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Abstract

Models without an explicit time dependence, called singular models, are widely used
for fitting the distribution of temperatures at which water droplets freeze. In 1950 Levine
developed the original singular model. His key assumption was that each droplet con-
tained many nucleation sites, and that freezing occurred due to the nucleation site with5

the highest freezing temperature. The fact that freezing occurs due to the maximum
value out of large number of nucleation temperatures, means that we can apply the
results of what is called extreme-value statistics. This is the statistics of the extreme,
i.e., maximum or minimum, value of a large number of random variables. Here we use
the results of extreme-value statistics to show that we can generalise Levine’s model10

to produce the most general singular model possible. We show that when a singular
model is a good approximation, the distribution of freezing temperatures should always
be given by what is called the generalised extreme-value distribution. In addition, we
also show that the distribution of freezing temperatures for droplets of one size, can
be used to make predictions for the scaling of the median nucleation temperature with15

droplet size, and vice versa.

1 Introduction

The freezing of water droplets in the Earth’s atmosphere is an important and long-
standing problem (Mason, 1971; Pruppacher and Klett, 1978; Cantrell and Heymsfield,
2005; DeMott et al., 2011; Sear, 2012). We want to understand how the water droplets20

freeze, and be able to predict quantitatively the conditions where the droplets do and
do not freeze. To do this we of course need good experimental data, but we also need
models with few enough parameters that their values can be reliably obtained by fitting
to experimental data. These models should make as few assumptions as possible, and
we should as clear as possible as to what these assumptions are. An innovative early25

attempt at developing such a model was that of Levine in 1950 (Levine, 1950).
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Levine assumed that water droplets freeze due to highly variable impurities in the
droplets. He then introduced a simple statistical model of these impurities, and hence of
the freezing behaviour (Levine, 1950). Levine’s model has no direct time dependence.
Instead of an explicit rate, nucleation is assumed to occur at a particular nucleation
site as soon as it is cooled to a temperature characteristic of that site. Levine’s work5

has inspired a literature on what are often called (Pruppacher and Klett, 1978) “singu-
lar” models (Mason, 1971; Vali, 2008; Connolly et al., 2009; Niedermeier et al., 2010,
2011; Murray et al., 2011; Broadley et al., 2012; Welti et al., 2012). By definition singu-
lar models are models that lack direct time dependence. As far as I know, Levine’s is
the first such singular model. Singular models can be contrasted with what are called10

“stochastic” models where there is an explicit nucleation rate for a stochastic process
of nucleation, and so a direct time dependence (Pruppacher and Klett, 1978).

Levine assumed that each droplet has a large number of nucleation sites, N. He
called these sites “motes”. He assumed that each mote had a different nucleation tem-
perature, Tn, and that the droplet froze at the highest of these N nucleation tempera-15

tures. This second assumption means that, within his model, the freezing temperature
of a droplet, TF, is a random number that is the maximum of a number of indepen-
dent random numbers. Although Levine apparently did not realise this, this means that
what he was doing was an example of what is called extreme-value statistics. This
is the statistics of the extreme (maximum or minimum) of a large number of random20

variables. See the books of either Jondeau et al. (2007), or Castillo (1988), for an in-
troduction to extreme-value statistics. Incidentally, back in the 1950s, Turnbull realised
that Levine was effectively doing extreme-value statistics (Turnbull, 1952).

Here we use results from modern extreme-value statistics to show that the results
obtained by Levine can be written in slightly simpler forms, and that they can be gener-25

alised – one of his assumptions was not necessary. The expression derived by Levine,
his Eq. (2), is in fact almost (see Appendix A) the probability density function of the
Gumbel distribution of extreme-value statistics. If nucleation is indeed occurring on the
nucleation site with the highest nucleation temperature, then the fraction crystallised
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should have the form of what is called the generalised extreme value (GEV) distri-
bution. This is true for almost all distributions of the site nucleation temperatures. The
Gumbel distribution is a special case of the GEV distribution. Levine also derived a log-
arithmic dependence of the mode droplet freezing temperature on droplet size. We will
show that this scaling is less general than the Gumbel distribution.5

1.1 Motivation

Our motivation for this work is that Levine’s key assumptions are very reasonable.
These assumptions are that a droplet has a large number of nucleation sites, and that
nucleation occurs on the one with the highest nucleation temperature. Also, the neglect
of time dependence, although an approximation, simplifies the model, meaning that the10

model has very few parameters. A model with few parameters is useful, as typically
fitting a model with more than two or three parameters to experimental data is difficult
to justify. The data may not adequately constrain the values of a larger number of
parameters.

Thus Levine’s model seems a very attractive simple model that can be used to fit data15

directly, and can be built on to make more sophisticated models. For both these reasons
it seems worthwhile to use results in modern extreme-value statistics to generalise it
to produce the most general singular model possible, and to determine the minimal
assumptions required for it to apply.

In this paper, we will describe Levine’s model, and then show how his key results20

may be derived using modern extreme-value statistics. We will then generalise Levine’s
model to produce the most general possible singular model of the type that Levine in-
troduced. In our final section, we suggest how this could be used to model experimental
data.
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2 Levine’s model

We are interested in the problem of what happens when a set of nominally identical
liquid water droplets are cooled at some rate, until they freeze. It is observed (Levine,
1950; Langham and Mason, 1958; Mason, 1971; Pruppacher and Klett, 1978; Nieder-
meier et al., 2010, 2011; Murray et al., 2011; Vali, 2008; Cantrell and Heymsfield, 2005;5

Welti et al., 2012; Broadley et al., 2012) that the droplets do not all freeze at the same
temperature; they freeze over a broad range of temperatures. We want to understand
this, and make predictions about this phenomenon, using a simple model.

To do this, we define the probability P (TF) that a randomly selected droplet has not
frozen, at the time when we have cooled it down to a temperature TF. Note that P (TF) is10

a cumulative probability, the probability that a sample freezes between TF and TF−dTF,
is (dP (TF)/dTF)dTF. In an experiment, P (TF) can be approximated by the fraction of
a large number of identically prepared droplets that are still liquid at a temperature TF.

Levine’s model (Levine, 1950) for the freezing of liquid water droplets is simple. He
made the following assumptions:15

1. Each droplet contains impurities that have a total of N nucleation sites.

2. Each nucleation site induces nucleation of ice rapidly at a well defined tempera-
ture Tn.

3. This temperature Tn varies from one nucleation site to another. The sites are
independent, and the values of Tn are drawn from a probability distribution function20

p1(Tn).

4. Only one nucleation event is required to induce crystallisation of the droplet, and
so the droplet crystallises at the highest Tn of its N nucleation sites. We denote
this maximum value of a set of N Tn’s, by TF.

Assumption 4 allows us to use extreme-value statistics, see Castillo (1988); Jondeau25

et al. (2007) for an introduction to these statistics. Here we define a singular model as
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being a model in which assumptions 1 to 4 are made. In particular, assumption 2 elim-
inates any time dependence, giving us a model with only a temperature dependence.
This definition of a singular model agrees with that of Pruppacher and Klett (1978).

Levine then made a fifth assumption:

5. The distribution of nucleation temperatures at the sites, p1, is exponential, i.e.,5

p1(Tn) = sexp
(
−Tn/we

)
/we (1)

This distribution has two parameters: s (dimensionless) and we (dimensions of tem-
perature). The parameter we controls how rapidly the probability of finding a site with
a given Tn, decreases with increasing Tn. Note that Levine wrote this distribution in10

a rather different way. See Appendix A for a comparison to his work that uses notation
that is closer to Levine’s.

It is worth noting that we are only interested in the highest value of Tn of a large
number of sites, and so only the large Tn tail of the distribution p1 is relevant here. The
form of p1 around average Tn values is irrelevant. The maximum is never in this region.15

Thus we need only assume that the large Tn tail of the distribution is exponential. The
distribution around average values can be anything as these sites do not affect freezing
and so have no affect in experiment. Because of this Eq. (1) is only the high-T tail and
so is not normalised. The parameter s controls the location of this tail, i.e., the bigger s
is, the larger the number of sites with high nucleation temperatures.20

Also, note that we expect N to scale with the total surface area of the impurities
present in a droplet. So if impurities are deliberately added, as for example Broadley
et al. (2012) and Welti et al. (2012) did, then N should be proportional to the amount
added. When the impurities are those naturally present in the water, then if their con-
centration is constant, their amount and hence N will be proportional to the droplet25

volume.
As an aside, we note that in the language of the statistical physics of quenched dis-

order, Levine’s model has quenched disorder, but no annealed disorder. The quenched
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disorder is the variability in the temperatures at which nucleation occurs on the sites. It
is quenched disorder as it is assumed not to depend on time, but to be fixed for a given
droplet. There is no annealed disorder as there is no time dependence. Annealed dis-
order is associated with dynamic fluctuations, which are neglected in singular models.

3 Modern derivation of Levine’s key results5

If we make all 5 assumptions of Sect. 2, we can easily derive the Gumbel distribution for
the freezing temperature, TF. The derivation of Levine’s distribution of freezing temper-
atures proceeds as follows. We start by obtaining the cumulative probability distribution
function for a nucleation site, P1. P1 is the probability that the nucleation temperature at
a nucleation site is lower than Tn. The cumulative probability P1 is just a definite integral10

over p1, so using the exponential p1 of Eq. (1), we have

P1(Tn) = 1−
0∫

Tn

p1(T )dT ' 1−
∞∫
Tn

p1(T )dT (2)

' 1− sexp
(
−Tn/we

)
(3)

where we used Eq. (1) for p1, and we extended the upper limit on integration from15

0 ◦C to infinity. Of course, p1 must be zero for temperatures above 0 ◦C, and so the
approximate p1 of Eq. (1) is only valid for values of s and we such that the exponential
p1 is negligible for Tn ≥ 0 ◦C. We assume this to be the case here.

If a droplet contains N nucleation sites then the probability that it is in the liquid
phase, P (TF), is simply the probability that all N nucleation sites have crystallisation20

temperatures below TF. We are assuming that even a single nucleation site will cause
freezing. As these nucleation sites are independent this probability is just P N

1 , so,
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P (TF,N) = P N
1 =

[
1− sexp

(
−TF/we

)]N
(4)

' exp
[
−Nsexp

(
−TF/we

)]
(5)

Here we used the fact that when N is large, we are interested in the range when
sexp

(
−T/we

)
� 1, and so we can use the result (1+x)n ' exp(nx), which is valid for5

small x and large n.
We can rewrite P as

P (TF,N) = exp
[
−exp

(
− [TF −we ln(Ns)]/we

)]
(6)

This is the cumulative distribution function for the Gumbel extreme-value distribution10

(Castillo, 1988; Nicodemi, 2009; Jondeau et al., 2007). The Gumbel distribution is
a special case of the GEV distribution. This Gumbel P is plotted in Fig. 1a.

For an exponential p1, the width of the Gumbel distribution of crystallisation temper-
atures is the same as the width we for a single nucleation site. The median crystalli-
sation temperature, TMED, is obtained by noting that, by the definition of the median,15

P (TMED) = 1/2. Then we have that the median freezing temperature is

TMED(N) = we lns−we ln(ln2)+we ln(N) (7)

The scaling of the average freezing temperature with the number of nucleation sites is
logarithmic, as Levine found in his Eq. (10). The variation of TMED with N is shown in20

Fig. 2a. Finally, the probability density function for nucleation to occur at a temperature
TF, p(TF), is

p(TF) =
dP (TF)

dTF

= P (TF)exp
[
− (TF −we ln(Ns))/we

]
/we (8)

25
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This is almost equal to Levine’s Eq. (2) for p(T ). It is not quite equal as Levine made
a small approximation. We compare our expressions with Levine in detail in Appendix
A. The Gumbel p is plotted in Fig. 1b. Note that the Gumbel distribution has a charac-
teristically fatter tail on the high-temperature side than on the low-temperature side of
its maximum. This is often seen in experimental data for the freezing of water droplets,5

for example in Fig. 52 of Langham and Mason (1958).

4 Predictions of modern extreme value statistics

The Gumbel distribution that Levine derived is just one of the three types or classes of
extreme-value distributions, that together make up the GEV (Nicodemi, 2009; Jondeau
et al., 2007; Castillo, 1988). The other two are the Weibull and Fréchet distributions.10

In brief, modern extreme value theory allows us to show that for any singular model,
P (TF) should be given by the GEV. The requirements that must be satisfied are only
that assumptions 1 to 4 must hold, and that p1 should be a simple continuous function
of T in the temperature range of interest.

In this section we use modern extreme-value statistics to generalise Levine’s find-15

ings, in order to obtain the more general GEV form of P (TF). We also derive the scaling
of the average freezing temperature, TMED, with N for the Weibull and Fréchet distri-
butions, and compare the results with experimental data. Also, as our model is in the
singular limit, we outline a criterion for the singular limit to be a good approximation.

4.1 The generalised extreme value distribution20

Once assumptions 1 to 4 are made, the freezing temperature TF is the maximum of
a large number of independent identically distributed random variables. Then it can be
shown that the cumulative distribution function for P (TF) is given by the GEV. This is
true under only weak conditions on p1 (Nicodemi, 2009; Castillo, 1988; Jondeau et al.,
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2007). The GEV is conventionally written as (Castillo, 1988; Nicodemi, 2009; Jondeau
et al., 2007)

P (TF) =

{
exp

[
−exp

(
− (TF −µ)/w

)]
ξ = 0

exp
[
−
(
1+ ξ (TF −µ)/w

)−1/ξ
]
ξ 6= 0

(9)

This is a three-parameter cumulative probability distribution function. Assumption 5 is5

not required to derive it. The parameters are a width parameter w, a location parameter
µ, and an exponent ξ. The value of the parameter ξ controls the class of the GEV. With
ξ = 0, the GEV is the Gumbel distribution, while for ξ > 0, the GEV is the Fréchet dis-
tribution, and for ξ < 0, it is the Weibull distribution. Examples of all three distributions
are plotted in Fig. 1.10

Equation (9) generalises the Gumbel distribution, Eq. (6), that Levine derived.
Whereas the Gumbel distribution is produced by exponentially decaying (in the sense
of decaying faster than any power law) p1’s, almost any continuous simple p1 will lead
to the GEV. This includes p1’s that decay as power laws. Power law p1’s lead to the
Fréchet limit of the GEV, and p1’s with upper limits lead to the Weibull distribution.15

The form of the distribution of nucleation temperatures, p1, also determines the scal-
ing of the median freezing temperature with N. We have already seen that for an expo-
nential p1, this scaling is lnN, Eq. (7). This p1 also leads to a Gumbel P (TF), but other
p1’s lead to the same Gumbel form for P but have different scaling of TMED with N. For

example a Gaussian p1 leads to a (lnN)1/2 scaling (Castillo, 1988).20

What this means is that if, for example, data is well fit by a Gumbel P , i.e., ξ ' 0, then
we cannot argue that TMED scales as lnN – although it should be noted that lnN and

(lnN)1/2 scaling are relatively similar so if P is a Gumbel then we do have a rough idea
of the scaling of TMED. However, if data is clearly best fit by a lnN scaling of TMED, then
this is good evidence that p1 is indeed an exponential function of Tn, in the temperature25

range of interest. It is stronger evidence that P being well fit by a Gumbel distribution.
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In the next section, we outline how both the Fréchet and Weibull distributions can
be derived from their respective P1’s. This also allows us to also determine how the
median freezing temperature, TMED, scales with N.

4.2 Brief derivation of the Fréchet and Weibull distributions

In this section we briefly show how the Fréchet and Weibull distributions can be derived5

from the P1’s of the nucleation sites, where as before P1(Tn) is the probability that the
nucleation temperature at a site is below Tn. As the N nucleation sites are independent,
we always have that the probability that a droplet has not frozen at a temperature TF is

P (TF) = P N
1 (Tn) (10)

10

which as we are in N � 1, and 1− P1 � 1 limit can be written as

P (TF) = [1− [1− P1(TF)]]N (Tn)

' exp[−N[1− P1(TF)]] (11)

Armed with this relation, we start with the Fréchet distribution. The Fréchet distribution15

results from a power-law cumulative distribution, P1, for nucleation temperatures Tn,

P1(Tn) = 1− b

(Tn − TL)1/ξ
ξ > 0 (12)

Note that this is a power-law decay with a lower cutoff, TL. The parameter b (like s)
controls the size of the tail. This expression holds for the large Tn tail, where P1 is20

close to 1. Note that here, we have the restriction that ξ > 0, so this is a power-law
decay of p1 with Tn. In Fig. 2b, we have plotted an example P1. We plot 1− P1 not
P1 itself, as 1− P1 decays to 0, and this is a little clearer to see than a decay to 1. The
cumulative probability 1−P1(Tn) is the probability that a nucleation site has a nucleation
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temperature above Tn. Now, using the P1 of Eq. (12) in Eq. (11), we have the Fréchet
distribution

P (TF) ' exp

[
− Nb

(TF − TL)1/ξ

]
(13)

Note that N and b always appear as their product, Nb. Therefore, the freezing be-5

haviour does not depend on N and b separately, only on their product.
We now consider the Weibull distribution. The Weibull distribution results from a cu-

mulative distribution, P1, with an upper cut off

P1(Tn) =

{
1−c(TU − Tn)−1/ξ Tn ≤ TU

1 Tn > TU
ξ < 0 (14)

10

where TU is the upper cutoff, and c is a parameter that (like s and b) controls the size of
the tail. This expression holds for the large T tail, where P1 is close to 1. Note that here,
we have the restriction that ξ < 0, so 1− P1 is a positive-exponent power-law function
of Tn. An example 1− P1 is plotted in Fig. 2b. Now, using the P1 of Eq. (14) in Eq. (11),
we have the Weibull distribution15

P (TF) ' exp
[
−Nc(TU − TF)−1/ξ

]
(15)

Having derived the Gumbel, Fréchet, and Weibull distributions, we can compare
them. Example plots are shown in Fig. 1. The differences between the three distri-
butions is particularly clear in the plots of their probability densities in Fig. 1b. The20

Fréchet distribution has a much fatter high-temperature tail than the Gumbel, and a low-
temperature cutoff. So, if the GEV is fit to data with such a sharp lower-temperature
cutoff and/or fat tail, the best fit may be with a ξ > 0, implying that a Fréchet distribution
is a better model than a Gumbel. The fatter tail of the Fréchet comes from a power-
law tail in p1, i.e., from a fatter tail in the distribution in the nucleation temperatures at25
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the individual sites. By contrast, the Weibull distribution has a high-temperature cutoff,
which implies a high-temperature cutoff in p1. For data with a sharp upper cutoff to
nucleation, the Weibull model may be best.

4.3 Scaling of TMED with droplet volume and surface area of added impurity

An exponential P1 led to a Gumbel distribution, and lnN scaling of the median freezing5

temperature with N. Here we derive the corresponding scalings with system size for
power-law P1’s, and P1’s with upper limits.

Power-law P1’s lead to the Fréchet P (TF) of Eq. (13). The median freezing tempera-
ture, TMED, is the temperature at which P = 1/2, and so here we have

TMED = TL +
(

b
ln2

)ξ

Nξ (16)10

The median freezing temperature is a power-law function of the number of nucleation
sites, N. This is illustrated in Fig. 2a.
P1’s with an upper cutoff lead to the Weibull P (TF) of Eq. (15). The median freezing

temperature, TMED, is again the temperature at which P = 1/2, and so here we have15

that

TMED = TU −
( c

ln2

)ξ
Nξ (17)

The median freezing temperature approaches the upper limit, TU, of the nucleation
temperatures, as N →∞. This is shown in Fig. 2a.20

Having determined the scaling of TMED with N for all three classes of the GEV, we
can compare these predictions with experimental findings. There have been a num-
ber of studies of the average freezing temperature of droplets. Both the droplet vol-
ume, and the surface area of added impurity have been varied. A plot of the average
nucleation temperatures obtained in early work is shown in Mason’s book (Mason,25
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1971), in Fig. 4.2. On the log-linear scale, some data is linear, which is consistent with
an exponential-tailed p1, whereas other data sets appear to be plateauing at large
droplets, suggesting an upper cutoff to p1.

In more recent work, both Broadley et al. (2012), and Welti et al. (2012) have stud-
ied average nucleation temperatures as a function of the surface area of added clay5

particles. The clay is illite for Broadley et al., and kaolinite for Welti et al. We expect the
number of nucleation sites, N, to scale with the surface area of added clay. Broadley
et al. (2012)’s data seem to be plateauing at large amounts of added illite clay. This is
in their Fig. 4. Welti et al. (2012) observe a logarithmic scaling of the median nucleation
temperature with clay surface area. Thus, the data on the scaling of the freezing tem-10

perature with system size, suggests that ice nucleation is occurring on sites with either
an exponentially decaying p1, or a p1 with an upper cutoff.

4.4 Validity of the singular limit

The assumption that nucleation occurs at a site at a precisely determined temperature,
Tn, is presumably only an approximation to the truth. If ice nucleation in a droplet oc-15

curs at a temperature-dependent stochastic rate, R(T ), then nucleation will occur over
a temperature range of some width ∆TS. This width is expected to scale as

∆TS =
(

1
R
∂R
∂T

)−1

R=RCOOL

(18)

The expression in brackets is the ratio of the temperature derivative of the rate, to the20

rate itself. One over this ratio is an approximation to the change in temperature needed
to double the nucleation rate. This ratio is evaluated at a temperature such that the
nucleation rate, R, equals the cooling rate, RCOOL, in experiment. Note that it is non-
negligible assumption that a well-defined nucleation rate exists in these systems (Sear,
2013).25

In words, the expected spread in nucleation temperatures, ∆TS, due to
a temperature-dependent nucleation rate, is approximately equal to the temperature
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change needed to double the nucleation rate. This temperature change is evaluated
when the nucleation rate equals the cooling rate.

The singular limit is then the limit w �∆TS. When the width in the spread of freez-
ing temperatures due to the spread in characteristic nucleation temperatures, Tn, is
much larger than the spread due to the stochastic nucleation rate, then singular mod-5

els can be a good approximation to experimental data. But when the spread due to the
stochastic nature of the nucleation, ∆TS, is comparable to that due to the variability in
nucleation temperatures, then singular models will be poor approximations.

5 Conclusions

Singular models have been and are being used to fit experimental data (Mason, 1971;10

Pruppacher and Klett, 1978; Vali, 2008; Niedermeier et al., 2010; Broadley et al., 2012).
The fact that they work so well suggests that in many situations an explicit time depen-
dence does not need to be considered. Here we have shown that within a general
singular model, the distribution of freezing temperatures should be given by the GEV.
This follows if, as Pruppacher and Klett (1978) do, a singular model is defined as being15

assumptions 1 to 4, and p1 is a simple function of temperature.
There is a caveat to this statement. This is that for P (TF) to be given by the GEV,

it is necessary that over the temperature range of interest, P1(Tn) should be given by
a single continuous function, such as a power law or exponential. This may not be the
case if there is more than one type of nucleation site (perhaps due to multiple particle20

species) which all make significant contributions to P1 but have different dependences
on temperature. Thus it may be that even in the singular limit, P (TF) deviates from the
GEV in the presence of nucleation on a complex mixture of impurities. Then there is no
general theory. Here calculating P (TF) can only be done if the distribution of nucleation
temperatures at the sites is known p1. This will presumably be difficult even for simple25

impurities. However, if we have experimental data for P (TF), then Eq. (11) tells us that if
we plot lnP (TF) as a function of TF, then we should be plotting −N[1−P1]. Then what we
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are plotting is directly proportional to the cumulative probability of finding a nucleation
site with a nucleation temperature above TF. This may aid in interpreting data for P (TF).

Microscopic models of nucleation, for example those based on classical nucleation
theory, are also used to fit and understand experimental results (Cantrell and Heyms-
field, 2005; Niedermeier et al., 2011). They can provide insight into droplet freezing5

data that a purely statistical model such as an extreme-value-statistics model cannot
provide. However, in the singular limit (∆TS � w) almost any microscopic model will
give the GEV. Thus in this limit any two microscopic models with similar P1 will be
essentially equivalent.

Finally, in practice if data deviates from the GEV, it may be difficult to assess why,10

as there could be several reasons for the deviations. These include: (1) effects of
a stochastic temperature-dependent rate, of the type that classical nucleation theory
predicts; (2) a complex p1 due to a mixture of surfaces, all making significant contribu-
tions to nucleation; (3) non-classical-nucleation-theory time-dependent processes, for
example, irreversible chemical processes at surfaces that change the ability of a sur-15

face to promote ice nucleation. Distinguishing between the three may be difficult, al-
though as all three have different time dependencies, varying the cooling rate may be
one way to separate them.

5.1 Suggestions for future work

It may be worthwhile to do what is standard practice in other fields where extreme-20

value statistics are used, and to fit the GEV distribution to the data. Here the data is
the fraction of droplets that have frozen, as a function of temperature. If the fit is good,
then the data would be consistent with an extreme-value model, and if the fitted ξ is
close to zero, it would suggest that the high T tail of the nucleation temperatures of
individual sites is indeed exponential or similar, i.e., decays faster than a power law25

(Nicodemi, 2009). However, a value of ξ > 0 suggests a power law decay for p1, while
ξ < 0 suggests an upper limit beyond which p1 = 0. In other words, the value of ξ gives
information on the form of p1.
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Another point of view, is that assumptions 1 to 4 (only), lead to the GEV, and so the
GEV can be used to decouple assumptions 1 to 4, from assumption 5. Assumptions
1 to 4 are presumably only approximately true. In particular, assumption 2 that a site
induces nucleation at a temperature independent of cooling rate is presumably only
approximate. To rigorously test for violations of this assumption, which is at the heart of5

singular models, we would like to avoid assumption 5, and so should tests for deviations
from the GEV, not from the Gumbel distribution.

A final point to note is that the high-T tail in p1, not only determines P (t), but also
determines the scaling of the median nucleation temperature with N. In general, the
fatter the tail in p1, the faster the median nucleation temperature varies with N. This is10

illustrated in Fig. 2a. So if a fit to a P (t) produces a ξ > 0 then the volume dependence
should be faster than logarithmic, the median freezing temperature should scale as
Nξ. A best fit value of ξ < 0 suggests a Weibull distribution, which has an upper cutoff
and hence an upper limit to the median nucleation temperature as droplet volume is
increased.15

Appendix A

Comparison with Levine’s expression

Levine’s approximation for the probability that nucleation has not occurred at a temper-
ature T is the first factor in his Eq. (2). We write this as

P (T ) =
(

1− 1
µ

)ar−T

r > 1 (A1)20

where we have taken the dominant term in his exponent, ar−T , and changed what is
a +T in Levine’s expression to a −T . Levine uses the absolute value of T in Celsius,
so his T is our −T . In this expression µ = VR/∆V , where ∆V is the volume of a droplet,
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and VR is a large reservoir volume, �∆V . The droplet volume ∆V is proportional to
our N. The parameter a is analogous to our s parameter. The r parameter controls the
width of Levine’s distribution, so it is analogous to our we.

If we note that both µ and ar−T � 1, we can rewrite Eq. (A1) as an exponential

P (T ,µ) = exp

[
−ar−T

µ

]
5

= exp
[
−exp

[
−T lnr + ln

(
a
µ

)]]
(A2)

If we compare this equation with Eq. (6), we see that they are the same if lnr = 1/we,
and a/µ = Ns. Also, from this equation it is easy to show that the median nucleation
temperature, TMED, scales as ln(1/µ) ∝ ln∆V .10

Levine’s Eq. (2) is actually his approximation for the probability density, p, that nu-
cleation has occurred at a temperature T not the cumulative probability that it has not
occurred down to a temperature T . This p = dP/dT . The expression in Levine’s Eq. (2)
is not quite the T derivative of Eq. (A2), as Levine treats T as a discrete variable when
it is a continuous variable. Thus the expression in his Eq. (2) is, for this reason, ap-15

proximate. But this should not obscure the fact that Levine was the first to realise that
the extremes of the distribution of nucleation sites determine the nucleation behaviour,
and that the use of what is essentially extreme-value statistics can be used to model
freezing behaviour.
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Fig. 1. Plots of: (A) the cumulative distribution function P (TF), and (B) the probability den-
sity function p(TF). TF is the temperature a droplet freezes. In both plots the black, red and
blue curves are the Gumbel, Fréchet and Weibull functions, respectively. For the Fréchet dis-
tributions ξ = 0.75, while for the Weibull distributions ξ = −0.75. For all curves, the location
µ = −20 ◦C, and the width w = 3 ◦C. For the P ’s we use Eq. (9). Note that for the Gumbel distri-
bution, µ and w are related to s, N and we, by µ = we ln(sN) and w = we.
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Fig. 2. (A) Plot of the scaling of the median freezing temperature, TMED, with the number of
nucleation sites, N. The black curve is the lnN scaling that is consistent with the Gumbel
distribution. It is a plot of the TMED of Eq. (7), with parameters s = 10−8 and we = 3 ◦C. The red

curve is the N3/4 scaling that is consistent with the Fréchet distribution with ξ = 0.75. It is a plot
of the TMED of Eq. (16), with parameters b = 2×10−5 and TL = −25 ◦C. The blue curve is the

N−3/4 scaling that is consistent with the Weibull distribution with ξ = −0.75. It is a plot of the
TMED of Eq. (17), with parameters c = 10−5 and TU = −15 ◦C. (B) Plot of cumulative distribution
functions for the nucleation temperatures, Tn, at the nucleation sites. For clarity, we plot 1−
P1(Tn), i.e., the probability that a nucleation site has a nucleation temperature above Tn. This
tends to 0 not 1 at high T . The black, red and blue curves are 1−P1’s that yield Gumbel, Fréchet,
and Weibull distributions, respectively. Values of the parameters are the same as in (A).
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