Supplementary Material for "Direct photolysis of carbonyl compounds dissolved in cloud and fog droplets"

Scott A. Epstein, Enrico Tapavicza, Filipp Furche, and Sergey A. Nizkorodov*

Department of Chemistry, University of California, Irvine,

1102 Natural Sciences 2, Irvine, CA 92697-2025

Hydration of Dicarbonyls

This section describes our approach to account for hydration equilibria in dicarbonyl compounds. Consider an unhydrated and unsymmetrical dicarbonyl with carbonyl groups indentified by the letters "A" and "B" (Scheme S1). In the aqueous phase, hydration can reversibly replace carbonyl "A" with a gem-diol group forming species 1A (equilibrium constant for the hydration process, $K_{hyd} = K_{1A}$) and/or carbonyl "B" with a gem-diol group forming species 1B ($K_{hyd} = K_{1B}$). A certain fraction of the mixture may be double hydrated, with both carbonyl groups converted in the gem-diol form. The corresponding equilibrium constants, K_{2A} and K_{2B} are identified in scheme S1.

species 1A

Scheme S1: Hydration of a generic dicarbonyl

The molar fraction that is unhydrated, α_{un} , fully-hydrated, α_{fh} , and partially-hydrated, α_{ph} , can be derived from the equilibrium equations (all activity coefficients are set to unity):

$$\alpha_{uh} = (1 + K_{1A} + K_{1B} + K_{1B}K_{2B})^{-1} \tag{1}$$

$$\alpha_{fh} = \left((K_{1B}K_{2B})^{-1} + K_{2A}^{-1} + K_{2B}^{-1} + 1 \right)^{-1}$$
(2)

$$\alpha_{ph} = 1 - \left(\alpha_{uh} + \alpha_{fh}\right) \tag{3}$$

Because the gem-diol form is lacking the $\pi^* \leftarrow$ n transition associated with the carbonyl group, it is appropriate to assume that the rates of photolysis of the singly hydrated dicarbonyl species are approximately one-half of the rate of photolysis of the unhydrated form, resulting in the following expression for *Z*:

$$Z = \frac{\frac{dn_{hv}^{gas}}{dt}}{\frac{dn_{hv}^{aq}}{dt}} \ge \frac{\alpha_{uh} + 0.5\alpha_{ph}}{\left(R \cdot T \cdot LWC_v \cdot k_H\right)}$$
(4)

This assumption will not hold for compounds that carry carbonyl groups on the adjacent carbon atoms and for carbonyl groups that are part of a conjugated system.

Extinction Coefficients of Aqueous D-Glyceraldehyde and Dihydroxyacetone

Figure S1: Molar extinction coefficients for D-glyceraldehyde (solid curve) and dihydroxyacetone (dashed curve) at 25°C.

Figure S2: D-glyceraldehyde absorbance as a function of concentration of the free form

Figure S1 shows the molar extinction coefficients for D-glyceraldehyde (solid curve) and dihydroxyacetone (dashed curve) at 25°C that were measured in this work. A Beer-Lambert plot of the measurements is shown in Figure S2. Tabulated extinction coefficients are attached in a Microsoft Excel supporting information file. Both glyceraldehyde and dihydroxyacetone exhibit

a well defined $\pi^* \leftarrow n$ band that overlaps the solar flux. The $\pi^* \leftarrow n$ band in D-glyceraldehyde is considerably lower in intensity compared to that in dihydroxyacetone because the former is much more prone to hydration than the latter. Specifically, the observed extinction coefficient is reduced relative to the extinction coefficient of the unhydrated form of the molecule:

$$\varepsilon_{observed} = \frac{\varepsilon_{unhydrated}}{1 + K_{hyd}}$$
(5)

For D-glyceraldehyde, this reduction is substantial as $1+K_{hyd} = 18.3$ (Glushonok et al., 1986), much smaller than the corresponding value for dihydroxyacetone, $1+K_{hyd} = 1.77$ (Glushonok et al., 2003;Davis, 1973).

FTIR Spectrum of Gaseous Photolysis Products

Photolysis of aqueous D-Glyceraldehyde produced gas bubbles that formed on the walls of the photolysis cell. The gases produced during photolysis of aqueous D-Glyceraldehyde at 25°C were captured and analyzed with a Fourier Transform Infrared (FTIR) spectrometer (Mattson Galaxy Series 5000). A diagram illustrating the FTIR cell is presented in Figure S3.

Figure S3: Apparatus used to capture and analyze the gases evolved from photolysis of glyceraldehyde

The FTIR spectrum shown in Figure S4 indicates the presence of carbon monoxide. Carbon monoxide is an expected product of the direct photolysis of D-Glyceraldehyde. We have not attempted to quantify the yields of this product. The FTIR spectrum also indicates the presence of carbon dioxide, a potential product of secondary photolysis. However, we cannot conclude that the carbon dioxide evolved from the photolysis due to the potential presence of CO_2 from the ambient air.

Figure S4: FTIR spectrum of the products of aqueous D-glyceraldehyde photolysis at 25°C. The band centered at 2143 cm⁻¹ belongs to carbon monoxide, and the band centered at 2349 cm⁻¹ is the asymmetric stretch of CO₂.

Monitoring the Photolysis of Glyceraldehyde Using a UV-Vis Spectrometer

We took UV-Vis spectra measurements during photolysis of 0.1 M aqueous glyceraldehyde solutions at various photolysis times. Figure S5 shows how the absorption of an aqueous glyceraldehyde solution changes when exposed to UV light at 25° C.

Figure S5: Absorption of glyceraldehyde photolysis solution as a function of time at 25°C

Upon photolysis, the $\pi^* \leftarrow n$ band undergoes a simultaneous hypsochromic and hypochromic shift. We believe that the band growing at 250 nm belongs to a minor but strongly absorbing photolysis product (which we could not identify).

Monitoring the Photolysis of D-Glyceraldehyde with ESI-MS

We calibrated the ESI-MS technique for determining glyceraldehyde solution concentration before each photolysis experiment. Several glyceraldehyde solutions of varying concentrations were derivatized with Girard Reagent T (GT) and analyzed with an ESI-MS. Tetraethylammonium chloride was added to the GT solution to act as an internal standard. Figure S6 illustrates a typical calibration curve determined with this method. The calibration is approximately linear.

Figure S6: Results of a calibration experiment relating the concentration of glyceraldehyde and the peak intensity of the derivatized glyceraldehyde adduct. The calibrated mass spec (MS) intensity is the response of the glyceraldehyde-GT complex scaled by the response of tetraethylammonium chloride.

During a photolysis experiment, small aliquots of the glyceraldehyde solution were diluted with the GT/tetraethylammonium chloride solution and allowed to react overnight, forming the GT-glyceraldehyde adduct. The MS intensity—the response of the glyceraldehyde-GT complex scaled by the response of tetraethylammonium chloride—was scaled by the initial MS intensity and plotted in Figure S7.

Figure S7: Semi-quantitative measurements of glyceraldehyde concentration as a function of photolysis time at 25°C for three separate experiments.

The observed scatter is due to the difficulties in quantifying the derivatized product with ESI-MS. The experiment indicated with the blue asterisks has an extreme outlier at 2300 s. However this outlier does not significantly affect the slope of the fitted line as it is close to the center of the x-axis. The slope of the fitted line, along with the known flux from the UV lamp obtained from actinometer measurements, were used to approximate the quantum yield of photolysis.

ESI-MS measurements were also used to identify potential photolysis products. Figure S8 shows an ESI-MS difference spectrum. Positive peak heights indicate that a product was formed while negative peak heights indicate the consumption of a reactant.

Figure S8: ESI-MS difference spectrum showing the formation of products and the disappearance of reactants from a typical glyceraldehyde photolysis experiment

Peak m/z was calibrated with a two point calibration using tetraethylammonium chloride (exact mass 130.1590 g mol⁻¹) and the glyceraldehyde+GT adduct (204.1343 g mol⁻¹). Free GT molecules dissociated from Cl⁻ appear at 132.1124 (exact mass 132.1131 g mol⁻¹). The product appearing at 158.1281 is likely the ethanal+GT adduct (158.1392 g mol⁻¹) while the product appearing at 174.123 is likely the glycolaldehyde+GT adduct (174.1269 g mol⁻¹). No other possible products appear in each mass range after considering the resolution of the instrument. To further confirm the presence of these products, we spiked several solutions with both ethanal and glycolaldehyde. A single peak for each adduct remained. Several other contaminants were consumed and products were formed. However, we were unable to unambiguously assign molecules to these species.

Reproductions of Figure 6 Under Different Atmospheric Conditions

To test how atmospheric conditions affect the identification of products that may have significant aqueous photolysis rates, two reproductions of figure 6 under varying atmospheric conditions are presented in Figures S9 and S10. Figure S9 illustrates how solar zenith angle affects the significance of aqueous photolysis.

Figure S9: Reproduction of Figure 6 in manuscript with a solar zenith angle of zero degrees. Aqueous hydroxyl radical concentration is 10^{-13} M, T = 25°C, and LWC = 0.5 g m⁻³.

Decreasing the solar zenith angle to its maximum value of zero degrees slightly decreases the Q value for every compound because the maximum rate of aqueous photolysis increases due to increased overlap between the actinic flux and the molar extinction coefficient. However, this decrease in SZA does not affect the conclusions of our analysis. Aqueous photolysis may be important for only three of the compounds studied in the plot: pyruvic acid, 3-oxobutanoic acid, and 3-oxopropanoic acid. The effects of decreasing the aqueous hydroxyl radical concentration to a level more commonly seen at night are illustrated in Figure S10.

Figure S10: Reproduction of Figure 6 in the manuscript with an aqueous hydroxyl radical concentration of 10^{-14} M. Solar zenith angle is 20° , T = 25° C, and LWC = 0.5 g m⁻³.

As in Figure S9, decreasing the aqueous OH concentration decreases the value of Q for all compounds. Two additional compounds enter the region where aqueous photolysis may be significant: 3-oxopentanoic acid and 3-oxohexanoic acid. However, situations where aqueous OH concentrations are 10^{-14} M with sunlight at a SZA of 20° are likely uncommon. The literature values used to generate these plots are presented below.

Literature Values for ε_{max} and λ_{max}

Table S1: ε_{max} and λ_{max} values used to generate Figures 6, S9, and S10. The upper row indicates the number of carbons in a molecule with a functionality specified by the first column. Bold values were obtained from the literature with the corresponding references in Table S2. For compounds without published data, an upper estimate was used based on the properties of molecules with similar functionalities.

		2	3	4	5	6	7	8	9	10	11	12	13	14	15
Aldebyde	ε _{max}	8.1	13.1	13.5	15	15	15	15	15	15	15	15	15	15	15
Aldeliyue	λ_{max}	277.5	277.5	282.5	282.5	282.5	282.5	282.5	282.5	282.5	282.5	282.5	282.5	282.5	282.5
Katona	ε _{max}		17.6	17.9	24	21.2	25	25	25	25	25	25	25	25	25
Ketolie	λ_{max}		270	277.5	271	279	280	280	280	280	280	280	280	280	280
Dialdahyda	ε _{max}	5.8	8	8	7.9	8	8	8	8	8	8	8	8	8	8
Dialdehyde	λ_{max}	267.5	282	282	282	282	282	282	282	282	282	282	282	282	282

Keto-	ε _{max}		16	13	20	20	20	20	20	20	20	20	20	20	20
aldehyde	λ_{max}		284	280	285	285	285	285	285	285	285	285	285	285	285
Diketone	ϵ_{max}			26.5	25	25	25	25	25	25	25	25	25	25	25
Diretone	λ_{max}			284	285	264	285	285	285	285	285	285	285	285	285
Hudrovy	ϵ_{max}		20	20	20	20	20	20	20	20	20	20	20	20	20
ketone	λ_{max}		267	270.5	280	280	280	280	280	280	280	280	280	280	280
Acid	ϵ_{max}	25	25	25	25	25	25	25	25	25	25	25	25	25	25
aldehyde	λ_{max}	285	285	285	285	285	285	285	285	285	285	285	285	285	285
Hudrovy	ϵ_{max}	25	25	25	25	25	25	25	25	25	25	25	25	25	25
aldehyde	λ_{max}	277	285	285	285	285	285	285	285	285	285	285	285	285	285
Ketoacid	ϵ_{max}		19.5	25	25.1	25	25	25	25	25	25	25	25	25	25
Ketodelu	λ_{max}		317.5	317.5	270	285	285	285	285	285	285	285	285	285	285

Table S2: References for ε_{max} and λ_{max} values used to generate Figures 6, S9, and S10. The upper row indicates the number of carbons in a molecule with a functionality specified in the first column. "E" indicates that an upper estimate was used. Ref 1 (Mackinney and Temmer, 1948); Ref 2 (Xu et al., 1993); Ref 3 (Rice, 1920); Ref 4 (Malik and Joens, 2000); Ref 5

(Schutze and Herrmann, 2004); Ref 6 (Martinez et al., 1975); Ref 7(Gubina et al., 2004); Ref 8 (Steenken et al., 1975); Ref 9 (Maroni, 1957); Ref 10 (Beeby et al., 1987)

								<i>,</i> .			•			,	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Aldehyde	8 _{max}	1	1	1	Е	Е	Е	E	Е	E	Е	Е	Е	Е	Е
	λ_{max}	1	1	1	Е	Е	Е	E	Е	E	Е	E	Е	Е	Е
Ketone	8 _{max}		2	2	2	3	Е	E	Е	E	Е	Е	Е	Е	Е
	λ_{max}		2	2	2	3	Е	E	Е	E	Е	Е	Е	Е	Е
Dialdehyde	8 _{max}	1	Е	Е	4	Е	Е	E	Е	E	Е	Е	Е	Е	Е
	λ_{max}	1	Е	Е	4	Е	Е	E	Е	E	Е	Е	Е	Е	Е
Ketoaldehyde	8 _{max}		5	6	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е
	λ_{max}		5	6	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е
Diketone	8 _{max}			5	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е
	λ_{max}			5	Е	7	Е	Е	Е	E	Е	Е	Е	Е	Е
Hydroxyketone	8 _{max}		8	Е	Е	Е	Е	Е	Е	E	Е	Е	Е	Е	Е
	λ_{max}		8	9	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е
Acidaldehyde	8 _{max}	Е	Е	Е	Е	Е	Е	Е	Е	E	Е	Е	Е	Е	Е
	λ_{max}	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е
Hydroxyaldehyde	8 _{max}	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е
	λ_{max}	10	Е	Е	Е	Е	Е	Е	Е	E	Е	E	Е	E	Е
Ketoacid	8 _{max}		1	Е	1	Е	Е	Е	Е	E	Е	E	Е	E	Е
	λ_{max}		1	Е	1	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е

Table S3:	Corresponding	gas and aqueous	phase references	for Table	1 in manuscript.
-----------	---------------	-----------------	------------------	-----------	------------------

	Gaseous Reference	Aqueous
		Reference
Acetone	(Horowitz et al., 2001)	(Xu et al., 1993)
Levulinic acid	-	(Mackinney and
		Temmer, 1948)
2-oxopropanal	(Chen et al., 2000)	(Schutze and
		Herrmann, 2004)

3-oxobutanal	(Vavilova et al., 1981)	(Martinez et al., 1975)
2,3-butanedione	(Horowitz et al., 2001)	(Schutze and Herrmann, 2004)
Pyruvic acid	(Horowitz et al., 2001)	(Mackinney and Temmer, 1948)
Glyceraldehyde	-	This work

Computational Analysis of Additional Atmospherically Relevant Compounds

We chose four additional compounds to study that were identified in d-limonene (Fang et al., 2012) and isoprene (Jaoui et al., 2006) SOA. The computational methods and results are detailed in the text. Table S4 contains the calculated ε_{max} and λ_{max} values. With these calculated values and structure activity relationships to describe hydration equilibrium, aqueous OH rate constants, and Henry's Law constants, we determined the branching ratios Q and Z. These branching ratios are presented graphically in Figure S11.

Table S4: Calculated ε_{max} and λ_{max} values for compounds found in d-limonene and Isoprene SOA. Both 3,6-oxoheptanoic acid and ketolimonaldehyde have two peaks on their calculated spectra.

	Reference	$\varepsilon_{\rm max} \left[{\rm M}^{-1} {\rm cm}^{-1} \right]$	λ _{max} [nm]
4-hydroxy-3-methyl-but-2-enal	(Fang et al., 2012)	276	493.4
3,6-oxoheptanoic acid	(Jaoui et al., 2006)	277/304	221.3/8.9
ketolimononaldehyde	(Jaoui et al., 2006)	280/299	166.6/161.2
ketonorlimonic acid	(Jaoui et al., 2006)	275	99.2

Figure S11: Q and Z analysis of compounds presented in Table S4. Aqueous hydroxyl radical concentration is 10^{-13} M, T = 25°C, SZA = 20°, and LWC = 0.5 g m⁻³.

Molecular Dynamics Simulation Molar Extinction Plots

Figure S12: Calculated MD extinction coefficients for gaseous (green) and aqueous (black) levulinic acid.

Figure S13: Calculated MD extinction coefficients for gaseous (green) and aqueous (black) 2-oxopropanal.

Figure S14: Calculated MD extinction coefficients for gaseous (green) and aqueous (black) 3-oxobutanal.

Figure S15: Calculated MD extinction coefficients for gaseous (green) and aqueous (black) 2,3-butanedione.

Figure S16: Calculated MD extinction coefficients for gaseous (green) and aqueous (black) pyruvic acid.

Figure S17: Calculated MD extinction coefficients for gaseous (green) and aqueous (black) glyceraldehyde.

Figure S18: Calculated MD extinction coefficients for gaseous (green) and aqueous (black) 4-hydroxy-3-methyl-but-2-enal.

Figure S19: Calculated MD extinction coefficients for gaseous (green) and aqueous (black) 3,6-oxoheptanoic acid.

Figure S20: Calculated MD extinction coefficients for gaseous (green) and aqueous (black) ketolimononaldehyde.

Figure S21: Calculated MD extinction coefficients for gaseous (green) and aqueous (black) ketonorlimonic acid.

wavelength (nm) Extinction (1/M/cm) wavelength Extinction (1/M/cm) Extinction (1/M/cm) uncertainty in Extinction (1/M/cm) 000 20.5293 0.3411 242 3.0844 0.0194 201 18.9451 0.3111 242 3.0793 0.020 203 16.1821 0.2433 244 3.0817 0.018 203 16.1821 0.2433 244 3.0833 0.0163 204 14.9455 0.2283 245 3.0833 0.0163 205 13.8589 0.2115 247 3.0872 0.0199 206 11.9172 0.1986 248 3.095 0.0165 209 10.3966 0.1788 249 3.095 0.0167 210 9.6665 0.1778 251 3.105 0.0182 211 9.0736 0.1657 252 3.1242 0.0183 212 8.5425 0.1607 255 3.2046 0.0202 213 8.0363 0.1514 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th></t<>						
(fm) (1/M/cm) Extinction (1/M/cm) inm) (1/M/cm) Extinction (1/M/cm) 200 20.5293 0.3411 241 3.0844 0.0194 201 18.9451 0.3111 242 3.0793 0.0209 202 17.5113 0.2771 243 3.0817 0.018 204 14.9455 0.2283 244 3.0817 0.018 205 13.8589 0.2152 246 3.0833 0.0168 206 12.8193 0.2115 247 3.0872 0.0199 207 11.9172 0.1883 249 3.0991 0.0165 209 10.3966 0.1858 250 3.101 0.0177 210 9.665 0.1778 251 3.1035 0.0182 211 9.0736 0.1657 252 3.1242 0.0183 214 7.573 0.118 254 3.1559 0.0177 214 7.573 0.128 3.2667 0.0174	wavelength	Extinction	uncertainty in	wavelength(Extinction	uncertainty in
200 20.5293 0.3411 241 3.0844 0.0194 201 18.9451 0.3111 242 3.0795 0.0209 202 17.5113 0.2771 243 3.0793 0.022 203 16.1821 0.2493 244 3.0817 0.018 204 14.9455 0.2283 245 3.0835 0.0163 205 13.8589 0.2152 246 3.0835 0.0199 207 11.9172 0.1989 248 3.095 0.0214 208 11.1012 0.1883 249 3.0991 0.0155 209 10.3966 0.1857 252 3.1242 0.0182 211 9.0736 0.1657 252 3.1242 0.0182 211 9.0736 0.1667 252 3.1395 0.0143 213 8.0363 0.1514 254 3.1559 0.0157 214 7.5723 0.138 255 3.1759 0.0183 <td>(nm)</td> <td>(1/M/cm)</td> <td>Extinction (1/M/cm)</td> <td>nm)</td> <td>(1/M/cm)</td> <td>Extinction (1/M/cm)</td>	(nm)	(1/M/cm)	Extinction (1/M/cm)	nm)	(1/M/cm)	Extinction (1/M/cm)
201 18.9451 0.3111 242 3.0795 0.020 202 17.5113 0.2771 243 3.0793 0.02 203 16.1821 0.2493 244 3.0833 0.0163 204 14.9455 0.2283 245 3.0833 0.0163 205 13.8589 0.2115 247 3.0872 0.0199 207 11.9172 0.1989 248 3.095 0.0214 208 11.1012 0.1883 249 3.0991 0.0165 209 10.3966 0.1858 250 3.101 0.0177 210 9.6865 0.1778 251 3.1095 0.0182 211 9.0736 0.1657 252 3.1242 0.0183 214 7.5723 0.138 255 3.1759 0.0138 214 7.5723 0.138 255 3.2466 0.0202 215 7.1373 0.1286 2266 3.0461 0.0214	200	20.5293	0.3411	241	3.0844	0.0194
202 17.5113 0.2771 243 3.0793 0.02 203 16.1821 0.2493 244 3.0817 0.018 204 14.9455 0.2283 245 3.0833 0.0163 205 13.8589 0.2152 246 3.0835 0.0199 207 11.9172 0.1989 248 3.095 0.0119 208 11.1012 0.1883 249 3.0991 0.0165 209 10.3966 0.1858 250 3.101 0.0177 210 9.6865 0.1778 251 3.1095 0.0182 211 9.0736 0.1657 252 3.1395 0.0149 213 8.0363 0.1514 254 3.1559 0.0157 214 7.5723 0.138 255 3.3759 0.0183 215 7.1373 0.1286 256 3.2046 0.0202 216 6.7141 0.1178 257 3.206 0.0197	201	18.9451	0.3111	242	3.0795	0.0209
203 16.1821 0.2493 244 3.0817 0.0163 204 14.9455 0.2283 245 3.0833 0.0163 205 13.8589 0.2152 246 3.0835 0.0199 206 12.8193 0.2115 247 3.0872 0.0199 207 11.9172 0.1989 248 3.095 0.0214 208 11.1012 0.1883 249 3.0991 0.0165 209 10.3966 0.1858 250 3.101 0.0177 210 9.6865 0.1778 251 3.1095 0.0182 211 9.0736 0.1657 252 3.1242 0.0183 212 8.5425 0.1607 253 3.1395 0.0149 213 8.0363 0.1514 254 3.1559 0.0133 214 7.5723 0.138 255 3.1759 0.0183 214 5.7141 0.1178 257 3.2306 0.0197	202	17.5113	0.2771	243	3.0793	0.02
204 14.9455 0.2283 245 3.0833 0.0163 205 13.8589 0.2115 247 3.0872 0.0199 207 11.9172 0.1989 248 3.095 0.0214 208 11.1012 0.1883 249 3.0991 0.0165 209 10.3966 0.1858 250 3.101 0.0177 210 9.6865 0.1778 251 3.1095 0.0182 211 9.0736 0.1657 252 3.1242 0.0183 212 8.5425 0.1607 253 3.1395 0.0149 213 8.0363 0.1514 254 3.1559 0.0157 214 7.5723 0.138 255 3.206 0.0202 216 6.7141 0.1178 257 3.2306 0.0197 217 6.3445 0.1080 258 3.2667 0.0174 218 5.9844 0.099 259 3.2995 0.0224	203	16.1821	0.2493	244	3.0817	0.018
205 13.8589 0.2152 246 3.0835 0.0168 206 12.8193 0.2115 247 3.0872 0.0199 207 11.9172 0.1989 248 3.0991 0.0155 209 10.3966 0.1858 250 3.101 0.0177 210 9.6865 0.1778 251 3.1095 0.0182 211 9.0736 0.1657 252 3.1242 0.018 212 8.5425 0.1607 253 3.1395 0.0149 213 8.063 0.1514 254 3.1559 0.0157 214 7.5723 0.138 255 3.1759 0.0183 215 7.1373 0.1266 256 3.2046 0.0202 216 6.7141 0.1178 257 3.2306 0.01197 214 5.9844 0.099 259 3.2995 0.0208 219 5.6735 0.0885 260 3.387 0.0224	204	14.9455	0.2283	245	3.0833	0.0163
206 12.8193 0.2115 247 3.0872 0.0199 207 11.9172 0.1989 248 3.095 0.0214 208 11.1012 0.1883 249 3.0991 0.0165 209 10.3966 0.1785 250 3.101 0.0177 210 9.6865 0.1778 251 3.1095 0.0182 211 9.0736 0.1657 252 3.1242 0.018 213 8.0363 0.1514 254 3.1559 0.0149 213 8.0363 0.1514 255 3.1759 0.0183 215 7.1373 0.1286 256 3.2046 0.0202 216 6.7141 0.1178 257 3.2306 0.0197 217 6.3445 0.1108 258 3.2667 0.0174 218 5.9844 0.099 259 3.2995 0.0208 219 5.6735 0.0885 260 3.374 0.0224	205	13.8589	0.2152	246	3.0835	0.0168
207 11.9172 0.1989 248 3.095 0.0214 208 11.1012 0.1883 249 3.0991 0.0165 209 10.3966 0.1858 250 3.101 0.0177 210 9.6865 0.1778 251 3.1095 0.0182 211 9.0736 0.1657 252 3.1242 0.0183 212 8.5425 0.1607 253 3.1395 0.0149 213 8.0363 0.1514 254 3.1559 0.0157 214 7.5723 0.138 255 3.2046 0.0202 216 6.7141 0.1178 257 3.2306 0.0197 217 6.3445 0.1108 258 3.2667 0.0174 218 5.9844 0.099 259 3.2995 0.0202 220 5.636 0.0807 261 3.3784 0.0221 220 5.0362 0.0638 263 3.4622 0.0208 <	206	12.8193	0.2115	247	3.0872	0.0199
208 11.1012 0.1883 249 3.0991 0.0165 209 10.3966 0.1858 250 3.101 0.0177 210 9.6865 0.1778 251 3.1095 0.0182 211 9.0736 0.1657 252 3.1242 0.0183 211 8.5425 0.1607 253 3.1395 0.0149 213 8.0363 0.1514 254 3.1559 0.0183 214 7.5723 0.138 255 3.1759 0.0183 215 7.1373 0.1286 256 3.2046 0.0202 216 6.7141 0.1178 257 3.2306 0.0197 217 6.3445 0.1108 258 3.2667 0.0144 218 5.9844 0.099 259 3.2995 0.0208 219 5.6735 0.0885 260 3.387 0.0221 220 5.362 0.0807 261 3.3784 0.0224 <t< td=""><td>207</td><td>11.9172</td><td>0.1989</td><td>248</td><td>3.095</td><td>0.0214</td></t<>	207	11.9172	0.1989	248	3.095	0.0214
209 10.3966 0.1858 250 3.101 0.0177 210 9.6865 0.1778 251 3.1095 0.0182 211 9.0736 0.1657 252 3.1242 0.018 212 8.5425 0.1607 253 3.1395 0.0149 213 8.0363 0.1514 254 3.1559 0.0157 214 7.5723 0.138 255 3.2046 0.0202 216 6.7141 0.1178 257 3.2306 0.0197 217 6.3445 0.0199 259 3.2995 0.0208 219 5.6735 0.0885 260 3.387 0.022 220 5.362 0.0807 261 3.3784 0.022 221 5.0918 0.069 262 3.4246 0.0183 222 4.8429 0.0638 263 3.6017 0.0255 224 4.3593 0.0556 255 3.5404 0.0234	208	11.1012	0.1883	249	3.0991	0.0165
210 9.6865 0.1778 251 3.1095 0.0182 211 9.0736 0.1657 252 3.1242 0.018 212 8.5425 0.1607 253 3.1395 0.0149 213 8.0363 0.1514 254 3.1559 0.0157 214 7.5723 0.138 255 3.2046 0.0202 216 6.7141 0.1178 257 3.2306 0.0197 217 6.3445 0.1108 258 3.2667 0.0174 218 5.9844 0.099 259 3.2995 0.0208 219 5.6735 0.0885 260 3.3387 0.0221 220 5.362 0.0807 261 3.3744 0.0221 221 5.0918 0.069 262 3.4426 0.0183 222 4.8429 0.0638 263 3.4622 0.0208 223 4.5937 0.0576 264 3.5017 0.0234	209	10.3966	0.1858	250	3.101	0.0177
211 9.0736 0.1657 252 3.1242 0.018 212 8.5425 0.1607 253 3.1395 0.0149 213 8.0363 0.1514 254 3.1559 0.0157 214 7.5723 0.138 255 3.1759 0.0183 215 7.1373 0.1286 256 3.2046 0.0202 216 6.7141 0.1178 257 3.2306 0.0197 217 6.3445 0.1108 258 3.2667 0.0174 218 5.9844 0.099 259 3.2995 0.0208 219 5.6735 0.0885 260 3.3387 0.022 220 5.362 0.0807 261 3.3784 0.021 211 5.0918 0.069 262 3.4246 0.0183 222 4.8429 0.0638 263 3.4622 0.0224 223 4.5937 0.0578 264 3.5017 0.0234 224 4.3593 0.0426 3.5439 0.0217 225	210	9.6865	0.1778	251	3.1095	0.0182
212 8.5425 0.1607 253 3.1395 0.0149 213 8.0363 0.1514 254 3.1559 0.0157 214 7.5723 0.138 255 3.1759 0.0183 215 7.1373 0.1286 256 3.2066 0.0020 216 6.7141 0.1178 257 3.2306 0.0197 217 6.3445 0.1108 258 3.2667 0.0174 218 5.9844 0.099 259 3.2995 0.0208 219 5.6735 0.0885 260 3.3387 0.022 220 5.362 0.0807 261 3.3784 0.0221 221 5.0918 0.069 262 3.4246 0.0183 222 4.8429 0.0638 263 3.4622 0.0208 223 4.5937 0.0576 264 3.5017 0.0214 225 4.124 0.0468 266 3.5799 0.0217	211	9.0736	0.1657	252	3.1242	0.018
213 8.0363 0.1514 254 3.1559 0.0157 214 7.5723 0.138 255 3.1759 0.0183 215 7.1373 0.1286 256 3.2046 0.0202 216 6.7141 0.1178 257 3.2306 0.0197 217 6.3445 0.1108 258 3.2667 0.0174 218 5.9844 0.099 259 3.2955 0.0208 219 5.6735 0.0885 260 3.387 0.022 220 5.362 0.0807 261 3.3784 0.0221 221 5.0918 0.069 262 3.4246 0.0183 222 4.8429 0.0638 263 3.4622 0.0208 223 4.5937 0.0578 264 3.5017 0.0234 224 4.3593 0.0556 265 3.5404 0.0214 225 4.124 0.0468 266 3.5799 0.0217 226 3.9148 0.042 267 3.6102 0.0218	212	8.5425	0.1607	253	3.1395	0.0149
214 7.5723 0.138 255 3.1759 0.0183 215 7.1373 0.1286 256 3.2046 0.0202 216 6.7141 0.1178 257 3.2306 0.0197 217 6.3445 0.1108 258 3.2667 0.0174 218 5.9844 0.099 259 3.2995 0.0208 219 5.6735 0.0885 260 3.3387 0.0221 220 5.362 0.0807 261 3.3784 0.0221 221 5.0918 0.069 262 3.4246 0.0183 222 4.8429 0.0638 263 3.4622 0.0208 223 4.5937 0.0578 264 3.5017 0.0234 225 4.124 0.0468 266 3.5799 0.0217 226 3.9148 0.042 267 3.6102 0.0218 228 3.5613 0.0368 270 3.6739 0.0226	213	8.0363	0.1514	254	3.1559	0.0157
215 7.1373 0.1286 256 3.2046 0.0202 216 6.7141 0.1178 257 3.2306 0.0197 217 6.3445 0.1108 258 3.2667 0.0174 218 5.9844 0.099 259 3.2995 0.0208 219 5.6735 0.0885 260 3.387 0.022 220 5.362 0.0807 261 3.3784 0.0221 221 5.0918 0.069 262 3.4246 0.0183 222 4.8429 0.0638 263 3.4622 0.0208 223 4.5937 0.0578 264 3.5017 0.0254 224 4.3593 0.0556 265 3.5404 0.0214 225 4.124 0.0468 266 3.5799 0.0217 226 3.9148 0.042 267 3.6102 0.0218 228 3.5613 0.0368 270 3.674 0.0256	214	7.5723	0.138	255	3.1759	0.0183
216 6.7141 0.1178 257 3.2306 0.0197 217 6.3445 0.1108 258 3.2667 0.0174 218 5.9844 0.099 259 3.2995 0.0208 219 5.6735 0.0885 260 3.3387 0.022 220 5.362 0.0807 261 3.3784 0.021 221 5.0918 0.069 262 3.4246 0.0183 222 4.8429 0.0638 263 3.4622 0.0208 223 4.5937 0.0578 264 3.5017 0.0254 224 4.3593 0.0556 265 3.5404 0.0234 225 4.124 0.0468 266 3.5799 0.0217 226 3.9148 0.042 267 3.6102 0.0218 228 3.5613 0.0368 269 3.6539 0.0226 229 3.4356 0.0307 271 3.674 0.0256	215	7.1373	0.1286	256	3.2046	0.0202
217 6.3445 0.1108 258 3.2667 0.0174 218 5.9844 0.099 259 3.2995 0.0208 219 5.6735 0.0885 260 3.3387 0.022 220 5.362 0.0807 261 3.3784 0.0221 221 5.0918 0.069 262 3.4246 0.0183 222 4.8429 0.0638 263 3.4622 0.0208 223 4.5937 0.0578 264 3.5017 0.0255 224 4.3593 0.0556 265 3.5404 0.0234 225 4.124 0.0468 266 3.5799 0.0217 226 3.9148 0.042 267 3.6102 0.0218 228 3.5613 0.0368 269 3.6364 0.0218 229 3.4356 0.0368 270 3.6702 0.0234 230 3.332 0.0307 271 3.674 0.0256	216	6.7141	0.1178	257	3.2306	0.0197
218 5.9844 0.099 259 3.2995 0.0208 219 5.6735 0.0885 260 3.387 0.022 220 5.362 0.0807 261 3.3784 0.0221 221 5.0918 0.069 262 3.4246 0.0183 222 4.8429 0.0638 263 3.4622 0.0208 223 4.5937 0.0578 264 3.5017 0.0255 224 4.3593 0.0556 265 3.5404 0.0234 225 4.124 0.0468 266 3.5799 0.0217 226 3.9148 0.042 267 3.6102 0.0218 228 3.5613 0.0368 269 3.6539 0.0226 229 3.4356 0.0368 270 3.6702 0.0238 230 3.332 0.0271 272 3.674 0.0256 232 3.2119 0.0225 273 3.6639 0.0251	217	6.3445	0.1108	258	3.2667	0.0174
219 5.6735 0.0885 260 3.387 0.022 220 5.362 0.0807 261 3.3784 0.021 221 5.0918 0.069 262 3.4246 0.0183 222 4.8429 0.0638 263 3.4622 0.0208 223 4.5937 0.0578 264 3.5017 0.0234 224 4.3593 0.0556 265 3.5404 0.0234 225 4.124 0.0468 266 3.5799 0.0217 226 3.9148 0.042 267 3.6102 0.021 227 3.7195 0.0394 268 3.6364 0.0218 228 3.5613 0.0368 270 3.6702 0.0234 229 3.4356 0.0371 271 3.6799 0.0226 230 3.332 0.0271 272 3.674 0.0256 233 3.169 0.027 274 3.6439 0.0251	218	5.9844	0.099	259	3.2995	0.0208
220 5.362 0.0807 261 3.3784 0.0221 221 5.0918 0.069 262 3.4246 0.0183 222 4.8429 0.0638 263 3.4622 0.0208 223 4.5937 0.0578 264 3.5017 0.0255 224 4.3593 0.0556 265 3.5404 0.0234 225 4.124 0.0468 266 3.5799 0.0217 226 3.9148 0.042 267 3.6102 0.0218 227 3.7195 0.0394 268 3.6364 0.0218 228 3.5613 0.0368 269 3.6539 0.0226 229 3.4356 0.0368 270 3.6702 0.0234 230 3.332 0.0271 271 3.674 0.0256 232 3.2119 0.0252 273 3.6639 0.0251 233 3.169 0.027 274 3.6456 0.0252	219	5.6735	0.0885	260	3.3387	0.022
221 5.0918 0.069 262 3.4246 0.0183 222 4.8429 0.0638 263 3.4622 0.0208 223 4.5937 0.0578 264 3.5017 0.0255 224 4.3593 0.0556 265 3.5404 0.0234 225 4.124 0.0468 266 3.5799 0.0217 226 3.9148 0.042 267 3.6102 0.021 227 3.7195 0.0394 268 3.6364 0.0218 228 3.5613 0.0368 269 3.6539 0.0226 229 3.4356 0.0368 270 3.6702 0.0234 230 3.332 0.0271 272 3.674 0.0256 232 3.2119 0.0252 273 3.6639 0.0251 233 3.169 0.027 274 3.6456 0.0252 234 3.1451 0.0265 275 3.6237 0.0237	220	5.362	0.0807	261	3.3784	0.0221
222 4.8429 0.0638 263 3.4622 0.0208 223 4.5937 0.0578 264 3.5017 0.0255 224 4.3593 0.0556 265 3.5404 0.0234 225 4.124 0.0468 266 3.5799 0.0217 226 3.9148 0.042 267 3.6102 0.021 227 3.7195 0.0394 268 3.6364 0.0218 228 3.5613 0.0368 269 3.6539 0.0226 229 3.4356 0.0368 270 3.6702 0.0234 230 3.332 0.0307 271 3.6779 0.0234 231 3.2658 0.0271 272 3.674 0.0256 232 3.2119 0.0252 273 3.6639 0.0251 233 3.169 0.027 274 3.6456 0.0252 234 3.1451 0.0265 275 3.6237 0.0237 235 3.128 0.0192 276 3.5929 0.0219	221	5.0918	0.069	262	3.4246	0.0183
223 4.5937 0.0578 264 3.5017 0.0255 224 4.3593 0.0556 265 3.5404 0.0234 225 4.124 0.0468 266 3.5799 0.0217 226 3.9148 0.042 267 3.6102 0.021 227 3.7195 0.0394 268 3.6364 0.0218 228 3.5613 0.0368 269 3.6539 0.0226 229 3.4356 0.0368 270 3.6702 0.0238 230 3.3332 0.0307 271 3.6779 0.0234 231 3.2658 0.0271 272 3.674 0.0256 232 3.2119 0.0252 273 3.6639 0.0251 233 3.169 0.027 274 3.6456 0.0252 234 3.1451 0.0265 275 3.6237 0.0237 235 3.128 0.0192 276 3.5929 0.0219 236 3.111 0.0182 277 3.5499 0.0246	222	4.8429	0.0638	263	3.4622	0.0208
2244.35930.05562653.54040.02342254.1240.04682663.57990.02172263.91480.0422673.61020.0212273.71950.03942683.63640.02182283.56130.03682693.65390.02262293.43560.03682703.67020.02342303.33320.03072713.67790.02342313.26580.02712723.6740.02562323.21190.02522733.66390.02512333.1690.0272743.64560.02372353.1280.01922763.59290.02192363.1110.01822773.54990.02462373.0990.01972783.50380.02512383.09330.02112793.45630.02272393.09070.02022803.3990.02462403.08390.01962813.33370.0224	223	4.5937	0.0578	264	3.5017	0.0255
2254.1240.04682663.57990.02172263.91480.0422673.61020.0212273.71950.03942683.63640.02182283.56130.03682693.65390.02262293.43560.03682703.67020.02382303.3320.03072713.67790.02342313.26580.02712723.6740.02562323.21190.02522733.66390.02512333.1690.0272743.64560.02522343.14510.02652753.62370.02372353.1280.01922763.59290.02192363.1110.01822773.54990.02462373.0990.01972783.50380.02512383.09330.02112793.45630.02272393.09070.02022803.3990.02462403.08390.01962813.3370.0224	224	4.3593	0.0556	265	3.5404	0.0234
2263.91480.0422673.61020.0212273.71950.03942683.63640.02182283.56130.03682693.65390.02262293.43560.03682703.67020.02382303.33320.03072713.67790.02342313.26580.02712723.6740.02562323.21190.02522733.66390.02512333.1690.0272743.64560.02522343.14510.02652753.62370.02372353.1280.01922763.59290.02192363.1110.01822773.54990.02462373.0930.02112793.45630.02272393.09070.02022803.3990.02462403.08390.01962813.3370.0224	225	4.124	0.0468	266	3.5799	0.0217
2273.71950.03942683.63640.02182283.56130.03682693.65390.02262293.43560.03682703.67020.02382303.33320.03072713.67790.02342313.26580.02712723.6740.02562323.21190.02522733.66390.02512333.1690.0272743.64560.02522343.14510.02652753.62370.02372353.1280.01922763.59290.02192363.1110.01822773.54990.02512383.09330.02112793.45630.02572393.09070.02022803.3990.02462403.08390.01962813.33370.0224	226	3.9148	0.042	267	3.6102	0.021
2283.56130.03682693.65390.02262293.43560.03682703.67020.02382303.3320.03072713.67790.02342313.26580.02712723.6740.02562323.21190.02522733.66390.02512333.1690.0272743.64560.02522343.14510.02652753.62370.02372353.1280.01922763.59290.02192363.1110.01822773.54990.02512383.09330.02112793.45630.02272393.09070.02022803.3990.02462403.08390.01962813.33370.0224	227	3.7195	0.0394	268	3.6364	0.0218
2293.43560.03682703.67020.02382303.3320.03072713.67790.02342313.26580.02712723.6740.02562323.21190.02522733.66390.02512333.1690.0272743.64560.02522343.14510.02652753.62370.02372353.1280.01922763.59290.02192363.1110.01822773.54990.02512383.09330.02112793.45630.02272393.09070.02022803.3990.02462403.08390.01962813.33370.0224	228	3.5613	0.0368	269	3.6539	0.0226
2303.33320.03072713.67790.02342313.26580.02712723.6740.02562323.21190.02522733.66390.02512333.1690.0272743.64560.02522343.14510.02652753.62370.02372353.1280.01922763.59290.02192363.1110.01822773.54990.02462373.0990.01972783.50380.02512383.09330.02112793.45630.02272393.09070.02022803.3990.02462403.08390.01962813.33370.0224	229	3.4356	0.0368	270	3.6702	0.0238
2313.26580.02712723.6740.02562323.21190.02522733.66390.02512333.1690.0272743.64560.02522343.14510.02652753.62370.02372353.1280.01922763.59290.02192363.1110.01822773.54990.02462373.0990.01972783.50380.02512383.09330.02112793.45630.02272393.09070.02022803.3990.02462403.08390.01962813.33370.0224	230	3.3332	0.0307	271	3.6779	0.0234
2323.21190.02522733.66390.02512333.1690.0272743.64560.02522343.14510.02652753.62370.02372353.1280.01922763.59290.02192363.1110.01822773.54990.02462373.0990.01972783.50380.02512383.09330.02112793.45630.02272393.09070.02022803.3990.02462403.08390.01962813.33370.0224	231	3.2658	0.0271	272	3.674	0.0256
2333.1690.0272743.64560.02522343.14510.02652753.62370.02372353.1280.01922763.59290.02192363.1110.01822773.54990.02462373.0990.01972783.50380.02512383.09330.02112793.45630.02272393.09070.02022803.3990.02462403.08390.01962813.33370.0224	232	3.2119	0.0252	273	3.6639	0.0251
2343.14510.02652753.62370.02372353.1280.01922763.59290.02192363.1110.01822773.54990.02462373.0990.01972783.50380.02512383.09330.02112793.45630.02272393.09070.02022803.3990.02462403.08390.01962813.33370.0224	233	3.169	0.027	274	3.6456	0.0252
235 3.128 0.0192 276 3.5929 0.0219 236 3.111 0.0182 277 3.5499 0.0246 237 3.099 0.0197 278 3.5038 0.0251 238 3.0933 0.0211 279 3.4563 0.0227 239 3.0907 0.0202 280 3.399 0.0246 240 3.0839 0.0196 281 3.3337 0.0224	234	3.1451	0.0265	275	3.6237	0.0237
236 3.111 0.0182 277 3.5499 0.0246 237 3.099 0.0197 278 3.5038 0.0251 238 3.0933 0.0211 279 3.4563 0.0227 239 3.0907 0.0202 280 3.399 0.0246 240 3.0839 0.0196 281 3.3337 0.0224	235	3.128	0.0192	276	3.5929	0.0219
237 3.099 0.0197 278 3.5038 0.0251 238 3.0933 0.0211 279 3.4563 0.0227 239 3.0907 0.0202 280 3.399 0.0246 240 3.0839 0.0196 281 3.3337 0.0224	236	3.111	0.0182	277	3.5499	0.0246
238 3.0933 0.0211 279 3.4563 0.0227 239 3.0907 0.0202 280 3.399 0.0246 240 3.0839 0.0196 281 3.3337 0.0224	237	3.099	0.0197	278	3.5038	0.0251
239 3.0907 0.0202 280 3.399 0.0246 240 3.0839 0.0196 281 3.3337 0.0224	238	3.0933	0.0211	279	3.4563	0.0227
240 3.0839 0.0196 281 3.3337 0.0224	239	3.0907	0.0202	280	3.399	0.0246
	240	3.0839	0.0196	281	3.3337	0.0224

 Table S5: Measured extinction coefficients of glyceraldehyde.

wavelength	Extinction	uncertainty in	wavelength(Extinction	uncertainty in
(nm)	(1/M/cm)	Extinction (1/M/cm)	nm)	(1/M/cm)	Extinction (1/M/cm)
282	3.2647	0.0235	324	0.626	0.0013
283	3.1949	0.02	325	0.5962	0.0006
284	3.1189	0.0211	326	0.5725	0.0043
285	3.0384	0.021	327	0.5518	0.001
286	2.9552	0.0211	328	0.5196	0.0018
287	2.8765	0.0184	329	0.5004	0.0007
288	2.7898	0.0154	330	0.4828	0.0032
289	2.6972	0.0162	331	0.4637	0.0031
290	2.6077	0.015	332	0.4416	0.0049
291	2.5178	0.0138	333	0.4237	0.004
292	2.427	0.0127	334	0.4127	0.0033
293	2.3341	0.0121	335	0.3956	0.0046
294	2.2435	0.0122	336	0.3779	0.0047
295	2.1552	0.0127	337	0.3607	0.002
296	2.069	0.0115	338	0.354	0.0005
297	1.985	0.0076	339	0.3442	0.005
298	1.8987	0.0086	340	0.3303	0.0037
299	1.818	0.0086	341	0.3176	0.0007
300	1.7436	0.0076	342	0.3083	0.0011
301	1.672	0.0075	343	0.2995	0.0015
302	1.6004	0.0088	344	0.2917	0.0048
303	1.5307	0.007	345	0.2809	0.0046
304	1.4643	0.0073	346	0.2737	0.0022
305	1.3988	0.004	347	0.2724	0.004
306	1.3331	0.006	348	0.2615	0.0033
307	1.2729	0.0028	349	0.2553	0.0023
308	1.2204	0.0027	350	0.2498	0.0049
309	1.1729	0.0047	351	0.2449	0.0011
310	1.1175	0.0036	352	0.2423	0.0026
311	1.0706	0.0039	353	0.2357	0.005
312	1.033	0.0027	354	0.2252	0.0023
313	0.9915	0.0058	355	0.217	0.0012
314	0.9504	0.004	356	0.2203	0.0042
315	0.9122	0.0022	357	0.2183	0.005
316	0.8732	0.0022	358	0.209	0.0017
317	0.8367	0.0021	359	0.2083	0.0011
318	0.8037	0.0026	360	0.2035	0.0027
319	0.7693	0.0034	361	0.201	0.0006
320	0.7359	0.0021	362	0.197	0.0033
321	0.7073	0.0037	363	0.1949	0.0061
322	0.68	0.0032	364	0.192	0.0057
323	0.6517	0.0049	365	0.1867	0.004

Table S5: Measured extinction coefficients of glyceraldehyde (continued).

wavelength	Extinction	uncertainty in
(nm)	(1/M/cm)	Extinction (1/M/cm)
366	0.1812	0.0047
367	0.1751	0.0031
368	0.1747	0.0025
369	0.1705	0.0063
370	0.1671	0.0054
371	0.1585	0.0006
372	0.1631	0.0017
373	0.1613	0.0045
374	0.155	0.0049
375	0.1522	0.0025
376	0.1539	0.0023
377	0.1475	0.0023
378	0.1434	0.0059
379	0.1414	0.0033
380	0.1408	0.0012
381	0.136	0.0019
382	0.1344	0.0018
383	0.1303	0.0035
384	0.1247	0.0023
385	0.1215	0.002
386	0.1244	0.0031
387	0.1212	0.0026
388	0.115	0.0008
389	0.116	0.0005
390	0.1149	0.0001
391	0.1086	0.0034
392	0.1073	0.0041
393	0.1061	0.0027
394	0.1055	0.0014
395	0.1018	0.0033
396	0.1	0.0041
397	0.0986	0.0016
398	0.0984	0.001
399	0.0942	0.003
400	0.0917	0.0031

Table S5: Measured extinction coefficients of glyceraldehyde (continued).

wavelength	Extinction	uncertainty in	wavelength(Extinction	uncertainty in
(nm)	(1/M/cm)	Extinction (1/M/cm)	nm)	(1/M/cm)	Extinction (1/M/cm)
200	6.3218	0.1996	284	13.5282	0.027
202	8.0359	1.1151	286	12.3095	0.027
204	13.4457	4.1652	288	11.1104	0.0416
206	21.1199	6.4318	290	9.813	0.0416
208	27.1587	4.0366	292	8.5274	0.0566
210	25.4327	0.74	294	7.2693	0.0204
212	18.3718	0.1419	296	6.0977	0.0367
214	12.3684	0.0705	298	5.0559	0.0416
216	8.0595	0.0914	300	4.1045	0.0255
218	5.2407	0.0638	302	3.2789	0.0136
220	3.5029	0.0367	304	2.6066	0.0189
222	2.5004	0.0255	306	1.9382	0.0068
224	1.9815	0.0255	308	1.4664	0.0068
226	1.8124	0.0104	310	1.0733	0.0068
228	1.8753	0.0189	312	0.8099	0.0136
230	2.1387	0.0136	314	0.5779	0.0068
232	2.5161	0	316	0.4207	0.0068
234	2.9801	0.0111	318	0.3027	0.0189
236	3.5541	0.0136	320	0.2241	0.0068
238	4.2578	0.0189	322	0.1691	0.0068
240	5.0755	0.0104	324	0.1179	0
242	5.9994	0.0255	326	0.0904	0.0068
244	6.9469	0.0358	328	0.0708	0.0167
246	7.9966	0.0056	330	0.055	0.0056
248	9.0699	0.0189	332	0.0275	0.0068
250	10.1943	0.0189	334	0.0432	0.0104
252	11.3423	0.0233	336	0.0236	0.0056
254	12.4549	0.0272	338	0.0315	0.0111
256	13.5754	0.0068	340	0	0
258	14.5897	0.0322	342	0.0157	0.0056
260	15.5058	0.0377	344	0.0039	0.0104
262	16.3196	0.0367	346	0.0275	0.0068
264	17.0036	0.034	348	0.0118	0.0068
266	17.5423	0.0111	350	0.0118	0.0068
268	17.8135	0.0204	352	0.0157	0.0056
270	17.9472	0.0152	354	0.0157	0.0056
272	17.8293	0.0233	356	0.0118	0.0068
274	17.5619	0.0312	358	0.0236	0.0056
276	17.1177	0.0516	360	0.0197	0.0152
278	16.4296	0.0367	362	0	0
280	15.5765	0.0389	364	0.0157	0.0136
282	14.633	0.0409	366	0	0.0068

 Table S6:
 Measured extinction coefficients of dihydroxyacetone.

wavelength	Extinction	uncertainty in
(nm)	(1/M/cm)	Extinction (1/M/cm)
368	0.0157	0.0056
370	0	0
372	0.0118	0.0068
374	0	0
376	0	0
378	0	0
380	0	0
382	0.0118	0.0068
384	0	0.0124
386	0	0
388	0	0
390	0	0
392	0	0
394	0	0
396	0	0
398	0	0
400	0	0

 Table S6:
 Measured extinction coefficients of dihydroxyacetone (continued)

References

Beeby, A., Mohammed, D. b. H., and Sodeau, J. R.: Photochemistry and photophysics of glycolaldehyde in solution, J. Am. Chem. Soc., 109, 857-861, 10.1021/ja00237a036, 1987.

Chen, Y., Wang, W., and Zhu, L.: Wavelength-dependent photolysis of methylglyoxal in the 290-440 nm region, J. Phys. Chem. A, 104, 11126-11131, 10.1021/jp002262t, 2000.

Davis, L.: The structure of dihydroxyacetone in solution, Bioorg. Chem., 2, 197-201, 1973.

Fang, W., Gong, L., Zhang, Q., Cao, M., Li, Y., and Sheng, L.: Measurements of secondary organic aerosol formed from oh-initiated photo-oxidation of isoprene using online photoionization aerosol mass spectrometry, Environ. Sci. Tech., 46, 3898-3904, 10.1021/es204669d, 2012.

Glushonok, G. K., Petryaev, E. P., Turetskaya, E. A., and Shadyro, O. I.: Equilibrium between the molecular forms of glycolaldehyde and of dl-glyceraldehyde in aqueous solutions, Zh. Fiz. Khim., 60, 2960-2970, 1986.

Glushonok, G. K., Glushonok, T. G., Maslovskaya, L. A., and Shadyro, O. I.: A 1h and 13c nmr and uv study of the state of hydroxyacetone in aqueous solutions, Russ. J. Gen. Chem., 73, 1027-1031, 10.1023/b:rugc.0000007604.91106.60, 2003.

Gubina, T. I., Pankratov, A. N., Labunskaya, V. I., and Rogacheva, S. M.: Self-oscillating reaction in the furan series, Chem. Heterocycl. Compd., 40, 1396-1401, 10.1007/s10593-005-0051-5, 2004.

Horowitz, A., Meller, R., and Moortgat, G. K.: The uv-vis absorption cross sections of the alphadicarbonyl compounds: Pyruvic acid, biacetyl and glyoxal, J. Photochem. Photobiol., A, 146, 19-27, 10.1016/S1010-6030(01)00601-3, 2001.

Jaoui, M., Corse, E., Kleindienst, T. E., Offenberg, J. H., Lewandowski, M., and Edney, E. O.: Analysis of secondary organic aerosol compounds from the photooxidation of d-limonene in the presence of nox and their detection in ambient pm2.5, Environ. Sci. Tech., 40, 3819-3828, 10.1021/es052566z, 2006.

Mackinney, G., and Temmer, O.: The deterioration of dried fruit. Iv. Spectrophotometric and polarographic studies, J. Am. Chem. Soc., 70, 3586-3590, 10.1021/ja01191a013, 1948.

Malik, M., and Joens, J. A.: Temperature dependent near-uv molar absorptivities of glyoxal and gluteraldehyde in aqueous solution, Spectrochim. Acta, Part A, 56, 2653-2658, 2000.

Maroni: Annales de Chimie, 13, 757-787, 1957.

Martinez, A. M., Cushmac, G. E., and Rocek, J.: Chromic acid oxidation of cyclopropanols, J. Am. Chem. Soc., 97, 6502-6510, 10.1021/ja00855a036, 1975.

Rice, F. O.: The effect of solvent on the ultra violet absorption spectrum of a pure substance, J. Am. Chem. Soc., 42, 727-735, 10.1021/ja01449a009, 1920.

Schutze, M., and Herrmann, H.: Uptake of acetone, 2-butanone, 2,3-butanedione and 2-oxopropanal on a water surface, PCCP, 6, 965-971, 2004.

Steenken, S., Jaenicke-Zauner, W., and Schulte-Frohlinde, D.: Photofragmentation of hydroxyacetone, 1.3-dihydroxyacetone, and 1.3-dicarboxyacetone in aqueous solution. An epr study, Photochem. Photobiol., 21, 21-26, 10.1111/j.1751-1097.1975.tb06624.x, 1975.

Vavilova, A. N., Trofimov, B. A., and Volkov, A. N. K., V. V. : Journal of Organic Chemistry USSR (English Translation), 17, 809-812, 1981.

Xu, H., Wentworth, P. J., Howell, N. W., and Joens, J. A.: Temperature dependent near-uv molar absorptivities of aliphatic aldehydes and ketones in aqueous solution, Spectrochim. Acta, Part A, 49, 1171-1178, 1993.