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Abstract.4

Ammonia (NH3) is an important contributer to air pollution, and it also5

has significant impacts on climate change and environmental health. How-6

ever, there are many uncertainties in ammonia emissions inventories, from7

the total amount of emissions to the seasonal and diurnal variability, which8

hinder the use of air quality models to address these issues. In this paper,9

we constrain ammonia emissions in the U.S. by assimilating observations from10

the TES remote sensing instrument with the GEOS-Chem model and its ad-11

joint. This inversion framework is first validated using simulated observations.12

We then proceed to assimilate TES observations for April, July and Octo-13

ber of 2006 through 2009. We evaluate the inverse modeling results by com-14

paring the observationally constrained model simulations to independent sur-15

face measurements of NH3, NHx (NH+
4 + NH3) wet deposition, and SO2−

416

and NO−3 aerosol. Modeled NH3 concentrations have a decreased bias in April17

and October compared to surface observations after assimilation and an in-18

creased correlation in each month. Modeled NHx wet deposition after assim-19

ilation has a decreased normalized mean bias (NMB) in April and an increased20

NMB in July and October compared to the wet NHx observations, although21

the correlation and linear regression coefficients are closer to unity in each22

month. Modeled SO2−
4 and NO−3 aerosols concentrations do not change sig-23

nificantly and persistent NO−3 overestimation is noted, consistent with pre-24

vious studies. Overall, assimilation of NH3 remote sensing data to constrain25

NH3 emissions improves the model simulation in several aspects, yet addi-26
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tional work on assessing wet deposition, nitric acid formation, and bi-directional27

fluxes will be necessary to enhance model performance across the full range28

of gas and aerosol evaluations.29
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1. Introduction

Emissions of ammonia (NH3) from anthropogenic sources pose several environmental30

concerns. Ammonia affects air quality and climate through its role in the mass, composi-31

tion and physical properties of tropospheric aerosol. Ammonium nitrate and ammonium32

sulfate make up a substantial fraction of atmospheric fine particulate matter (PM2.5),33

exposured to which has been statistically associated with inhibited lung development,34

cardiovascular diseases and premature mortality [Pope et al., 2002; Schwartz et al., 2002;35

Reiss et al., 2007]. These fine particulates (PM2.5) also contribute to haze that impacts36

visibility. Further, when deposited in excess, reactive nitrogen, including ammonia, can37

cause detrimental nutrient imbalances to sensitive ecosystems [Rodhe et al., 2002; Rabal-38

ais , 2002].39

Despite the recognized importance of NH3 emissions in the U.S. [Aneja et al., 2008],40

knowledge of their magnitude is severely limited; NH3 emissions are primarily from agri-41

cultural sources whose strengths are poorly understood. Uncertainty in NH3 undermines42

the efforts to understand historical and present levels of PM2.5 [Yu et al., 2005; Nowak43

et al., 2006; Zhang et al., 2008; Wu et al., 2008; Stephen and Aneja, 2008; Beusen et al.,44

2008; Simon et al., 2008; Henze et al., 2009] and hinders estimates of the response of45

PM2.5 to control measures because of the key role that NH3 plays in governing the bal-46

ance of inorganic fine particulate species [Dennis et al., 2008]. On a larger scale, rates in47

NH3 emissions are a critical source of uncertainty in global budgets of the atmospheric48

transport and deposition of reactive nitrogen [Sutton et al., 2007; Galloway et al., 2008;49

Schlesinger , 2009].50
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These are several reasons for the persistence of uncertainties in NH3 inventories. Char-51

acterizing NH3 sources from the bottom up requires spatially and temporally resolved52

data such as farming practices and intensity. These data are rarely available nationally53

as direct measurements of NH3 emissions at such scales are prohibitive owing to cost.54

Therefore, people have turned to top-down approaches to provide additional constraints55

on NH3 emissions. While direct observations of gas-phase NH3 do exist in select loca-56

tions, observations of other chemically related species are much more prevalent. Further,57

that NH3 can rapidly partition to form aerosol ammonium (NH+
4 ) can limit the utility of58

gas-phase surface observations alone.59

Consequently, owing to the paucity of direct observations of NH3 and the difficulty of60

constraining the NHx (= NH3 + NH+
4 ) system, measurements of species that are regulated61

by the amount of available NH3 have been looked to for constraints on estimates of62

NH3 emissions. The current National Emissions Inventory (NEI) for NH3 is coarsely63

constrained by top-down estimates from the inverse modeling studies of Gilliland et al.64

[2003, 2006]. Measurements of wet deposited NHx were used as constraints, because wet65

NHx estimates depend less on model sensitivity to aerosol partitioning. A drawback to66

this approach is the sensitivity to estimated precipitation and scavenging, aspects which67

are difficult to model accurately and hinder the inversion during some seasons. Taking68

an alternative approach, Henze et al. [2009] used measurements of SO2−
4 and NO−3 from69

the IMPROVE network to constrain the amount of NH3 partitioned into the aerosol70

phase as NH+
4 (which is strongly coupled to SO2−

4 and NO−3 ). In this way, aerosol-phase71

observations were used to constrain NH3 concentrations and, hence, NH3 emissions. This72
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approach, however, is susceptible to model bias in HNO3, which may be significant [Zhang73

et al., 2012].74

Despite these recent efforts, comparisons between inverse modeling results to the recent75

bottom-up NH3 inventory of Pinder et al. [2006] show that considerable discrepancies76

remain in the spatial and seasonal distribution of NH3 emissions throughout the U.S.77

[Henze et al., 2009]; at odds are estimates of the relative magnitude of spring vs summer78

emissions. A limiting factor in reconciling these differences is infrequent and sparse in situ79

observations, even for the aerosol-phase measurements, and a shortage of direct constraints80

on gas-phase NH3. Without understanding the NHx system as a whole, and without tools81

to link observations of these species over the continent to emissions, studies of NH3 or NH+
482

alone may suffer in terms of utility for constraining emissions inventories at a national83

scale [Pinder et al., 2008].84

The detection of boundary layer ammonia from space [Beer et al., 2008; Clarisse et al.,85

2009, 2010; Shephard et al., 2011] provides a new and unprecedented opportunity for86

reducing persistent uncertainties in our understanding of the distribution and impacts of87

atmospheric ammonia. Initial comparisons to global model NH3 distributions indicate that88

NH3 sources may be widely underestimated [Clarisse et al., 2009; Shephard et al., 2011].89

Pinder et al. [2011] have recently verified the utility of such measurements for tracking90

observed spatial and temporal trends in surface level NH3 concentrations. Therefore,91

we consider here how inverse modeling with assimilation of satellite observations of NH392

can be used to further provide rigorous constraints on NH3 sources. Section 2 describes93

the models and inverse methodology used in this study. We then present details of the94

remote sensing observations (Section 3), followed by inverse modeling tests using simulated95
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observations (Section 4), and real observations (Section 5). Finally, we evaluate the96

modeled results by comparing them to independent data sets which are not used during97

the inversion (Section 6) and present our conclusions (Section 7).98

2. Methods

2.1. GEOS-Chem

GEOS-Chem is a chemical transport model driven using assimilated meteorology from99

the Goddard Earth Observing System (GEOS) of the NASA Global Modeling and As-100

similation Office [Bey et al., 2001]. GEOS-Chem includes an online secondary inorganic101

aerosol simulation introduced and described in full by Park et al. [2004]. Model estimates102

of inorganic PM2.5 have been compared to surface measurements [Park et al., 2004, 2006;103

Liao et al., 2007; Henze et al., 2009; Pye et al., 2009] and measurements from aircraft104

campaigns [Heald et al., 2005, 2006]; NH3 emissions are frequently indicated to be a likely105

cause of discrepancies.106

2.2. GEOS-Chem adjoint model

The adjoint of the GEOS-Chem model was developed specifically for inverse modeling of107

precursors of inorganic PM2.5 with explicit inclusion of gas-phase chemistry, heterogeneous108

chemistry, and treatment of the thermodynamic couplings of the sulfate - ammonium -109

nitrate - water aerosol system [Henze et al., 2007, 2009]. As the only adjoint model to ex-110

plicitly represent this system, it is uniquely capable of exploiting speciated measurements111

of both gaseous and particulate components in novel ways. The accuracy of the adjoint112

model calculations is verified through extensive comparisons of adjoint to finite difference113

sensitivities. In order to maximize points of comparison between these two approaches,114
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we consider both ensembles of 1-D models (i.e., no horizontal transport) as well as spot115

tests of the full 3-D adjoint model (testing the full adjoint model for each parameter is116

not feasible, as it would require separate forward model calculations for each parameter).117

Fig. 1 shows the results of a week-long test of the sensitivity of aerosol nitrate to NH3118

emissions, demonstrating the accuracy of the adjoint.119

2.3. Inverse modeling

Data assimilation techniques provide a framework for combining observations and mod-120

els to form an optimal estimation of the state of a system, which in this case is the chemical121

makeup of the troposphere. To start with, a range of models are typically constructed122

using control variables, σ, to adjust elements of the vector of model parameters, p, via123

application as scaling factors, p = pae
σ, where pa is the prior parameter estimate. The124

approach we consider iteratively employs the adjoint of an air quality model in a method125

referred to as 4D-Var [Sandu et al., 2005], used here for inverse modeling of emissions. The126

advantage of this method is that numerous (O(105)) model parameters can be optimized127

simultaneously while still retaining the constraints of the full forward model physics and128

chemistry. This approach to inverse modeling seeks σ that minimizes the cost function,129

J , given by130

J =
1

2

∑
c∈Ω

(Hc− (cobs − b))TS−1
obs(Hc− (cobs − b))

+
1

2
γ(σ − σa)

TS−1
a (σ − σa) (1)

where H is the observation operator, γ is the regularization parameter, σa is the prior131

estimate of the control variables, Sa and Sobs are error covariance estimates of the control132

variables and observations respectively, and Ω is the domain over which observations, cobs,133
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and model predictions are available, b is a bias correction explained in section 5. Overall,134

the cost function is a specific model response, the minimum value of which balances135

the objectives of improving model performance while ensuring the model itself remains136

within a reasonable range (as dictated by S−1
a ) of the initial model. Gradients of the cost137

function with respect to the parameter scaling factors calculated with the adjoint model,138

∇σJ , are supplied to an optimization routine (the quasi-Newton L-BFGS-B optimization139

routine Byrd et al. [1995]; Zhu et al. [1994]), and the minimum of the cost function is140

sought iteratively. At each iteration, improved estimates of the model parameters are141

implemented and the forward model solution is recalculated.142

3. Observations

3.1. Remotely sensed NH3 observations from TES

The high spectral resolution and good signal-to-noise ratio of the TES instrument [Shep-143

hard et al., 2008] have enabled the first detection of tropospheric ammonia from space,144

first demonstrated over Southern California and China [Beer et al., 2008]. TES is an145

infrared Fourier transform spectrometer with spectral resolution of 0.06 cm−1 aboard the146

NASA Aura satellite, launched July 15, 2004 [Schoeberl et al., 2006]. TES global survey147

observations repeat with a 16-day cycle and have a nadir footprint of 5 km × 8 km; for148

example, that is about ∼180 daytime scenes a month over North America after cloud149

screening (optical depths < 1.0) and applying the TES retrieval quality control flags.150

Comparison of model estimates to satellite observations is done via application of the

following formula for the TES observational operator, H,

Hc = ca + A(Mc− ca) (2)
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where c is the model estimated NH3 profile, M is a matrix that maps these values to151

the retrieval units and vertical levels, A is the averaging kernel, and ca is the a priori152

NH3 profile used for the retrieval [Shephard et al., 2011]. By comparing TES NH3 pro-153

files to mapped model estimates, Hc, rather than the native model NH3 profile, c, the154

contribution of error in ca to the measurement error, Sobs, is minimized [Rodgers , 2000].155

For the sake of 2D visualization, the Representative Volume Mixing Ratio (RVMR)156

metric [Payne et al., 2009; Shephard et al., 2011] is used in this study to provide a means157

of comparing TES profiles to model estimates in a manner that accounts for heterogeneity158

in the instrument’s sensitivity to NH3.159

3.2. Surface measurements

In this study, model estimates are evaluated using surface observations of ammonia,160

sulfate, nitrate, ammonium and wet deposited NHx from several monitoring networks161

throughout the U.S.. Surface NH3 observations are from the National Atmospheric Depo-162

sition Program (NADP) Ammonia Monitoring Network (AMoN), which is comprised of163

triplicate passive ammonia monitoring samplers located at 21 sites across the U.S. with a164

two-week long observation cycle. The locations of these 21 monitoring stations are shown165

in Fig. 2. Observation of each site is compared with modeled concentrations during the166

year November 2007 through June 2010.167

Wet deposition observations are taken from the NADP National Trends Network (NTN)168

(http://nadp.sws.uiuc.edu/NADP), which are predominantly located away from urban169

areas and point sources of pollution. NTN has more than 200 sites with weekly long170

observation cycles.171
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Model estimates of sulfate and nitrate aerosols are compared to observations from the172

Interagency Monitoring of Protected Visual Environments (IMPROVE) network for the173

year 2008 [Malm et al., 2004]. The IMPROVE network collects PM2.5 particles on Teflon,174

nylon, and quartz filters using a modular, cyclone-based sampler with critical orifice flow175

control. Sulfate and nitrate aerosols are collected on nylon filters, which are sampled over176

24 h every third day.177

4. Pseudo inversions

We first assess the capabilities and limitations of the GEOS-Chem inverse modeling178

setup in idealized control conditions by designing inverse problems with known solutions.179

Pseudo-observations are generated through application of the TES NH3 retrieval algorithm180

to a simulated atmosphere from GEOS-Chem. The emissions used during this simulation181

are designated as the true emissions. Sampling times, locations and error estimates reflect182

those of actual TES observations. For these tests, 87 pseudo TES observations are used183

from July 14 through 19, 2005, along roughly a dozen global survey transects crossing the184

midwestern U.S..185

To test the inverse model, NH3 emissions parameters were initialized to values different186

from the true emissions. In the first test, initial model emissions are half of the true187

value. Fig. 3(a) shows these values in black along with linear line slope m and r2. After188

optimization, the recovered emissions are unbiased and have a visible variance around the189

true emissions of ∼30%, as shown in blue in Fig. 3(a). In a second test using the same190

pseudo observations, the model emissions were initially biased high by a factor of 1.8 (Fig.191

3(b)). The emissions recovered after optimization have a 20% high bias and again a 30%192

variance about the true values. While the variance of the recovered emissions is similar193
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in both tests, the assimilation starting with emissions that are initially too high is less194

successful.195

To further investigate the reasons for this asymmetry and the variance of the optimized196

emissions, additional tests are performed to separate the possible impacts of inversion197

error, retrieval bias and measurement error. In each of the following tests, the true emis-198

sions are used to initialize the inversion. The first test uses the same pseudo observations199

as previously generated. This test again results in a high bias. As the same model state is200

used to generate the pseudo observations as was used to intialize the inversion, this bias201

can be attributed to a high bias in the retrieval itself. Retrieval bias, as explained further202

in Shephard et al. [2011], is owing to the fact that the retrieval always selects a moderate203

or polluted profile as an initial guess in order to avoid the null space of the radiative204

transfer operator. As the optimal estimation algorithm iterates towards a solution, the205

process may halt when values reach TES’s detection threshold, resulting in a high bias.206

To test this, the retrieval algorithm is modified to use only a moderate profile as an initial207

guess. Pseudo observations generated using these profiles lead to slightly less high bias208

in the inversion, at the cost of increased variance, see Fig. 4(b). As the magnitude of the209

final bias in tests (a) and (b) are similar to those in the pseudo inversions, it seems that210

the retrieval bias explains the bias exhibited in the pseudo inversions, and thus the inverse211

model itself is not appreciably intrinsically biased. To isolate the impact of measurement212

noise, the model profiles from the true model are applied with the same size error as213

the measurement error, and then assimilated. These profiles, unlike the previous tests,214

correspond directly to the true model and are not retreived profiles from the retrieval pro-215

cess. The impact of this measurement noise is only a slight adjustment in the emissions.216
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Thus, the variance exhibited in the pseudo inversions is intrinsic to the inversion process217

itself, and would occur even if observations were perfect. This happens because there are218

variations in emissions that lie in the null space of the forward model. In other words,219

having some emissions too high and some emissions too low can result in indistinguishable220

(to TES) distributions of NH3. Overall, the pseudo observation tests lead us to conclude221

that (1) measurement noise alone will not lead to unstable inversions (2) emissions that222

are underestimated can likely be recovered (3) emissions that are overestimated will be223

decreased, though this is countered by bias in the retrievals leading to overestimate of224

emissions in conditions where the model emissions are intially too high and (4) that many225

more iterations and observations would be necessary to reduce the variance of the emis-226

sions estimates from the truth, which will be as best ∼30%. While substantial, this is a227

significant improvement over initial errors of ∼100%.228

5. TES assimilation

We next proceed to constrain U.S. NH3 sources using real observations. TES observa-229

tions throughout 2006 - 2009 are compared to model estimates from a 2008 GEOS-Chem230

chemical transport model in a global 2◦ × 2.5◦ simulation. Four years of observations are231

necessary to provide sufficient spatial data coverage. Inter-annual comparisons of AMoN232

NH3 data indicate no substantial trends in this time period.233

Thousands of TES retrievals are available for the assimilation, but not all of the TES234

retrievals are usable. The satellite can not always detect NH3 for several reasons, such235

as the presence of clouds, low NH3 concentrations (low signal to the noise ratio), and236

poor thermal contrast between the earth and atmosphere. Thus quality and diagnostic237

flags are defined to classify and filter the retrievals, keeping only those that have Degree238
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Of Freedom For Signal (DOFS) greater than 0.1, or DOFS may less than 0.1 but with239

high (absolute value greater than 7 K) thermal contrast. We use the retrievals from240

daytime only, since retrievals from the night time do not capture the diurnal variability241

of the surface NH3 concentrations. The TES retrievals are corrected by subtracting mean242

biases. These biases are generated from the discrepancy between TES retrievals and true243

profiles [Shephard et al., 2011], and the mean biases are calculated as three types according244

to the types of the a priori profiles (see Supplementary Figure 1).245

A key aspect of inverse modeling is regularization through inclusion of the penalty, or246

background, term in the cost function. To define Sa, uncertainties of ammonia in the emis-247

sions inventories are assumed to be 100% of the maximum emissions of ammonia across248

the globe. Uncertainties of SO2 and NOx are 20% and 50% of the maximum emission of249

corresponding sources across the globe. We also assume the errors are uncorrelated. Us-250

ing an L-curve [Hansen, 1998] (see Supplementary Figure 2), we select the regularization251

parameter (γ) to be 124 for April, 100 for July, and 50 for October.252

TES NH3 observations are assimilated using the GEOS-Chem adjoint-based inversion.253

The total initial and optimized ammonia emissions are shown in Fig. 5. The initial model254

estimates of NH3 profiles are predominately lower than the observations. The optimized255

emissions generally increase over the entire U.S.. There are large increases in southern256

California in all three months. Other large increases are located in the central U.S., as257

well as Mexico and Cuba. We do not have much information about NH3 in Mexico and258

Cuba due to lack of measurement records there, but large (e.g. 15 ppb) NH3 RVMR values259

are observed in April whereas the corresponding GEOS-Chem model estimates using the260
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initial emissions are very small (e.g. 1.37 ppb). As a result of the inversion, emissions are261

increased in such areas by up to a factor of 9.262

The RVMR represents a TES sensitivity weighted boundary layer averaged value with263

the influence of a priori reduced as much as possible [Shephard et al., 2011]. We calculate264

RVMR only for good retrievals which have high SNR and high thermal contrast. The265

RVMR is also calculated for the model in those locations which have valid TES retrievals.266

Fig. 6 shows the comparison of NH3 RVMR from TES and GEOS-Chem model before267

and after the assimilation. It has 500 ∼ 700 RVMR values in each month including values268

from 4 years. The slope of the linear regression line increases in each month. However, the269

modeled NH3 RVMRs at low values change only slightly after the optimization in all three270

months. We note however that these differences in RVMR do not reflect observation bias271

or uncertainty, which contribute to the cost function. In order to show the locations which272

have significant changes in RVMR, we consider spatial plots of the difference between the273

TES and GEOS-Chem RVMR before and after the assimilation for each month (Fig. 7).274

Initially, the model RVMRs are generally less than the TES RVMRs, as indicated by the275

red points in the map. After the optimization, model RVMRs increase in many places.276

Some of them are larger than the TES RVMRs, as indicated by the blue points in the277

map and the overall model bias relative to TES is reduced. The discrepancies of TES278

RVMRs and model RVMRs change from positive to negative in Southern California and279

Central U.S. in all three months, consistent with the spatial plots showing large increases280

of ammonia emissions in these locations (Fig. 5).281

We next assess the sensitivity of these results to the assumed a priori emissions errors,282

Sa. Table 1 shows the effects of varying a prior errors on the total optimized emissions283
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of different species. We assume Sa(NH3) to be 50% of the maximum a priori emission for284

all species. Generally, the results of the inversion are not very different in terms of total285

emission changes for each species from the base case inversion, see Table 1. However,286

absolute changes in total emissions of SO2 and NOx increase slightly as their uncertain-287

ties increase relative to those of NH3, while changes in NH3 total emissions decrease as288

uncertainty of NH3 decreases.289

6. Evaluation

In the next section, we compare model estimates using the optimized emissions to290

independent data sets not used during the inversion.291

6.1. AMoN

We first consider a comparison of the posterior model results to AMoN NH3 observations292

(Fig. 8). Initially, the model broadly underestimates AMoN values. After optimization,293

the NH3 concentrations increase in each month. The R2 increases by 22.4% in April,294

28.9% in July and 27.2% in October. The slope increases by 353.3% in April, 96.1% in295

July and 77.1% in October. However, while the root mean square error (RMSE) decreases296

by 13% in April and 9.5% in October, it increases by 77.6% in July. The normalized mean297

bias (NMB) after the optimization decreases from -0.678 to -0.069 in April, increases from298

-0.045 and -0.138 to 0.659 and 0.166 in July and October, respectively. Overall, the model299

does a better job of capturing the range and variability of NH3 at AMoN sites in April300

and October, while in July, the model estimates are consistently biased high.301

TES has a detection limit of about 1 ppb, and a positive bias of about 0.5 ppb [Shephard302

et al., 2011]. We can see model values that are below 1 ppb do not change significantly303
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before and after the optimization in all three months (Fig. 8). The bias shown in Fig. 8304

for July is much higher than 0.5 ppb. One possible reason may be the sampling bias of the305

TES retrievals. This can be assessed by analyzing NH3 simulations from high resolution306

(12 km × 12 km) Community Multi-scale Air Quality (CMAQ) model simulations. Sur-307

face level NH3 concentrations throughout the U.S. are compared to concentrations from308

locations corresponding to successful TES retrievals. The mean surface NH3 concentra-309

tion of CMAQ at locations which have successful TES retrievals is about 30% larger than310

the mean value of that for the whole U.S.. This comparison is facilitated by the fact that311

the TES footprint (5 km × 8 km) and CMAQ grid cells are similar in size. As shown in312

Fig. 8, changes in large concentrations drive the optimization. A lack of TES observations313

constraining low values may allow for initial model values that already overestimate low314

NH3 concentrations to become even higher in the optimized model. In future work, re-315

sampling the TES retrievals may be one way to decrease the sampling bias. Increasing the316

model resolution may also improve our ability to model localized peak NH3 concentrations317

measured by TES and to match observations from AMoN.318

6.2. NTN

As an additional check of the broad NHx budget, we consider the NHx wet deposition319

as recorded by NTN (NADP) sites. To make this comparison, we consider that simulated320

precipitation is a critical driver in the performance of the GEOS-Chem simulated wet321

deposition estimates, as biases in the model estimated precipitation can lead to biases322

in the GEOS-Chem model estimates. We therefore adjust the modeled wet deposition323

diagnostic to account for differences in the modeled and observed precipitation by linearly324
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scaling the model estimated wet deposition by the ratio of the observed to estimated325

precipitation.326

Fig. 9 shows the comparison of modeled wet deposition with the NTN observations.327

Generally, the inversion increases the wet deposition during all three months. Also corre-328

lation (R2) improves in each month. The square of correlation coefficient (R2) increases by329

30.6% in April, 393.9% in July and 27.9% in October. In July, optimized values increase330

a lot; the slope of the linear regression line increases from 0.162 to 0.65, but in April331

and October changes in NHx wet deposition were not as significant as in July. Compar-332

isons between GEOS-Chem and NTN observations are also shown in Zhang et al. [2012].333

They compare the NH3 wet deposition from GEOS-Chem at the 0.5◦×0.67◦ resolution334

with NTN observations from 2006. No significant annual biases and little seasonal bias335

are found in the comparison. Differences between this study and the present work are336

the model resolution and the number of months per season included in the comparisons337

(one vs three). We will investigate using additional months and higher resolution inverse338

models as these become available.339

6.3. IMPROVE

For an additional evaluation, we also compare the assimilated results with aerosol obser-340

vations from IMPROVE in 2008. Fig. 10 shows that model optimization slightly decreases341

the sulfate concentrations and increases the nitrate concentrations, which facilitates in-342

creases in NH3 concentrations to match TES observations. Still, the changes are small,343

and the sulfate concentration from the model has a reasonable correlation with the IM-344

PROVE observation before and after optimization in each month. Note that the outlier345

point in October that has a large observed value but a nearly zero model value is located346

D R A F T May 29, 2012, 9:36pm D R A F T



ZHU ET AL.: INVERSE MODELING RESULTS OF NH3 EMISSIONS X - 19

in Hawaii. The model does not represent this high value owing to the proximity of the347

observation to the local volcano source. For nitrate, optimization does not help the com-348

parison with the observations, which are initially too high. As modeled NH3 increases to349

improve agreement with TES, leading to more nitrate formation, the model nitrate bias350

becomes even higher compared to IMPROVE. One hypothesis is that HNO3 formation351

from N2O5 hydrolysis is too high in the model [Zhang et al., 2012]. In contrast Henze352

et al. [2009] uses sulfate and nitrate to constrain the NH3 emissions, which implies NH3353

sources are too high. Thus, to achieve closure relative to all data sets, it is evident that354

assessment of model error beyond NH3 sources, in terms of scavenging efficiencies and355

HNO3 production, is required.356

7. Conclusions

Here we have considered the potential for space-based observations of NH3 to constrain357

monthly average emissions factors. Initial tests using pseudo-observations show that un-358

der ideal conditions (i.e., a perfect model) using two-weeks worth of TES data, 70% of359

the variance of the emissions can be constrained in terms of total magnitude. We then360

proceed to assimilate TES observations for multiple years. Here we present a range of361

constrained inventories and show their output relative to independent data sets. Gener-362

ally, model optimization increases NH3 concentrations and NHx wet deposition; nitrate363

and sulfate concentrations are not largely impacted. Overall, the model does a better job364

of capturing the range and variability of NH3 at AMoN sites in April and October, while365

in July, the model estimates are consistently biased high. Compared to the wet depo-366

sition observations of NTN, optimization decreases the normalized mean bias (NMB) in367
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April, enhances the NMB in July and October, but overall leads to increased correlation368

of modeled and observed values.369

Overall, we conclude that inverse modeling with satellite information indeed helps con-370

strain the ammonia emissions, particularly in strong source regions; additional observa-371

tions or higher resolution inverse models may be necessary to constrain low values. The372

findings indicate that initial NH3 emissions inventory are broadly underestimated in sev-373

eral areas throughout the U.S.. This is at odds with previous inverse constraints based374

on nitrate aerosol alone [Henze et al., 2009]. However, these results are consistent with375

more recent works regarding levels in the U.S. and globally [Clarisse et al., 2009; Zhang376

et al., 2012]. The absolute extent of the emissions underestimation is still in question, as377

the precise accuracy of the satellite observations is difficult to specify. A greater fraction378

of peak values are included in the assimilation owing to satellite detection limits, lead-379

ing to a sampling bias, which may cause the model to overestimate the emissions after380

optimization. Future work will consider bi-direcitonal flux since it may explain some of381

these results. Also, we will look at additional observations from intensive field campaigns.382

Resampling TES retrievals will also included in our future work in order to decrease the383

sampling bias.384
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Figure 2: Validation of adjoint model sensitivities via comparison to finite difference (FD) results
for week-long simulations. Solid lines are 1:1, dashed are regressions with given r2 and slope m. (a)
Global tests of the 1-D adjoint model: sensitivities of nitrate aerosol with respect to NH3 emissions.
(b) Spot tests of the full adjoint model: change in direct aerosol radiative forcing from perturbations
(positive and negative) to SO2 emissions in eight different locations.

databases (CAC, BRAVO, NEI99) will be used for emissions over Canada, Mexico and the
U.S., respectively.

GEOS-Chem adjoint model The adjoint of the GEOS-Chem model was developed
specifically for inverse modeling of precursors of inorganic PM2.5 with explicit inclusion of gas-
phase chemistry, heterogeneous chemistry, and treatment of the thermodynamic couplings
of the sulfate - ammonium - nitrate - water aerosol system (Henze et al., 2007). As the only
adjoint model to explicitly represent this system, it is uniquely capable of exploiting both
gaseous and particulate measurements in novel ways. Since its initial development, several
advances have been made in the capabilities of the GEOS-Chem adjoint. An up-to-date
list of features is available at the GEOS-Chem adjoint wiki.1 In addition to the previously
mentioned work of Henze et al. (2008), recent applications of the GEOS-Chem adjoint include
inverse modeling of CO emissions in Asia (Kopacz et al., 2009) and calculation of long-range
influences on observed O3 concentrations in the western United States.2

Verification of the adjoint model is an important yet challenging task. The most common

1http://wiki.seas.harvard.edu/geos-chem/index.php/GEOS-Chem Adjoint
2Zhang, L., D. J. Jacob, M. Kopacz, D. K. Henze, and D. A. Jaffe, Intercontinental source attribution of

ozone pollution at western U.S. sites using an adjoint method, submitted to Geophys. Res. Let.

8

Figure 1. Validation of adjoint model sensitivities via comparison to finite difference

(FD) results for week-long simulations. Solid lines are 1:1, dashed are regressions with

given r2 and slope m.

Figure 2. Monitoring sites locations of AMoN (Ammonia Monitoring Network)
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Figure 3. To test the inverse model, NH3 emissions parameters were initialized to

values different than the true emissions. (a) initial starts from half of true; (b) initial

starts from 1.8 times of true.
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Figure 2. Global figure caption (a) describes the first subfigure; (b) describes the second subfigure;

3. Actual application

For an application with real data, we will use TES
observations throughout 2009 and compare these to
model estimates from the GEOS-Chem chemical trans-
port model in a global 2◦ × 2.5◦ simulation.
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Figure 6. Comparison of NH3 Representative volume Mixing Ratio (RVMR) from TES

and GEOS-Chem before and after the assimilation in U.S.
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Figure 7. Difference of NH3 Representative volume Mixing Ratio (RVMR) between

TES and GEOS-Chem before and after the assimilation in U.S.
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Figure 8. Comparison of GEOS-Chem NH3 concentrations with observations from

AMoN sites before and after the assimilation. Square of the correlation coefficient (R2),

root mean square error (RMSE), and normalized mean bias (NMB) are shown. Black

solid lines are regressions. Grey dash lines are 1:1.
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Figure 9. Comparison of GEOS-Chem NHx wet deposition with observations from

NTN(NADP) sites before and after the assimilation.
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Table 1. The effects of uncertainty error on the emissions of different species. Total

emissions changes in U.S. for NH3, NOx, and SO2 after different uncertainty errors applied

to the parameters. Sa is error covariance estimates of parameters. E0 is the initial

emissions.

Month Uncertainties, Sa/MAX(E0) Total emissions changes

SO2 NOx NH3 ∆SO2 ∆NOx ∆NH3

April
20% 50% 100% -11.9% -14.69% 112.99%

50% 50% 50% -11.58% -15.39% 99.95%

July
20% 50% 100% -8.35% -4.24% 54.80%

50% 50% 50% -10.23% -4.58% 53.26%

October
20% 50% 100% -3.56% -1.99% 36.07%

50% 50% 50% -3.64% -2.41% 35.16%
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Figure 10. Comparison of GEOS-Chem SO4f and NO3f concentrations with observa-

tions from IMPROVE sites before and after the assimilation.
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profiles [Shephard et al., 2011]. The mean biases are calculated as three types according to
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