
EnSRF – e.g. Whitaker and Hamill, 2002 and 4-dimensional variational, 4D-VAR – e.g.25

Talagrand, 2010) for solving the CO2 inverse problem, and (b) how well can the DA
approaches reproduce the flux estimates from a batch inverse modeling scheme?

To facilitate the inter-comparison, we consider here a one-dimensional passive tracer
transport problem. Similar to previous studies (e.g. Liu and Rabier, 2002; Park and
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Kalnay, 2004), a one-dimensional framework allows us flexibility in setting up the prob-
lem because multiple experiments can be simulated in a computationally efficient way.
The low computational cost associated with the 1D problem enables the implementa-
tion of a batch least-squares method in addition to the DA approaches. The DA es-
timates are thus compared to both the true signal and the batch estimates in order5

to isolate the degradation due to the underlying numerical approximations. This study
assesses whether these approximations allow the examined DA methods to be suit-
able long-term replacements for batch inversion techniques under different inversion
conditions.

When designing the 1D problem, we focus on a framework that allows us to ex-10

amine an under-determined and fine-scale CO2 flux estimation problem. This setup is
necessary to mimic the challenges of a true CO2 flux estimation problem in which at-
mospheric mixing coupled with the sparseness of available observations results in the
inverse problem being highly under-determined and ill-posed. The under-determined
nature of the problem is accentuated by the need for estimating CO2 fluxes at fine15

spatial and temporal scales, which is necessary to not only avoid aggregation errors
(e.g. Kaminski et al., 2001; Gourdji et al., 2012) but also to improve the understanding
of the fine-scale processes driving the carbon cycle. This paradigm shift has brought
about a computational bottleneck in solving the batch inverse problem, which requires
the atmospheric transport model to be run either once per estimated flux region/period20

combination, or once per observation if an adjoint to the transport model is available.
This in turn has prompted the use of computationally efficient alternatives, such as DA
methods, in which the number of atmospheric transport model runs is proportional to
the number of ensemble members (in the ensemble approach) or the number of de-
scent iterations (in the variational approach), both of which are typically set to be much25

lower than the number of estimated parameters or available observations.
Analogous to a real CO2 flux estimation problem, no dynamical model is explic-

itly specified for solving the 1D problem. The experiments are specifically targeted to
evaluate the impact of three factors on the two DA approaches: (a) the impact of the
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observational density and homogeneity, (b) the impact of the model-data mismatch
covariance, and (c) the impact of the operational parameters of the DA system (i.e.,
ensemble size, number of iterations). While examining the first two factors, issues of
sampling and convergence error are minimized by specifying a large number of en-
semble members and descent iterations, for the EnSRF and the 4D-VAR1, respectively.5

Operational constraints are subsequently imposed in the final set of experiments to not
only evaluate the fundamental differences between the two DA methods but also the
effect of the compromises necessary to make the algorithms practically feasible. This
study is a first comparison of the EnSRF and the 4D-VAR for a simplified flux esti-
mation problem, and is expected to guide the development of future inter-comparison10

experiments with real data, including satellite observations of atmospheric CO2.

2 Experimental framework

2.1 Estimation methods

In a Bayesian framework, prior information and likelihood are expressed as probability
density functions or pdfs (e.g. Enting, 2002). If the pdfs can be approximated as Gaus-15

sian, then maximizing the posterior probability of the state is equivalent to finding the

1Typically in the DA community the term 4D-VAR is used to represent the 3-dimensional
space plus time. In this study, the variational approach is applied to a 1-dimensional space plus
time, which may suggest that the term “1+1D-VAR” may be more appropriate. Within the geo-
physical community, however, the term 1D in 1D-VAR specifically refers to the vertical column,
and is quite popular for radio occultation data (e.g. Eyre et al., 1993; Poli et al., 2002), total
column water vapor (e.g. Marécal and Mahfouf, 2002; Bauer et al., 2006), cloud (e.g. Janiskova
et al., 2012) assimilation etc. Since in the current study, 1D refers to a single dimension along
the horizontal space and not necessarily the vertical column, we persist with usage of the term
4D-VAR rather than the term 1D-VAR.
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minimum of a quadratic objective function as shown in Eq. (1):

J(s) =
1
2

[z−h(s)]TR−1[z−h(s)]+
1
2

[s−sb]T(Qb)−1[s−sb] (1)

where s is a m×1 vector of the discretized state (e.g. CO2 flux), z is the n×1 vector of
observations (e.g. CO2 observations), h is a forward model that is often a combination5

of an observation operator and an atmospheric transport model with embedded dy-
namics, R is the n×n model-data mismatch covariance, sb is the m×1 prior estimate
of the state, Qb is the m×m error covariance of the prior estimate s

b, and the super-
script T denotes the matrix transpose operation. Note that in the case of atmospheric
CO2 inverse problem, h is linear and typically represented via its matrix form H (a.k.a.10

sensitivity matrix with dimensions n×m, or Jacobian matrix), which captures the sen-
sitivity of the observations z to the fluxes s (i.e. Hi ,j = ∂zi/∂sj ). The inverse problem
as formulated via Eq. (1) determines a least squares fit of the prior state estimate to
the observations with the ultimate aim of estimating the pdf of the true state.

In this study, the estimate of the pdf of the true state is obtained via a batch inverse15

modeling (BIM; e.g. Enting, 2002), a variational DA (4D-VAR; e.g. Talagrand, 2010),
and an ensemble square root filter (EnSRF; e.g. Whitaker and Hamill, 2002) scheme.
A review of these methods and their underlying mathematical framework are outlined
in Appendix A, along with an exposition of the algorithmic choices necessary to adapt
the DA methods for solving the CO2 flux estimation problem.20

2.2 Problem description

A 1-dimensional (1D) advection-diffusion problem of a passive tracer is selected to
emulate the CO2 flux estimation problem. In the 1D illustration, the passive tracer rep-
resents atmospheric CO2. Tracer fluxes get released from a series of locations over
a finite duration and get transported by a tracer transport model that encapsulates the25

physics of advection and diffusion. No sink is specified, and there is therefore a gradual
buildup of the passive tracer within the domain. Observations of the tracer are obtained
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at various locations and times within the domain. The locations and times of the ob-
servations as well as their precision can be regulated to simulate a variety of inversion
scenarios. The inverse problem involves using the noisy tracer observations along with
the transport information to infer the original tracer fluxes.

In the following description, the units of mass, length and time are reported as [M],5

[L] and [T] to keep the problem generic. Both the length of the 1D domain and the
time period of the experiment are arbitrarily discretized. The parameters for the ex-
periment are: the grid size ∆x =1 [L]; the domain length x =300 [L]; the time step of
release ∆t =1 [T]; the total number of time periods over which the tracer flux is released
t =35 [T]; the longitudinal dispersion coefficient DL =2.0 [L2 T−1]; and the advection ve-10

locity v =50.0 [L T−1].
The tracer flux s [M L−1 T−1] that is released (Fig. 1a) is modeled as:

s (xr,tr) = 0.25(36− tr)exp

[
−

(xr −70)2

200

]
+exp

[
−

(xr −130)2

50

]
+ . . .

. . .+exp

[
−

(xr −150)2

50

]
+0.25(tr)exp

[
−

(xr −220)2

200

] (2)

where xr represents the locations along the 1D domain (xr = 1,2,3 . . . 299,300 [L]) over15

which the tracer flux is released at times tr (tr = 1,2,3 . . . 34,35 [T]). Equation (2) is
designed to model two large peaks with fluctuating amplitudes (Fig. 1b) between 50–
100 [L] and 200–250 [L], and a smaller consistent double peak (Fig. 1b) between 100–
200 [L]. Even though the spatial tracer flux profiles are different for each time period, the
spatially averaged flux has a constant value of 0.84 [M L−1 T−1] across all time periods.20

Note that the true tracer flux s is used only for simulating the observations, but later
assumed unknown during the analysis.

The tracer is sampled at locations xo (xo = 1,2,3, . . . ,299,300 [L]) for 35 consecutive
time periods (to = 1.5,2.5,3.5 . . . 34.5,35.5 [T]) to obtain the observational dataset z [M
L−1], such that the observations times are offset from the release times. Initial random25
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error with a pre-specified variance (10 [M2 L−2]) is added to the tracer observations to
simulate measurement, transport, aggregation, and representation errors. Later in the
study, different configurations of xo and error variances (σ2

R) are prescribed to test the
impact of these parameters.

The tracer observations (z) and the tracer fluxes (s) are related in the following fash-5

ion:

z = Hs+ ν, where ν ∼ N (0,R) (3)

where H is the sensitivity matrix that is generated using a 1D tracer transport model
as:10

Ho,r =
1
2

[
erfc

(
(xo −xr )− vto

2
√
DLto

)
−erfc

(
(xo −xr )− v (to − tr )

2
√
DL (to − tr )

)]
(4)

where xr and tr are the tracer flux release locations and times, xo and to are the tracer
observation locations and times, erfc represents the complimentary error function. The
tracer transport model embedded in Eq. (4) assumes conservation of mass and is15

based on a well-known one-dimensional analytical solution for contaminant transport
in the groundwater literature (e.g. Ogata and Banks, 1961; Runkel, 1996).

The tracer observations obtained at a particular time step are sensitive to the tracer
flux released at multiple previous time steps. Given that the total length of the domain
is 300 [L] and the advection velocity is 50 [L T−1], the maximum residence time of the20

tracer within the domain is approximately 6 [T]. Based on the form of Eq. (2), how-
ever, the majority of fluxes occur at xr > 50 [L] (Fig. 1b), and the typical residence time
is therefore <5 [T]. This means that an observation taken at time to [T] provides in-
formation about the tracer flux approximately up to time to −5 [T]. In all subsequent
experiments the lag window size for the DA schemes is set to 5 [T].25

The final piece of information necessary for setting up the inverse problem is the
prior estimate (sb) of the tracer flux and its error characteristics. sb is constant across
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all time periods:

sb (xr,tr) = exp

[
−

(xr −150)2

2000

]
(5)

Its error covariance matrix Qb is based on an exponential decay model, with a correla-
tion length (3 lQ) of 90 [L] and variance (σ2

Q) of 3 [M2 L−2 T−2].5

The 1D framework was designed to capture most of the characteristic features of
the CO2 flux estimation problem. For a real CO2 inversion, units are most typically
[µmol(m2s)−1] for s and σQ, [ppm] for z and σR, [ppm µmol−1 (m2s)] for H and [km] for
lQ.

2.3 Experiments10

Experiments are designed to explore the impact of three factors on the ability of the DA
methods to solve the inverse problem: (a) the observational density and homogeneity,
(b) the model-data mismatch covariance, and (c) the computational constraints of the
DA system (i.e., ensemble size, number of iterations). In all the experiments, the size
of the state vector or the total number of fluxes to be inferred is 10500×1 (i.e. 30015

locations×35 times).
The first set of experiments (Table 1 – Experiments A through C) aims to inves-

tigate the effect of the density and homogeneity in space and time of the observa-
tional network. Three different observational networks are designed (Fig. 2). In the
first network configuration (denoted as REF – “reference observational set”, same20

as outlined in Sect. 2.2), observations are obtained throughout the domain (xo =
1,2 . . . 300 [L]) and for all 35 measurement times (to = 1.5,2.5,3.5 . . . 34.5,35.5 [T])
(see, e.g. Fig. 2a). The total number of observations available is thus 10500 (i.e. 300
locations×35 times). In the second network configuration (denoted as HM – “ho-
mogeneous”), observations are obtained at 25 equally spaced locations within the25

1D domain (xo = 10,22,34 . . . 298 [L]), which are maintained for all 35 time periods
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(to = 1.5,2.5,3.5 . . . 34.5,35.5 [T]) (see, e.g. Fig. 2b). The total number of observations
is thus reduced to 875 (i.e. 25 locations×35 times). In the final configuration (denoted
as HT – “heterogeneous”), observations are taken at 25 randomly selected locations,
which vary arbitrarily over the 35 time periods (to = 1.5,2.5,3.5 . . . 34.5,35.5 [T]) (see,
e.g. Fig. 2c). Similarly to HM, the total number of observations in HT is 875 (i.e. 255

locations×35 times), but the observations are neither uniform in space nor consistent
over time. Note that unlike REF, both HM and HT represent under-determined inversion
problems where the total number of observations is significantly lower than the number
of unknowns in the state space to be estimated. In reality, the HT network configuration
scheme is the closest to current CO2 monitoring networks where different monitoring10

locations (ground-based or remote-sensing) can come online and go offline over differ-
ent periods. For all the three network configurations, random error with a variance of
10 [M2 L−2] is added to the observations to make the problem more realistic. This allows
us to specify the model data mismatch covariance matrix R (in Eq. 1) with its diagonal
values corresponding to variance of the errors actually introduced into the synthetic ob-15

servations. In contrast to the prior error covariance, the model-data mismatch variance
is constant for all observations and the errors have no spatial or temporal correlation.

The second set of experiments (Table 1 – Experiments AR through CR) examines
the effect of the model-data mismatch variance on the best estimates and their associ-
ated uncertainties. The model data mismatch covariance matrix captures not only the20

errors in the observations but also errors due to other sources, such as the transport
model, representation and aggregation errors (e.g. Engelen et al., 2002). For all the
network configurations, the variance of the random errors is increased to 400 [M2 L−2]
with the diagonal values of the model data mismatch covariance matrix R increased
accordingly. All other parameters are kept the same as in the first set of experiments.25

The third set of experiments (Table 1 – Experiments AO, BO and CO) explores the
impact of operational constraints, which are always an important consideration in im-
plementing a DA system. To minimize the numerical approximations and avoid any form
of sampling or convergence error, the ensemble size (for the EnSRF) and the number
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of descent iterations (for the 4D-VAR) are set to 1000 and 250, respectively, for the
first two sets of experiments (Table 1 – Experiments A–C and Experiments AR–CR).
The number of descent iterations is prescribed to be lower than the number of ensem-
ble members, keeping in mind that 4D-VAR typically requires more model integrations
(i.e., both forward and adjoint model run) than EnSRF. Given that it is not feasible to5

either run a large number of ensemble members or specify a large number of descent
iterations for any real atmospheric application, these are reduced to 100 ensemble
members for the EnSRF and 25 descent iterations for the 4D-VAR in the third set of
experiments. The noise added to the observations is kept the same as in the first set
of experiments, namely 10 [M2 L−2], to allow for a direct comparison with Experiments10

A–C.

3 Results

In the sections that follow, results from the nine experiments are interpreted at both the
native and aggregated spatial scales, and estimates from the EnSRF and 4D-VAR ap-
proaches are compared both to the truth and to the BIM estimates. Three metrics – the15

root mean square difference (RMSD), the correlation coefficient (CC) and the standard
deviation (SD) are calculated between the flux estimates and the truth at the grid-scale
(Fig. 4) and at spatially aggregated scales (Fig. 5). All metrics are averaged across 30
time periods (tr = 6,7,8 . . . 34,35 [T]) after discarding the first 5 time periods as spin-up.

3.1 Impact of observational density and homogeneity20

For the REF-network, all three analyses methods perform extremely well in recovering
the true flux (e.g. Fig. 3a), and in fitting the observations within the specified errors
(results not shown). For the sample time period presented in Fig. 3a, both the 4D-
VAR and the EnSRF estimates capture the flux profile, including its large and small
peaks. These results are typical of the performance of the three analysis methods25
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across other time periods. The performance across the full examined time period is
summarized in Fig. 4a, where all three methods show a high CC (∼0.97), low RMSD
(∼0.3 [M L−1 T−1]) and similar standard deviation (∼1.5 [M L−1 T−1]) relative to the true
fluxes.

The performance of all three methods degrades as the observation density and ho-5

mogeneity decrease in going from Experiments A to C. This is evident by looking at
Fig. 3b,c where the methods fail to capture the smaller double peak around 100–
200 [L], while the Taylor diagram in Figs. 4b,c shows the resultant drop in CC and
a corresponding increase in RMSD. In general, for observations with spatially uncor-
related error, decreasing the observation density is expected to decrease the analysis10

accuracy. The response of the two DA approaches mirrors the BIM estimate in such
cases, including the inference of a wrong flux pattern for the HT network around 100 [L]
in Fig. 3c. This indicates that in the absence of any operational limitations, if all other
parameters of the inverse problem are the same, then the DA estimates are consistent
with the BIM estimate. Neither the lack of a dynamical model nor the under-determined15

nature of the inverse problem impedes the ability of the DA methods relative to BIM.
Despite the lower quality of the best estimates, both the BIM and the EnSRF are

able to quantify the uncertainty associated with estimates accurately, as reflected by
the fact that they capture the true flux profile within their 95 % confidence bounds. The
EnSRF uncertainty estimates are also consistent with the BIM uncertainty estimates.20

For the REF observational configuration, the ratio of the predicted standard deviation
of the individual flux estimates in EnSRF (σŝEnSRF

) to those from the BIM (σŝBIM
) is ap-

proximately 0.98, i.e. on average EnSRF underestimates the posterior uncertainties by
2 % relative to BIM. Going from the REF to the HT scheme, the EnSRF over-estimates
the uncertainty by 2 % and 6 % for HM and HT, respectively.25

In the EnSRF framework, the uncertainties are directly related to the ensemble
spread. In the absence of a dynamical model, there is little source of variability for
the ensemble to maintain a consistent spread. As observations are assimilated, the
ensemble tends to collapse to the ensemble mean and the adaptive inflation has to
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compensate for this degeneracy by inflating the ensemble spread. In the HT case,
however, the inflation technique has a delayed response in adjusting to the hetero-
geneity in the observation network, as different observation locations come into and
out of the network. For the adaptive inflation component to work properly, we find it
beneficial to have a consistent set of observations to maintain a reasonable ensem-5

ble spread. It is worthwhile to mention here that the magnitudes of the inflation factors
are very small in Experiments A–C. This is not surprising given that a large number
of ensemble members have been specified and hence, the sampling error is quite low.
Even without the application of inflation and localization (results not shown here), the
EnSRF estimates have a high CC (∼0.93), low RMSD (∼0.66 [M L−1 T−1]) but slightly10

higher SD (∼1.78 [M L−1 T−1]) relative to the true fluxes (SD= 1.58 [M L−1 T−1]). Note
that posterior analysis covariances are not calculated for the variational approach (see
Appendix A); the implications of this choice is further discussed in Sect. 4, specifically
keeping the CO2 source-sink estimation problem in mind.

Overall, we find that both the 4D-VAR and the EnSRF match the performance of BIM15

for all three observational network configurations. Even though small discrepancies
are noticeable, the impact of a sparse and/or heterogeneous observational network is
similar for the DA approaches compared to the BIM approach.

3.2 Impact of model-data mismatch covariance

For all the network configurations, the quality of the estimates degrades when a higher20

model-data mismatch error is prescribed (comparing Figs. 3 and 4 panels a and ar,
b and br, c and cr), albeit the heterogeneous network estimates show the most pro-
nounced degradation. An increase in σ2

R leads to higher uncertainties for the estimates,
indicative of the decreased confidence in the analysis. Analogous to the first set of ex-
periments, the EnSRF and the 4D-VAR approaches respond similarly to BIM when the25

model-data mismatch covariance changes, and both the methods track the BIM esti-
mates quite well for all the three experiments. Figure 4ar–cr confirm that the estimates
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from all the three analyses methods have a lower CC, higher RMSD, and lower SD
when compared to panels a–c.

The standard deviation changes considerably between panels ar (∼1.45–
1.5 [M L−1 T−1] for the three methods) and cr (∼0.94–1.00 [M L−1 T−1] for the three
methods). Increasing the σ2

R to 400 [M2 L−2] results in the analysis rejecting the in-5

formation from the observations and giving more weight to the prior, yielding overly
smooth a posteriori estimates. A typical example of this is seen by comparing the es-
timated peak around 50–100 [L] in Fig. 3c and cr. Estimates in both these panels are
based on the same observational fields but the estimates in Fig. 3cr are unable to
capture the amplitude of the peak in the true flux signal.10

The inability to capture the true amplitude is slightly mitigated for BIM and EnSRF
due to the fact that these approaches infer higher uncertainties on the estimates when
a higher model-data mismatch error is prescribed. Consequently, both estimates do
capture the true flux profile within their respective 95 % uncertainty bounds. As the
observation network becomes sparser and more heterogeneous, the EnSRF slightly15

over-estimates the BIM uncertainty, by 3 % (HM) and 5 % (HT), while it underestimates
the uncertainty by only 1 % for the reference network. In spite of over-estimating the
uncertainties, the EnSRF exhibits a clear advantage over the 4D-VAR by providing
analyses errors as part of the estimation procedure.

Experiments AR-CR reconfirm that in the absence of operational limitations, an in-20

crease (or decrease) in the model-data mismatch covariance does not affect the ability
of the DA methods to reproduce the BIM estimates.

3.3 Impact of operational constraints

Operational constraints hinder the performance of the DA approaches, and the im-
pact is further intensified as the observational network becomes more heterogeneous25

(Figs. 3 and 4, panels ao–co). We find that the 4D-VAR and the EnSRF performance
is impacted differently as the numerical approximations come into play.
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For 4D-VAR, an inadequate number of iterations fails to find the global minimum
of the quadratic objective function (convergence results not shown here). When the
observation fields are heterogeneous, the minimization has more difficulty in finding the
path towards the true minimum. Thus, comparing panels ao, bo and co in Fig. 4, the 4D-
VAR estimates are worst for the HT network configuration. In general, we find that for5

the HT network, 4D-VAR needs approximately 150 iterations to converge completely.
Conversely, for the REF network 4D-VAR required fewer than 50 iterations to reach full
convergence. When only 25 iterations are allowed, the negative performance of the
4D-VAR is more visible for Experiment CO than Experiments AO and BO, which have
a relatively homogeneous network. A separate set of experiments was run in which the10

minimization was preconditioned by defining a new variable to be optimized as:

Ξ = (Qb)−
1
2s (6)

While preconditioning reduces the number of iterations required to reach convergence,
we note that for the CO2 inversion problem, the size and structure of the prior covari-15

ance matrix constitutes a significant impediment to taking its inverse square root as pro-
posed in Eq. (6). Preconditioning approaches have only been applied in solving large-
scale CO2 inversion problem under very specific assumptions of the correlation struc-
ture and sparsity (e.g. Chevallier et al., 2005, 2007). Even without pre-conditioning,
however, for all the three experiments, the magnitude of the posterior objective func-20

tion is reduced relative to the prior, indicating that a more probable posterior state has
been found relative to the prior. As pointed out by Rödenbeck (2005), the minimization
determines the large-scale gradient in the initial iterations, while in subsequent itera-
tions fine-scale tuning is performed to capture the optimum. By artificially limiting the
number of iterations in Experiments AO and BO (Fig. 4ao and bo), even though the25

estimates are close to the BIM estimates, the ability of 4D-VAR to make small scale
changes are hindered.

For the EnSRF, the degradation can be solely attributed to sampling error caused by
a limited ensemble size. This reduces the estimation accuracy (both flux estimates and
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the uncertainties) and makes the filter sensitive to the observational density. Note that
a Schur-based localization scheme was implemented for the EnSRF (see Appendix A).
Since the localization length scale is dependent on the ensemble size, when an en-
semble size of 1000 was used (Experiments A–C, or AR–CR) a long localization length
scale of 90–120 [L] is sufficient. The localization length scale is determined subjectively5

based on sensitivity tests, and hence a range of values (i.e., 90–120 [L]) is acceptable
within which the EnSRF estimates are not contaminated by spurious noise.

Reducing the ensemble size to 100 requires the use of a shorter localization length
scale. It was found beneficial to have different length scales for the different observa-
tional networks, namely 10–30 [L] for the REF network and 45–60 [L] for the sparser10

networks. Specifying a longer localization length scale than 30 [L] for the REF network
led to a divergence of the EnSRF system. In this case the spurious noise in the en-
semble outweighs the positive impact of the observations. The complicated interplay
between the ensemble size and the observational density makes it difficult to iden-
tify a mathematical or physical basis for selecting an appropriate localization length15

scale. We refer the reader to Chatterjee et al. (2012), and the sensitivity tests pre-
sented therein, for a more detailed discussion of the role of localization for the CO2
source-sink estimation problem.

In terms of the recovered uncertainty, the sampling error plays a dominant role in
determining the ability of the EnSRF to correctly represent the error in the ensemble20

mean. The EnSRF uncertainty estimates are close to the BIM uncertainty estimates,
but under/over-estimate them in different portions of the domain, rather randomly for the
three network configurations. In the worst-case scenario (Experiment CO), the EnSRF
estimates fail to capture the true tracer flux within the 95 % uncertainty bounds (see
around 200–210 [L] in Fig. 3co).25

An important caveat here is that the results for both the DA approaches could po-
tentially be improved through further tuning of each algorithm. For example, the imple-
mentation of pre-conditioning algorithms to reach faster convergence, or of more so-
phisticated localization schemes to dampen the spurious noise in the ensemble, might
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provide slightly different responses and reduce the error incurred due to the numer-
ical approximations. In spite of having state-of-the-art algorithms, however, once the
underlying numerical approximations come into play: (a) the EnSRF fails to reproduce
the BIM estimate, with the EnSRF performance decreasing as the observation network
becomes sparser and more heterogeneous, and (b) the 4D-VAR fails to reproduce the5

BIM estimate when the observation network is heterogeneous but still performs better
than the EnSRF. The better performance of the 4D-VAR is offset by the fact that the
EnSRF provides explicit uncertainty bounds on the recovered flux estimates.

The DA approaches are particularly sensitive to the information flow from the obser-
vations because of the lack of an explicit dynamical model. As discussed in Sect. 1, the10

dynamical model adds to the information content of the system. Identifying/developing
an appropriate dynamical model relevant to the CO2 flux estimation problem, and sub-
sequently repeating experiments such as those presented here, may further inform the
assessment of the interplay between the operational constraints and the observational
network.15

3.4 Examining results at aggregated spatial and temporal scales

In the previous sections, the performance of the DA and the BIM approaches were an-
alyzed and reported at the native estimation scales (both in space and time). Typically
in current CO2 inversion studies, the fine-scale analyses are averaged a posteriori spa-
tially and/or temporally to coarser scales (for e.g., daily grid-scale fluxes averaged to20

monthly continental scales) and then examined.
Here, the domain is divided into two sub-regions, 1–150 [L] and 151–300 [L], and

the true flux and the flux estimates are aggregated over each of these areas and ex-
amined across time. This is qualitatively analogous to aggregating fluxes a posteriori
to “large regions” (e.g. biomes, continents) within the inversion domain. Because the25

true flux has different spatial variability between 50–100 [L] and 200–250 [L], and these
differences themselves vary in time, it is possible to examine the ability of the inver-
sion methods to capture these distinct spatiotemporal variations. Figure 5 presents the
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comparison at the aggregated scales in the form of a Taylor diagram (Fig. 5). For all
the 9 experiments, the 4D-VAR is able to match the temporal variation of the spatially
aggregated BIM estimates better than the EnSRF. The 4D-VAR iterative algorithm re-
liably captures the large scale patterns, as a result of which at any given time period
and for any experiment, the 4D-VAR estimates are closer to the BIM estimates than the5

estimates from EnSRF. Even when the number of descent iterations is reduced (panel
ao–co in Fig. 5), the 4D-VAR estimates have negligible difference from the BIM at the
spatially aggregated scales. Comparing panel co in Figs. 4 and 5 demonstrates that
the differences observed at fine scales are substantially reduced when aggregating the
estimates to a coarser resolution.10

Because there is no explicit dynamical model to evolve the information between
assimilation time periods, the EnSRF estimates are always contaminated with small
sampling error, but these errors partially cancel when the estimates are spatially aggre-
gated. Overall, the EnSRF estimates still exhibit more spurious variability relative to the
4D-VAR estimates. When the number of ensemble members is reduced (panel ao–co15

in Fig. 5), however, both the sampling error and the observational density and homo-
geneity start playing a role, exacerbating the situation. For example in Fig. 5, panels ao
and co, the CC between the spatially aggregated EnSRF and the true flux estimates
drops from 0.99 to 0.90, and the RMSD increases from 0.03 to 0.21 [M L−1 T−1]. The
standard deviation of these spatially aggregated EnSRF estimates also increases from20

0.37 to 0.40 [M L−1 T−1], leading to an overestimation relative to the true flux, which has
a standard deviation of 0.36 [M L−1 T−1].

Analysis at aggregated scales demonstrates that when operational constraints are
not imposed, both the DA approaches provide aggregated estimates that are close to
the aggregated BIM estimates. Even when operational constraints are imposed, the25

aggregated flux estimates for the EnSRF and the 4D-VAR (Fig. 5co) have higher CC
and lower RMSD than the corresponding estimates at the fine scale (Fig. 4co). This is
encouraging from the perspective of a real CO2 flux estimation problem, as it implies
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that the DA flux estimates may serve as reliable alternatives for the BIM flux estimates,
at least when aggregated a posteriori to coarse resolutions.

4 Discussion

It is clear that the choice between 4D-VAR and EnSRF DA approaches for the CO2 flux
estimation problem, should be based on the carbon science questions being targeted,5

as well as the tradeoff between the impact of slow convergence of the minimization
algorithm (for 4D-VAR) and the impact of sampling error (for EnSRF) on the estimated
fluxes. When an adjoint for the atmospheric transport model is available, and if only the
best estimates are needed, the 4D-VAR performs better than the EnSRF, especially
when the measurement network is highly variable. With a small number of iterations,10

the 4D-VAR may not converge to the global minimum, but it still reliably captures the
majority of the large-scale features, with the final estimates close to those expected
from a BIM batch solution. In addition, the 4D-VAR framework may potentially be more
advantageous for the CO2 flux estimation problem due to its ability to more easily ac-
count for correlated observation errors (O. Talagrand, personal communication, 2012).15

Although this specific issue has not been examined in this study, it is worth keeping in
mind with the increasing use of satellite-based CO2 measurements. Recent work by
Brankart et al. (2009) has demonstrated techniques to cope with such correlations in
an ensemble filter setting as well. Such techniques, however, are numerically efficient
only for certain types of error correlation structures. The main disadvantages of the20

4D-VAR, on the other hand, are its more cumbersome implementation and its inability
to provide direct estimates of the analysis error. Algorithms have been proposed within
the CO2 flux estimation context (e.g. Chevallier et al., 2007) that can generate uncer-
tainty estimates from the variational approach, but these are extremely computationally
expensive and not currently viable for large-scale applications.25

Conversely, and in the absence of correlated errors, the serial EnSRF is easier
to implement than a 4D-VAR system, and does not require the development and

12844

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/13/12825/2013/acpd-13-12825-2013-print.pdf
http://www.atmos-chem-phys-discuss.net/13/12825/2013/acpd-13-12825-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
13, 12825–12865, 2013

Comparison of
ensemble Kalman

filter

A. Chatterjee and
A. M. Michalak

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

maintenance of an adjoint model. Due to restrictions on the size of the ensemble,
however, it is necessary to adapt and tune ancillary algorithms such as localization
and inflation, which make the ensemble approximations to the full-rank Kalman filter
computationally viable. Unlike adaptive inflation, the choices to be made in implement-
ing a localization scheme remain highly subjective, however. Experiments in this study5

clearly showed that the localization length scale is dependent on both the ensemble
size and the observational density. Will higher and higher volumes of observations push
us towards specifying shorter localization length scales? If so, what is the limit beyond
which decreasing the localization length scale may actually degrade the analysis? It is
necessary to identify more rigorously a basis for selecting the localization parameters10

(e.g. Anderson, 2012) or develop approaches that may be less sensitive to variations
in the observational network.

One critical advantage of the EnSRF over a 4D-VAR system is that it explicitly pro-
vides second-order statistical moments for the estimated system states. In an inverse
problem framework, this makes it possible to quantify the uncertainty associated with15

estimates, and thereby to ascertain their reliability. Therefore, the EnSRF is more de-
sirable for attribution purposes, wherein source/sink estimates with confidence bounds
can be used to gain a better understanding of the mechanistic processes driving the
carbon cycle, or reconcile estimates from top-down and bottom-up approaches. Recov-
ering realistic a posteriori uncertainty bounds on the flux estimates makes it possible20

to better tune parameters in bottom-up biospheric models, or at a minimum aid in the
identification of a range of suitable values for such parameters.

With both the 4D-VAR and EnSRF approaches there is a direct trade-off between
computational savings and estimation accuracy, which is intensified when solving an
under-determined problem with a heterogeneous observational network. For large-25

scale flux estimation problems, operational constraints will always exist along with
scarce and inconsistent observations, erroneous transport models (thus further lim-
iting the use of available observations) etc. The HT scheme with a limited number of
ensemble members/descent iterations (panel co in Figs. 3 and 4) serves as the closest
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analogue to how a real inversion problem is tackled. Even if we account for the in-
crease in remote-sensing measurements of CO2, the observational network is going to
be a complex hybrid between the REF and the HT scheme. In this scenario, the accu-
racy and precision of either of the DA approaches will be compromised relative to BIM,
until and unless the issues of convergence (4D-VAR) and sampling error (EnSRF) are5

appropriately addressed.

5 Conclusions

We present a comparative assessment of two advanced data assimilation approaches
with a batch inverse modeling scheme for the atmospheric CO2 inversion problem. The
performance of the DA approaches is found to depend on a complex interplay between10

the underlying numerical approximations, the lack of a dynamical model, and the infor-
mation available from the observations. Beyond CO2 source-sink estimation problems,
the conclusions of this study are also applicable to other DA problems where a dy-
namical model is lacking. Overall, the 4D-VAR scheme is found to be more robust for
obtaining the best estimates, while the EnSRF scheme has the advantage of providing15

explicit estimates of analysis error in addition to a best estimate. The relative perfor-
mance of the 4D-VAR and the EnSRF, when a large and homogeneous set of observa-
tions are available, are consistent with the conclusions obtained from inter-comparison
studies carried out by other DA communities. The sensitivity of the approaches to the
observational scheme in the absence of an explicit dynamical model and specifically20

for solving an under-determined inverse problem, however, has not been thoroughly
explored before.

The sensitivity experiments demonstrate that when a large number of ensemble
members or descent iterations is specified, state of the art implementations of the 4D-
VAR and the EnSRF yield analyses that are similar to BIM, irrespective of the obser-25

vational characteristics. When operational constraints are imposed, on the other hand,
both the characteristics of the observation network and the numerical approximations
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play a greater role in differentiating the performance of the two DA approaches. Be-
cause such operational constraints are always present for real CO2 source-sink esti-
mation problems, the choice of an approach should be based on: (a) the carbon science
questions being targeted (i.e., is the science requirement only best estimates of fluxes
or flux estimates with associated uncertainties?), and (b) the inversion conditions under5

which they are being applied (i.e., characteristics of the observational network, such as
data density and heterogeneity).

Recently, the 4D-VAR and EnSRF approaches have begun to influence each other’s
development, and hybrid approaches may take center-stage for solving the CO2 flux
problem in the future. In addition, the emerging focus on the assimilation of satellite10

CO2 observations will require additional inter-comparisons that go beyond the scope
of the work presented here, including the consideration of temporal error correlations
in the atmospheric CO2 observations.

Appendix A

Estimation methods for solving the inverse problem15

In a batch Bayesian Inverse Modeling (BIM) approach (e.g. Enting, 2002), the analytical
solution for the a posteriori estimate and the associated covariances of the objective
function (Eq. 1) are given by:

ŝ = sb +K(z−Hsb) (A1)

Qa = (I−KH)Qb (A2)20

K = QbHT(HQbHT +R)−1 (A3)

where ŝ is the posterior best estimate of the state and Qa is the a posteriori covariance
of the recovered best estimate. The diagonal elements of Qa represent the predicted
error variance (σ2

ŝ
) of individual elements in ŝ. As stated in Sect. 1, for CO2 inversion25
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studies, generation of the matrix H requires an atmospheric transport model to be run
either once per estimated state, or once per observation. The large number of forward
model runs ultimately makes the batch approaches, such as BIM, computationally in-
tractable for solving large-scale problems.

In the variational approach, the solution ŝ to the objective function (Eq. 1) is sought5

iteratively by minimizing the misfit between a feasible state trajectory and the observa-
tions that are available over a given assimilation window. The overall approximation lays
in the fact that the minimization can be stopped by artificially limiting the number of iter-
ations or by requiring that the norm of the gradient decreases by a predefined amount
during the minimization. Most minimization schemes (e.g. BFGS, Nocedal and Wright,10

2006) rely on the availability of the gradient of the objective function with respect to the
state (or control vector in 4D-VAR terms).

∇J(s) = (Qb)−1[s−sb]+HTR−1 [z−h (s)] (A4)

Instead of analytically calculating the gradient, the adjoint of the forward trans-15

port model is used to compute the term HTR−1[z−h(s)], which is then added to
(Qb)−1[s−s

b] in Eq. (A4) above.
In this study, the 4D-VAR is implemented with successive overlapping windows to

account for the long residence times of CO2 in the atmosphere. If a single long window
is employed for a real CO2 flux estimation problem, the computational cost associated20

with calculating the inverse of the prior covariance matrix Qb in Eq. (A4) increases
significantly. In addition, the CO2 flux errors are both spatially and temporally correlated
(e.g. Chevallier et al., 2012), which implies that the prior error covariance matrix has off-
diagonal terms. Any algebraic manipulations, such as taking inverses or calculating the
square roots for preconditioning purposes, thus, become operationally cumbersome.25

In the absence of a dynamical model, the implementation of the 4D-VAR approach is
similar to the FGAT-3DVAR (Massart et al., 2010) variant occasionally used within the
NWP community.
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The main caveat with the variational approach is that a direct estimate of the analysis
error is not available (no clear analogue of Eq. A2). Mathematically this can be obtained
from the inverse of the Hessian (e.g. Le Dimet et al., 2002; Rödenbeck, 2005; Meirink
et al., 2008). But computational challenges restrict the calculation and storage of the
Hessian for large-scale problems. Recent applications of 4D-VAR for NWP problems5

have shown that computationally efficient alternatives do exist (e.g. Cheng et al., 2010;
Gejadze et al., 2012), which may have potential applicability for the CO2 flux estimation
problem as well.

In the ensemble filter approach, the key innovation is to work in a reduced subspace
of the error covariance matrices. Observations are assimilated to update the ensemble10

representation of the error covariance matrices. The optimal analysis states and an
estimate of the analyses error are determined in a similar fashion to Eqs. (A1) and (A2)
but the calculation of QbHT and HQbHT are approximated by running the transport
model with the ensemble members directly:

HQbHT ≈ 1
N −1

[
h(s′)

][
h(s′)

]T
(A5)15

QbHT ≈ 1
N −1

(s′)
[
h(s′)

]T
(A6)

While several variants of the ensemble approach exist, here we have used a serial
ensemble square root filter (Whitaker and Hamill, 2002) implemented in a fixed-lag
smoother form (e.g. Whitaker and Compo, 2002; Chatterjee et al., 2012). Similar to an20

ensemble square-root filter, the ensemble smoother uses Monte-Carlo estimates of the
error covariances to compute a Kalman smoother gain matrix. This is applied iteratively
to a time series of observations, where the analysis at the first time step is equivalent
to a an ensemble square root filter analysis as it only utilizes observations taken up to
and including the analysis time. All subsequent time steps utilize observations taken25

a number of observing times past the analysis time. The localization scheme (i.e.,
to cut down spurious noise in the ensemble) is based on Houtekamer and Mitchell
(2001) using a fifth-order Gaspari–Cohn function (Gaspari and Cohn, 1999), while the
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adaptive inflation algorithm (i.e., to counter spurious variance deficiency among the
ensemble members) is based on Anderson (2009). Implementation of these algorithms
within an ensemble smoother framework is described in further detail in Chatterjee
et al. (2012). In spite of these ancillary algorithms, the overall implementation of EnSRF
is quite simple and computationally efficient.5

The setup of 4D-VAR (with overlapping time windows) and EnSRF (expressed as
a fixed-lag smoother) reflect state of the art implementations of these two DA ap-
proaches, keeping in mind the nature of the atmospheric CO2 process and the fact
that CO2 information has a finite residence time over any given domain. We tested
other flavors of the ensemble filter (EnKF with perturbed observations; Evensen, 2003)10

and the variational approach (PSAS; Courtier, 1997) and found that the overall con-
clusions from the presented experiments remain consistent across these algorithmic
choices. We encourage the reader to look at Lorenc (2003) and Nichols (2010) (and
references therein) for a more detailed discussion on these DA methods.
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Table 1. Summary of the experiments outlined in Sect. 2.3. The following parameters are held
constant for all the experiments in this study: sb (Eq. 5), 3 lQ =90 [L] and σ2

Q =3 [M2].

! 39!

TABLES 777 

Table 1 – Summary of the experiments outlined in Section 2.3. The following parameters are 778 

held constant for all the experiments in this study:  sb (Equation 11), 3lQ = 90 [L] and σQ2 = 3 779 

[M2]. 780 

Impact 
Considered 

Experiment Observation Parameters DA Parameters 

Network Model-Data 
Mismatch 

Variance σR2  

Ensemble Size Descent 
Iterations 

Observational 
density and 
homogeneity 

A REF 10 1000 250 
B HM 10 1000 250 
C HT 10 1000 250 

Model-data 
mismatch 

AR REF 400 1000 250 
BR HM 400 1000 250 
CR HT 400 1000 250 

Operational 
limitations 

AO REF 10 100 25 
BO HM 10 100 25 
CO HT 10 100 25 

  781 
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Fig. 1. (A) Spatiotemporal variability of the tracer flux. (B) Flux profile for a particular time period
corresponding to the dashed white-line in (A).
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Fig. 2. Observations of the tracer obtained from the three network configurations – REF (A),
HM (B) and HT (C). Note that going from the REF to the HM and the HT networks, the total
number of observations decreases by a factor of 12, whereas in going from the HM to the HT
network the observational network become more heterogeneous in space and time.

12859

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/13/12825/2013/acpd-13-12825-2013-print.pdf
http://www.atmos-chem-phys-discuss.net/13/12825/2013/acpd-13-12825-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
13, 12825–12865, 2013

Comparison of
ensemble Kalman

filter

A. Chatterjee and
A. M. Michalak

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

12860

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/13/12825/2013/acpd-13-12825-2013-print.pdf
http://www.atmos-chem-phys-discuss.net/13/12825/2013/acpd-13-12825-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
13, 12825–12865, 2013

Comparison of
ensemble Kalman

filter

A. Chatterjee and
A. M. Michalak

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 3. Example of true and estimated tracer fluxes and associated uncertainties for the different
experiments in this study. All values are shown for the 25th time period, which is representa-
tive of the observed performance over other time periods. The panel titles correspond to the
different experiments outlined in Table 1.
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Fig. 4. Performance of the BIM, the EnSRF and the 4D-VAR approaches for the different exper-
iments outlined in Table 1. For each experiment, statistics are calculated between the estimates
and the true fluxes across all locations and all 30 time periods, and represented on a Taylor di-
agram (Taylor, 2001). For each Taylor diagram, the true flux is represented by a point along the
abscissa corresponding to the standard deviation of the true fluxes (“Truth”). All other points
(“BIM”, “EnSRF”, “4D-VAR”), which represent the estimated fluxes, are positioned such that
their standard deviation is the radial distance from the origin, the correlation coefficient between
the estimates and the truth is the cosine of the azimuthal angle, and the root mean square dif-
ference (RMSD) between the estimates and the truth is the distance to the observed point. In
the limit of perfect agreement, these other points would coincide with “Truth” (i.e. RMSD= 0,
CC= 1, and SD of the estimates would be the same as that of the truth).
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Fig. 5. Performance of the BIM, the EnSRF and the 4D-VAR at spatially aggregated scales
for the different experiments outlined in Table 1. The details of the plot are as described in the
caption of Fig. 4.
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