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Abstract 15 

Retrievals of the isotopic composition of water vapor from the Aura Tropospheric Emission Spectrometer 16 

(TES) have unique value in constraining moist processes in climate models. Accurate comparison 17 

between simulated and retrieved values requires that model profiles that would be poorly retrieved are 18 

excluded, and that an instrument operator be applied to the remaining profiles. Typically, this is done by 19 

sampling model output at satellite measurement points and using the quality flags and averaging kernels 20 

from individual retrievals at specific places and times. This approach is not reliable when the modeled 21 

meteorological conditions influencing retrieval sensitivity are different from those observed by the 22 

instrument at short time scales, which will be the case for free-running climate simulations. In this study, 23 
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we describe an alternative, ‘categorical’ approach to applying the instrument operator, implemented 1 

within the NASA GISS ModelE general circulation model. Retrieval quality and averaging kernel 2 

structure are predicted empirically from model conditions, rather than obtained from collocated satellite 3 

observations. This approach can be used for arbitrary model configurations, and requires no agreement 4 

between satellite-retrieved and modeled meteorology at short time scales. To test this approach, nudged 5 

simulations were conducted using both the retrieval-based and categorical operators. Cloud cover, surface 6 

temperature and free-tropospheric moisture content were the most important predictors of retrieval quality 7 

and averaging kernel structure. There was good agreement between the δD fields after applying the 8 

retrieval-based and more detailed categorical operators, with increases of up to 30 ‰ over the ocean and 9 

decreases of up to 40 ‰ over land relative to the raw model fields. The categorical operator performed 10 

better over the ocean than over land, and requires further refinement for use outside of the tropics. After 11 

applying the TES operator, ModelE had δD biases of -8 ‰ over ocean and -34 ‰ over land compared to 12 

TES δD, which were less than the biases using raw modeled δD fields. 13 

1. Introduction 14 

In order to usefully compare model predictions against satellite measurements, various features of the 15 

retrieval must be taken into account. For retrievals of trace-gas profiles based on optimal estimation, these 16 

are: the effects of the satellite’s orbital path, varying retrieval sensitivity under different atmospheric 17 

conditions, limited vertical resolution, and contributions from a prior constraint profiles. This involves 18 

excluding profiles that would be poorly retrieved, and, for the profiles remaining, applying an instrument 19 

operator to the raw model profiles. This transforms the raw model fields of interest into what would be 20 

seen by the instrument. By comparing the modified profiles against the satellite retrievals, genuine model 21 

errors can be more readily identified.  22 

The vertical sensitivity of each retrieval to the true vertical profile is represented by an averaging kernel, 23 

which depends on factors such as cloud cover and surface temperature. In applying the instrument 24 
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operator to the model field, the choice of quality filtering, prior and averaging kernels should be as 1 

specific as possible to the model conditions at each time and location. Under the presence of thick clouds, 2 

for instance, infrared retrievals are typically of poor quality and excluded from any analysis of the 3 

satellite data; the same filter needs to be applied to the model data in these conditions. This is also true for 4 

averaging kernel structure. For a high quality retrieval over low clouds, the peak retrieval sensitivity will 5 

be at a greater height than for clear sky conditions, all other factors being equal.  6 

Suitable quality filtering and averaging kernel selection is commonly assumed to be achieved by sampling 7 

the model fields along the orbital path of the satellite and using information from individual retrievals. 8 

The assumption underlying this approach is that the modeled meteorological conditions influencing 9 

retrieval sensitivity and averaging kernel structure are in good agreement with those viewed by the 10 

instrument. However, persistent differences between the observed and modeled clouds, for example, 11 

would lead to unsuitable quality filtering, averaging kernel selection, and possibly inaccurate diagnostics. 12 

When the quality filtering and averaging kernels selection are poor, differences between the satellite and 13 

the model for the quantity of interest cannot be attributed solely to model error, which is the goal, but also 14 

to this poor selection, defeating the purpose of applying the instrument operator. Selection error will 15 

increase with fewer constraints on the modeled meteorology. It is presumably smaller for chemical 16 

transport models (CTMs) with fully-prescribed, assimilated meteorology, and increases for coupled 17 

chemistry-climate models with nudged meteorological components such as horizontal winds. For free-18 

running simulations, there is no expectation that the modeled and instrument-measured meteorological 19 

fields agree at short time scales. To the best of our knowledge, however, the effect of errors in the 20 

meteorology (e.g. clouds) on retrieval quality filtering and averaging kernel selection has not been 21 

assessed in any of these cases.  22 

Our interest is in retrievals of the deuterium composition of water vapor (HDO) from the Tropospheric 23 

Emission Spectrometer (TES).  These data have unique potential value in understanding moist processes 24 

in the atmosphere (Sherwood et al., 2010), and for our purposes, in constraining cloud physics 25 
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parameterizations. For this purpose, perturbed physics tests of convective parameters with nudged winds 1 

can provide a useful evaluation of the subgrid physics with realistic boundary conditions, while free-2 

running simulations are important when parameterization changes can feedback strongly onto the large-3 

scale circulation. But in the latter case, because we have no expectation of time-evolving agreement 4 

between the free-running model and observed weather, the standard approach to retrieval quality filtering 5 

and averaging kernel selection cannot be used reliably. This is particularly important in the case of 6 

deuterium because cloud processes will strongly influence the isotopic composition of vapor, and also its 7 

measurability.  8 

In this study, we examine the assumptions underlying the standard, retrieval-based approach to applying 9 

the TES HDO operator and describe an alternative ‘categorical’ approach for use specifically with free-10 

running climate model simulations. The categorical approach relies as little as possible on short time-11 

scale agreement between the model and instrument of quantities that influence retrieval quality and 12 

averaging kernel structure. It instead uses their dependence on atmospheric conditions, similar to those 13 

identified by Lee et al. (2011), in trying to predict the retrieval quality and averaging kernel structure for a 14 

given set of model conditions. Our approach was also motivated by the progress made in cloud simulators 15 

(e.g. Bodas-Salcedo et al., 2011) in that we apply the TES operator as an instrument simulator within the 16 

NASA GISS ModelE general circulation model (GCM). Our focus is on the tropics, in order to evaluate 17 

the performance of the TES operators under a limited set of conditions, and where our future process-18 

based studies will be initially conducted. 19 

The paper is structured as follows. Section 2 describes the TES HDO retrievals and the factors which 20 

influence retrieval quality and averaging kernel structure. The GISS ModelE is described in Section 3. 21 

The standard, retrieval-based TES operator and its suitability are described in section 4. The new, 22 

categorical TES operator and its suitability are described in section 5. In section 6, the effects of applying 23 

the two types of TES operators on the modeled δD fields are examined, several sensitivity tests are 24 
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described, and the retrieved and modeled δD fields are briefly compared. A brief discussion follows in 1 

section 7. Future studies will examine the reasons for model-satellite δD discrepancies in detail. 2 

2. TES HDO/H2O retrievals 3 

2.1 TES HDO retrieval and instrument operator 4 

The TES instrument onboard the Aura satellite is an infrared Fourier transform spectrometer measuring in 5 

the 650 cm-1 to 3050 cm-1 spectral range, following a sun-synchronous orbit with a repeat cycle of 16 days 6 

(Beer et al., 2001). We use version 4 level 2 H2O and HDO nadir retrievals which have a horizontal 7 

footprint of 5.3 km by 8.5 km. H2O and HDO concentrationamounts are jointly retrieved using optimal 8 

estimation, using spectral windows in the region between 1100 cm-1 and 1350 cm-1 (Worden et al., 2006). 9 

The retrieved profiles represent an adjustment from the prior H2O and HDO constraint profiles. The 10 

adjustment is estimated iteratively to minimize the difference between the measured spectra and that 11 

predicted by a forward radiative transfer model using the estimated profiles as input (Clough et al., 2006). 12 

Retrieved profiles are provided on 67 pressure levels. 13 

For HDO, a single, constant HDO/H2O profile from the global mean of the NCAR CAM model is used 14 

for the prior constraint. For H2O, the prior varies by retrieval, and is obtained from collocated grid points 15 

from the GEOS-5 global transport modeled operated by the NASA Global Modeling and Assimilation 16 

Office (GMAO) (Rienecker et al., 2007). A single, fixed H2O constraint would yield poor-quality 17 

retrievals because H2O concentrationamount can vary so widely in the troposphere. The retrieval is based 18 

on the logarithm of H2O and HDO profiles because of their potentially large variation in the vertical, and 19 

to ensure positive retrieved concentrationamounts. The estimated error of the retrieved HDO is 10% in the 20 

tropics (Worden et al., 2007b). All analysis is for daytime retrievals only, for compatibility with the 21 

simulated ISCCP cloud properties (described in Sect. 3). 22 
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The TES HDO instrument operator applied to model profiles can be described as follows. Using the 1 

notation of Worden et al. (2011), the model HDO/H2O ratio 𝒙𝑹 suitable for comparison with satellite 2 

measurements is expressed as  3 

𝒙𝑹 = 𝒙𝒂𝑹 + 𝑨𝑫𝑫 − 𝑨𝑯𝑫 𝒙𝑫 − 𝒙𝒂𝑫 − 𝑨𝑯𝑯 − 𝑨𝑫𝑯 𝒙𝑯 − 𝒙𝒂𝑯 .  (1) 

In Eq. (1), the subscripts and superscripts indicate the following: R relates to the isotopic ratio HDO/H2O, 4 

a relates to a prior constraintn a priori constraint, D relates to HDO and H relates to H2O.  In Eq. (1), 𝒙𝒂𝑹 5 

is the prior isotopic ratio HDO/ H2O before standardization with respect to Vienna Standard Mean Ocean 6 

Water (VSMOW), 𝒙𝒂𝑫 is the prior HDO concentrationamount and 𝒙𝒂𝑯 is the prior H2O 7 

concentrationamount. 𝒙𝑫 and 𝒙𝑯 are the raw, modeled HDO and H2O concentrationamounts, 8 

respectively. All x terms are the logarithm of the isotopic ratio or species concentrationamount, i.e., x = 9 

ln(q), where q is the species concentrationamount in units of volume mixing ratio (vmr). The x terms are 10 

column vectors of size 67x1, with modeled concentrationamounts interpolated linearly from the 40 model 11 

levels. 𝑨𝑫𝑫 is the HDO averaging kernel, 𝑨𝑯𝑯 is the H2O averaging kernel, and 𝑨𝑯𝑫 and 𝑨𝑫𝑯 are the 12 

cross-kernels between them. The cross kernels represent the sensitivity of one retrieved species to the 13 

actual profile of the other. All averaging kernels are square but asymmetric matrices with size 67x67. 14 

Following Risi et al. (2012), the full 67 TES pressure levels were truncated to the vertical range relevant 15 

to HDO analysis. The 𝒙𝑹 and 𝒙𝒂𝑹 vectors were truncated to the 10 TES pressure levels spanning the 909 16 

hPa to 383 hPa range, where the HDO retrievals are somewhat sensitive. The 𝒙𝒂𝑫 , 𝒙𝒂𝑯 , 𝒙𝑫 and 𝒙𝑯  17 

vectors were truncated to the 26 TES levels spanning the 1000 to 100 hPa range, HDO and H2O 18 

composition over which can influence the retrievals over 907 hPa to 383 hPa. Accordingly, each of the 19 

averaging kernel matrices is truncated to size 10x26. This truncation reduces computation time and 20 

storage requirements for the TES data considerably, with little effect on the results (Risi et al., 2012). 21 

Most analysis presented in this study is further restricted to the 825 hPa to 510 hPa range where the HDO 22 

retrieval is most sensitive, following Yoshimura et al. (2011), and which spans the ~600 hPa level 23 
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examined by Berkelhammer et al. (2012) and Risi et al. (2012). TES measurements were mapped to the 2o 1 

x 2.5o ModelE grid. 2 

The overall sensitivity of the retrieval is measured by the trace of the HDO averaging kernel 𝑨𝑫𝑫. HDO 3 

retrieval sensitivity is influenced by cloud thickness and height, surface temperature and moisture content 4 

(Worden et al., 2011). Only retrievals classified as high quality are included, which was defined as having  5 

and with sensitivity greater than 0.5 are included (Lee et al., 2011; Berkelhammer et al., 2012; Risi et al., 6 

2012) and the overall HDO retrieval quality flag set to 1. The minimum sensitivity requirement ensures 7 

that the retrieval is sufficiently sensitive over some vertical range to the measured spectra, and not 8 

dominated by contributions from the prior constraint.  Fig. 1 shows an example TES nadir orbital path 9 

during daytime over the tropics for one day. Of 133 measurements, only the 85 high-quality retrievals are 10 

shown. Example averaging kernels for one high quality retrieval over the Indian Ocean are shown in Fig. 11 

2. After the quality filtering, we adopt the pressure level of peak sensitivity for a given level of retrieved 12 

HDO, defined as pD, as the key characteristic of the operator. In Fig. 2a, pD for both the 619 hPa (purple) 13 

and 681 hPa (light blue) is approximately 700 hPa. The mean pD between 825 hPa and 510 hPa will be the 14 

primary metric used for distinguishing averaging kernel shapes. 15 

Fig. 3 shows the spatial variation of retrieval quality and pD across the tropics during 2006-2009. There 16 

were 202 713 daytime retrievals, 69% of which were high quality over the ocean and 57 % over land, but 17 

with considerable spatial variation (Fig. 3a). Over the oceans, there is lower were fewer high-quality 18 

retrieval qualitys over the ITCZ and SPCZ bands, eastern Indian Ocean, the Maritime Continent, and the 19 

West Pacific Warm Pool due to the frequent presence of precipitating clouds. There is also lower retrieval 20 

quality off of the west coasts of South America and Africa possibly due to low moisture content and 21 

lower sea-surface temperatures. Over land, the lowest quality is over the Sahara, presumably due to low 22 

moisture content. Given that the retrieval quality can decrease under either very wet or very dry 23 

conditions, there is no apparently simple rule which would separate low and high quality retrievals. 24 
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Over 825 hPa to 510 hPa, there is also considerable variation in pD for high quality retrievals (Fig. 3b). 1 

Over the oceans, pD is lower (at a higher altitude) in moist regions where there is abundant mid 2 

tropospheric moisture, but also in the dry regions off of the coasts of South America and Africa 3 

presumably due to low-level marine stratocumulus, as described by Lee et al. (2011).  pD is higher over 4 

the dry subtropical anticyclones due to a moist boundary layer and dry free troposphere. 5 

2.2 Observed controls on TES HDO retrieval quality and pD 6 

The first task in developing the new approach is to understand controls on retrieval quality and pD in the 7 

TES measurements. Possible controls were identified using the pattern correlations between Fig. 3a and 8 

Fig. 3b and different underlying meteorological quantities. The following variables were considered from 9 

mean fields calculated from 2006-2009: cloud optical depth (τ), cloud fraction (CF), defined as the 10 

percentage of retrievals in a grid cell with cloud optical depths greater than 0.3, cloud top pressure (CTP), 11 

surface temperature (TS), and moisture content. Moisture content was expressed as total precipitable water 12 

(PWT) and further separated into precipitable water in the boundary layer (PWB) (within 150 hPa of the 13 

surface) and precipitable water in the free atmosphere (PWF) (above 150 hPa from the surface). All 14 

moisture quantities were computed from the prior H2O profiles, which are sampled from GMAO 15 

reanalysis. The analysis of controls on pD is for high quality retrievals only, for both the averaging kernels 16 

and underlying meteorological quantities. Correlation and regression quantities were computed using 17 

ordinary least-squares regression, which does not take into account errors in the control variables. 18 

Table 1 lists the pattern correlations. Over the ocean, retrieval quality was most strongly associated with 19 

CF, with a correlation of -0.70, indicating that, as would be expected, retrieval quality decreases with 20 

increasing cloud cover. Compared to CF, τ was a weak predictor of retrieval quality, likely because of its 21 

highly non-normal distribution. Over land, retrieval quality was most strongly associated with TS, with a 22 

correlation of -0.72 and to a slightly lesser degree, with PWB, (which itself has a correlation of -0.59 with 23 

TS). Over the ocean, pD is most strongly associated with PWF. As PWF decreases, pD moves toward the 24 

boundary layer where moisture content is generally abundant, and will therefore exert a stronger influence 25 
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on the retrieved HDO at higher altitudes. PWB itself had a low correlation with pD because it varies 1 

substantially less than PWF over the ocean. Over land, pD was most strongly associated with TS, but with 2 

a lower correlation of -0.51 compared to over ocean, and equally high correlation with PWF.  3 

The linear fits between retrieval quality and pD for the primary control variables are shown in Fig. 4. It 4 

can also be seen that the observed control on retrieval quality over land is due to a set of high-5 

temperature, low quality points, which were associated with extremely hot and dry conditions over the 6 

Sahara (Fig. 3a). The unexplained variation in these relationships is due to the influence of the more 7 

weakly correlated variables and other unknown factors. We considered adopting multivariate regression 8 

models to capture this variability, but found that the collinearity between meteorological quantities led to 9 

unstable regression estimates, and that remedial measures such as principal component regression 10 

precluded straightforward interpretation.  11 

Comparisons such as those in Fig. 4 will serve as the primary means of evaluating the suitability of 12 

different TES operators. It is these relationships that we seek to evaluate for different TES HDO operators 13 

in the model, namely that: 14 

- Retrieval quality should decrease where there is increasing CF over ocean, and increasing TS over 15 

land. 16 

- pD should move closer to the boundary layer as PWF decreases over the ocean, and move closer to 17 

the free troposphere as TS decreases over land. 18 

- The scatter in the linear fits is similar to that observed in the TES measurements. That is, the 19 

dispersion of the residuals around the fitted regression lines should be similar to those in Fig. 4. 20 

3. NASA GISS ModelE 21 

We use the atmosphere-only version of the NASA GISS ModelE general circulation model at 2° x 2.5° 22 

horizontal resolution and 40 vertical levels. The core model is an updated version of that described in 23 
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Schmidt et al. (2006), with a recent summary of the cloud physics provided by Kim et al. (2011). The 1 

simulation period was 2006-2009, covering the continuous period of TES retrievals, with an additional 2 

year for spin-up. A spin up time of five years did not affect the results. Internannually-varying monthly 3 

sea-surface temperatures and sea-ice cover are prescribed (Rayner et al., 2003). The horizontal winds in 4 

the model were nudged toward NCEP-NCAR Reanalysis (Kalnay et al., 1996) at each model time-step. 5 

All other dynamical quantities are calculated prognostically. Our eventual interest is evaluation of free-6 

running simulations against the TES observations, but nudging allowed for consistent comparison 7 

between the retrieval-based and categorical TES operators for a configuration typical of how the retrieval-8 

based operator has been commonly applied in the past. 9 

ModelE is equipped with stable water isotope tracers (Schmidt et al., 2005), advected using the quadratic 10 

upstream scheme of Prather (1986), which yields an effective transport resolution approximately twice 11 

that of the horizontal model resolution. Isotopic fractionation between H2O and the rare isotopologues 12 

H2
18O and HDO is parameterized for all moist processes, from evaporation and evapotranspiration over 13 

the ocean and land surfaces, to condensation and deposition, and post-condensation exchange between 14 

rainfall and vapor. The stable water isotope tracer parameterization is much simpler than the underlying 15 

cloud parameterization, and is more tightly constrained by laboratory measurements. This is what makes 16 

the TES HDO retrievals potentially valuable, as isotopic measurements can be used in evaluating the 17 

underlying cloud physics with a fair amount of confidence that the isotopic physics are correct. Or, put 18 

another way, errors in the modeled isotopic fields are likely to be dominated by errors in the cloud 19 

physics rather than errors in the isotopic physics. 20 

ModelE also includes an internal simulator for the International Satellite Cloud Climatology Project 21 

(ISCCP) that produces cloud diagnostics for comparison with the ISCCP datasets (Klein and Jakob, 22 

1999). For our purposes, the key feature of the ISCCP simulator is the random, subgrid joint distribution 23 

of τ and CTP, conditioned upon the grid-scale vertical distributions of humidity, convective cloud cover 24 

and large-scale cloud cover.  25 
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4. Retrieval-based TES HDO operator 1 

4.1 Review of retrieval-based operators in previous studies 2 

In applying the TES operator in Eq. (1) to model profiles 𝒙𝑫 and 𝒙𝑯, choices must be made whether to 3 

include the profile, in choosing the prior profile 𝒙𝒂𝑯, and the averaging kernels 𝑨𝑫𝑫, 𝑨𝑯𝑯 , 𝑨𝑯𝑫 and 𝑨𝑫𝑯, 4 

all of which are different for each retrieval. These choices should reflect the conditions at each model 5 

point. Using the standard, retrieval-based approach, the model fields are sampled along the orbital path, 6 

but excluding model points collocated with poor-quality retrievals. For the remaining model points, the 7 

averaging kernels and priors from individual measurements are used in applying Eq. (1). The underlying 8 

assumption of this approach is that the modeled and retrieved factors influencing retrieval quality and 9 

averaging kernel structure are in agreement. 10 

This approach is based on the earlier, pre-Aura launch description of Jones et al. (2003) of the potential 11 

accuracy of the TES CO retrievals. Variants of the technique have been used in validating TES retrievals 12 

against collocated measurements of CO from aircraft (Luo et al., 2007a), O3 from aircraft (Richards et al., 13 

2008) and sondes (Worden et al., 2007a), and H2O measurements from sondes (Shepherd et al., 2008). It 14 

has also been used for comparisons between TES CO retrievals and those from the Atmospheric 15 

Chemistry Experiment (ACE) (Rinsland et al., 2008) and Measurements of Pollution in the Troposphere 16 

(MOPITT) (Luo et al., 2007b). 17 

The approach has subsequently been applied in CTM studies focusing on TES O3 data assimilation 18 

(Parrington et al., 2008), the sources, sinks and transport of pollution in the troposphere (Nassar et al., 19 

2009; Choi et al., 2010; Liu et al., 2009), and inverse modeling of CO (Jones et al., 2009) and CO2 20 

(Nassar et al., 2011). These studies all involved CTMs with fully prescribed meteorological fields. In 21 

studies using the GEOS-Chem CTM, meteorology is prescribed from GMAO reanalysis. Through its 22 

assimilation of radiosonde profiles of temperature, humidity and winds, and independent satellite 23 

estimates of atmospheric moisture and winds, the GMAO reanalysis provides reasonable estimates of the 24 
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factors which are known to influence averaging kernel structure and retrieval sensitivity (e.g. Norris and 1 

Da Silva, 2007). 2 

Voulgarakis et al. (2011) applied the TES operator using the retrieval-based approach in their analysis of 3 

O3–CO correlations for two coupled chemistry-climate models with prescribed SSTs and horizontal winds 4 

nudged toward reanalyses. All other meteorological fields were calculated prognostically, unlike the CTM 5 

studies described above. Aghedo et al. (2011) considered three chemistry-climate models with prescribed 6 

SSTs and nudged toward reanalysis, and using collocation-based averaging kernel selection and quality 7 

filtering. A fourth free-running (non-nudged) simulation was also considered. Their focus was on 8 

estimating the error associated with using monthly mean maps of spatially-varying averaging kernels 9 

rather than individual retrievals. A small error would allow the TES operator to be applied to monthly 10 

mean model output, simplifying multi-model comparisons against satellite measurements. We note that 11 

by embedding the TES operator within the model, we have avoided this issue altogether. 12 

Risi et al. (2012) used the monthly-mean approach in comparing TES HDO fields to those from nudged 13 

simulations with the LMDz isotopically-equipped GCM for several different model 14 

configurationsparameter values within the cloud scheme. Yoshimura et al. (2011) used the standard 15 

approach using individual retrieval-based sampling in their comparison of the TES and IsoGSM HDO 16 

fields with varying isotopic physics, noting that this approach necessitates model nudging. Both studies 17 

stressed the importance of applying the TES operator to model outputs for quantitative comparisons with 18 

the data. Lee et al. (2009) and Field et al. (2010) compared TES HDO to free-running simulations with 19 

different convective and isotopic configurations, but without applying a TES operator, making their 20 

interpretation necessarily qualitative. 21 

4.2 Retrieval-based controls on TES HDO retrieval quality and pD 22 

The standard, retrieval-based TES operator was implemented within ModelE for the H2O and HDO. TES 23 

retrievals are ingested into the model’s TES simulator along Aura’s orbital path (as in Figure 1) at each 24 
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half-hour model time step, during daytime and over the tropics only. The retrieval quality filtering and 1 

averaging kernel selection is done regardless of the agreement in meteorology between the model and 2 

TES. In cases where a model cell contains more than one high quality TES measurement, the averaging 3 

kernels and H2O priors for all are applied to the model profile and the mean of the resulting profiles is 4 

taken.  5 

We evaluated the suitability of this approach by comparing the relationships in Table 1 for the TES 6 

observations to those from the retrieval-based operator. If the modeled meteorology agreed exactly with 7 

that retrieved by the instrument, then the relationships between retrieval quality and pD would be the same 8 

as in Table 1 when the control variables from TES are replaced with those from the model. The degree to 9 

which this is not the case quantifies the difference in meteorology observed by TES and simulated by the 10 

model in the context of their influence on retrieval quality and pD. 11 

Fig. 5 shows the same observed TES retrieval quality and pD as Fig. 4, but as a function of modeled CF 12 

and PWF over the ocean and TS over land. Over the ocean, there is too weak a decrease in observed 13 

retrieval quality with increasing model CF, indicated by the slope of -0.18 and weaker correlation of -14 

0.26 (Fig. 5a). This reflects, despite nudging, the low correlation of 0.35 between the TES and ModelE 15 

CF. The regions where TES is excluding more retrievals do not always correspond to where the thick 16 

clouds are in the model, for example. There is less disagreement in control on retrieval quality over land 17 

(Fig. 5c), because of the higher correlation of 0.74 between modeled and retrieved TS. Compared to 18 

retrieval quality, the observed controls on pD over the ocean are better captured by the retrieval-based 19 

operator (Fig. 5b). This is also due to the strong correlation between the TES and ModelE ocean PWF 20 

fields (0.86), which leads to a similar relationship with pD. Over land, the relationship between modeled 21 

TS and pD is in fair agreement with, but slightly weaker than for the observed TS. 22 
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5. Categorical TES HDO operator 1 

5.1 Description of categorical operator 2 

The observed TES retrieval quality and, to a lesser extent pD, are not entirely consistent with the 3 

underlying model conditions, despite nudging. This problem will be worse for free-running simulations. 4 

We have therefore developed a technique to apply the TES operator in a way that presumes no agreement 5 

between the observed and modeled meteorology at short time-scales, but such that the retrieval quality 6 

and averaging kernel selection are suited to the modeled conditions at that point. This approach is referred 7 

to as the ‘categorical operator’ and was implemented alongside the retrieval-based operator in ModelE.  8 

For different categories defined according to the variables in Table 1, we computed the mean retrieval 9 

quality, mean averaging kernels, and mean H2O prior from the TES retrievals (described in detail in the 10 

next section). The mean retrieval quality is the proportion of HDO retrievals in a category that were 11 

classified as high quality. The mean of the averaging kernels is the matrix resulting from taking the 12 

element-by-element means of all averaging kernels (for high quality retrievals only) falling into a given 13 

category. Applying the categorical TES operator in the model then consists of two steps: 14 

1. At each time step and grid point, the values of the categorical variables in the model are used to 15 

look up the associated categorical TES retrieval quality. The model profile is included with a 16 

probability equal to the categorical retrieval quality. That is, iIf a particular set of model 17 

conditions were was associated with 30% high quality retrievals, for example, then there is a 30% 18 

chance that that model profile would be included. 19 

2. For the profiles passing the retrieval quality filter, the categorical variable values in the model are 20 

used to look up the associated prior H2O profile and averaging kernels, which are used in 21 

applying Eq. (1).  22 

Thus, rather than use information from individual retrievals, we use conditions in the model to 23 

empirically predict the retrieval quality and averaging kernel structure for a sampled model point. 24 
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5.2 TES categorizations 1 

Thirteen categorizations of increasing complexity were considered, which ranged from having one 2 

category across all retrievals to 1620 categories when the retrievals were separated according to discrete 3 

ranges of all control variables. Table 2 shows the values used for each variable in different 4 

categorizations.  CF is not retrieved for individual measurements, but is included implicitly for the 5 

categories involving clouds by including a clear sky category with τ less than 0.3. An important element 6 

of the categorical operator is our use of the ISCCP simulator in ModelE. Rather than use grid-mean 7 

values of τ and CTP, we randomly select an ISCCP subgrid column with equal probability and use its τ 8 

and CTP. The subgrid τ will not be normally distributed; a single, large  τ can skew an otherwise clear-9 

sky grid box toward an unrepresentatively high τ in the grid-scale mean. Using the individual ISCCP 10 

subgrid columns guards against an inevitable bias toward high τ values with low retrieval sensitivity that 11 

would result if the grid-scale mean were used. Inclusion of low sensitivity retrievals would result in 12 

comparison of retrieved and, after applying the TES operator, model profiles that have both relaxed 13 

toward the prior, creating artificially high agreement between the satellite and model (Nassar et al., 2008). 14 

Categorizations are named according to the variables they include. We tried to strike a balance between 15 

capturing distinctions in retrieval quality and averaging kernel structure and using as few categories as 16 

possible. The cloud-only C categorization extends the decomposition of Lee et al. (2011) to the coarse, 17 

qualitative ISCCP categories. The C_fine categorization corresponds to the full ISCCP categories. The 18 

PW and PW_fine categorizations use precipitable water only, and contribute 9 and 49 categories 19 

respectively when precipitable water is separated into boundary layer and free-atmosphere components. 20 

The LOτTPWF categorization with 180 categories included only the variables identified in Table 1 as the 21 

most important (land/ocean separation, τ, Ts and PWF). This was a possible optimal categorization that 22 

captures variation in retrieval quality and pD using far fewer categories than the full LOCTPW 23 

categorization which includes all variables. 24 
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To show how retrieval quality and averaging kernel structure varies, we look first at the C categorization 1 

based on τ and CTP.  Retrievals with τ less than 0.3 account for 64% of observations, with the rest 2 

consisting mostly of mid- and high-level clouds (Table 3). Retrieval quality is generally high for τ less 3 

than 1.3, and for low-level clouds with  τ  between 1.3 and 3.6 (Table 4), but otherwise poor. The 4 

relatively poor quality of 68.2% for the low τ and high CTP category suggests an additional factor 5 

influencing retrieval quality, such as TS over land. 6 

To illustrate the associated changes in averaging kernel structure, Fig. 6 shows the averaging kernel rows 7 

at 619 hPa for CTP less than 440 hPa and three different ranges of τ. Averaging kernels rows for τ less 8 

than 0.3 (Fig. 6a) have a higher pD than for τ between 0.3 and 1.3 (Fig. 6b), but neither peak is 9 

particularly sharp. Neither is significantly different from the grand mean because these categories 10 

constitute such a large proportion of all retrievals. Sensitivity for thicker clouds is generally low (Fig. 6c), 11 

even with only high quality retrievals included, and the averaging kernel has a much flatter peak. The 12 

average retrieval quality for this category is 11%. Model points corresponding to these conditions would 13 

in general be excluded from the analysis. 14 

The CPW categorization extends the C categorization by further separating the retrievals according to 15 

PWB and PWF, which may vary independently of cloud cover. Fig. 7 shows the averaging kernels 16 

underlying the mean in Fig. 6a, but for a moist boundary layer (PWB greater than 20mm) and for three 17 

categories of PWF. The main distinction is that pD increases from 600 hPa in Fig. 7a to 800 hPa in Fig. 7c 18 

as PWF decreases. The error bars are also narrower than in Fig. 6a, and particularly for the low PWF case, 19 

the peaks are sharper than in separating based on τ only in Fig. 6a and Fig. 6b. Although the focus of the 20 

averaging kernel separation is the ADD row at 619 hPa, the corresponding changes in the H2O prior 𝒙𝒂𝑯 21 

(not shown) were as expected, with the 𝒙𝒂𝑯 decreasing strongly above the boundary layer for PWF less 22 

than 10mm.  23 
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Before applying the TES operator, we can gauge how more complicated categorizations might yield a 1 

better mapping from model conditions to retrieval quality and the most suitable averaging kernels. Of 2 

interest is the degree to which different categorizations separate high from poor quality retrievals, and for 3 

the high quality retrievals, the degree to which pD is separated. This is analogous to the correlations in 4 

Table 1, but for a set of discretized predictor variables. 5 

For each categorization, the separation between high and poor quality retrievals was measured by the 6 

mean difference between each category’s quality and the overall mean quality. In computing the mean 7 

difference, each categorical quality is weighted by the number of observations, so that low-quality 8 

categories with few observations are not over-represented. For the C categorization, this value is 18.4%, 9 

the mean of the absolute differences between the entries in Table 4 and the overall mean of 68%, with the 10 

mean absolute difference in each category weighted by the frequency of occurrence entries in Table 3.  11 

Fig. 8 shows this value for each of the thirteen twelve categorizations. Most of the separation in retrieval 12 

quality can be obtained using only the simple ‘C’ categorization, with smaller contributions from other 13 

variables. This is consistent with the strong pattern correlation between retrieval quality and cloud 14 

fraction in Table 1. The strongest additional gains are made by including TS in the categorization (CT), 15 

consistent with its association with retrieval quality over land. Despite the importance of cloud properties 16 

in separating good retrievals from bad, little was gained by using the ‘C_fine’ categorization, which is 17 

likely due to the larger error in the cloud properties (Eldering et al., 2008) compared to other categorical 18 

variables.  19 

Averaging kernel separation was measured by the total root-mean square error (RMSE) of pD at 619 hPa 20 

across all categories in a categorization. Only high quality retrievals were considered in calculating the pD 21 

RMSE for consistency with any analysis of the retrieved HDO fields. The pD RMSE can be thought of as 22 

the total, within-category standard deviation of pD across all categories, weighted by frequency of 23 

occurrence. We are interested in the degree to which the total within-category variance pD decreases for 24 

increasingly complicated categorizations, or how the error bar widths tend to decrease across all 25 



18 
 

categories within a categorization. A decrease in the pD RMSE would result in a better mapping between 1 

model conditions and averaging kernel shape. 2 

Fig. 9 shows the total pD RMSE for the thirteen different categorizations. Precipitable water plays a more 3 

important role in separating pD than in separating retrieval quality. The PW categorization, for example, 4 

contributes to greater pD separation than the C categorization, despite having fewer categories. There is a 5 

further decrease for the CPW categorization, and also for the CTPW categorization. The ‘LOτTPWF’ 6 

categorization appears to strike a balance between minimizing the RMSE and using relatively few 7 

categories, with further, slight decreases for the CTPW and full LOCTPW categorizations.  8 

From Fig. 8 and Fig. 9, all of clouds, precipitable water and surface temperature are important, which we 9 

would expect from Table 1. The cloud categories are important on their own in separating high from poor 10 

quality TES retrievals, and precipitable water provides most separation of pD. There are diminishing 11 

returns, however, as the size of the categorization increases. It is not immediately clear whether more 12 

complicated categorizations yield relationships closer to those in Table 1 or different δD fields after 13 

applying the TES operator. 14 

5.3 Categorical controls on TES HDO retrieval quality and pD 15 

The categorical operator was tested in ModelE with five four representative categorizations: C, PW, 16 

CPW, LOτTPWF and LOCTPW. In each case, the underlying model configuration was the same as in the 17 

case of applying the retrieval-based TES operator, but the quality filtering and averaging kernel and H2O 18 

prior selection from individual TES measurements were replaced with categorical selection.  19 

Fig. 10 shows the approximated retrieval quality for the five four categorizations. For the C categorization 20 

(Fig. 10a), the approximated retrieval quality bears some resemblance to the observed retrieval quality 21 

(Fig. 3a), but is 10% lower over the ocean and without the sharp decrease in retrieval quality over the 22 

southern Sahara. Over the Pacific and Atlantic sectors, the regions of high retrieval quality are to the east 23 

of those in the observations. The PW categorization (Fig. 10b) results in a mean ocean retrieval quality of 24 
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68.9%, nearly identical to the TES observations, but lacks the distinction between wet and dry regions in 1 

seen in the observations and for the C categorization. The approximated retrieval quality of the CPW, 2 

LOτTPWF  and LOCTPW categorizations (Fig. 10c-e, d) are all similar over the ocean, with the 3 

LOCTPW categorization having a sharper decrease over the southern Sahara.  4 

While instructive to see the sensitivity of the retrieval quality to the different categorizations, their 5 

performance should, strictly speaking, be evaluated according to how well they approximate the observed 6 

relationships in Fig. 4, rather than by their agreement with the observations in Fig. 3a. These relationships 7 

are shown for the five four categorizations in Fig. 11. The C categorization (Fig. 11a) results in a slightly 8 

stronger relationship (r = -0.78) between the cloud fraction and the approximated retrieval quality than in 9 

the observations. This would be expected given that clouds are the only categorical variable used to select 10 

quality; in the absence of other, real, complicating factors, the approximated relationship is slightly too 11 

strong compared to the observed relationship in Fig. 4a. Furthermore, over the ocean, the lower 12 

approximated retrieval quality of 58.9% is the result of the higher modeled CF (47.8%) compared to the 13 

TES observations (35.3%). 14 

Conversely, the PW categorization results in a weaker relationship between CF and retrieval quality (Fig. 15 

11b). In this case, cloud fraction acts as a lurking variable in the categorization. CF is somewhat 16 

correlated with PWB (0.48) and PWF (0.67), but not strongly enough to accurately predict retrieval quality 17 

when excluded from the categorization. This case reinforces the need to evaluate the categorical operator 18 

based on agreement in the relationships, rather than in the retrieval quality fields. Over the ocean, it is 19 

tempting to infer that the PW categorization is more accurate because of its agreement in the mean (Fig. 20 

10b) with retrieval quality. This agreement is misleading however; by not including clouds explicitly in 21 

the categorization, the approximated retrieval quality does not decrease under the higher modeled cloud 22 

fraction, which it should. The relationships are in better agreement, neither too strong nor too weak, for 23 

the LOτTPWF  categorization (Fig. 11c), and to some extent the CPW and LOCTPW categorization (Fig. 24 

11d) s. Over land, the C and PW categorizations (Fig. 11 e, f) performed poorly in capturing the variation 25 
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in retrieval quality over land. When TS is not included in the categorization, there is too little covaration 1 

between TS and either of CF, PWF or PWF to capture the decrease in retrieval quality with TS. More 2 

realistic approximations were obtained for the LOτTPWF and LOCTPW categorizations (Fig. 11 g, h), 3 

which include TS, and land/ocean separation, although there is still less agreement than for over the 4 

ocean.Over land, the most realistic approximations were for the LOτTPWF and LOCTPW categorizations, 5 

although there is less agreement than over the ocean. 6 

The approximated pD for the five categorizations is shown in Fig. 12. The approximated pD for the C 7 

categorization (Fig. 12a) shows little of the variation seen in the TES observations (Fig. 3b), with little 8 

increase in pD over the Pacific and Atlantic subtropical anticyclones. The PW categorization (Fig. 12b) 9 

does capture this increase, but not the lower pD over the tropical rain belts, and with a smoother structure 10 

owing to the smoothness of the quality filtering. The approximated pD for the CPW, LOτTPWF and 11 

LOCTPW categorizations (Fig. 12 c,d) were comparably similar to the TES pD fields  over the ocean, 12 

with the latter two more similar over  and land. 13 

Fig. 13 shows the approximated controls on pD. As in the observed relationships in Fig. 4b and Fig. 4d, 14 

PWF and TS include only model points classified as having high retrieval quality. The weak slope of the C 15 

categorization over the ocean (Fig. 13a) reflects the absence of variation in pD in Fig. 12a. The slope for 16 

the PW categorization (Fig. 13b) is closer to the observed slope, but with an overly strong correlation, too 17 

little scatter, and with unrealistically high pD overall. Similar to retrieval quality, the control on pD is more 18 

realistic when both clouds and precipitable water are included (Fig. 13c-e,d). The inclusion of clouds in 19 

the categorization helps to separate high PWF for clear and cloudy sky, allowing the clear sky values with 20 

higher quality to be included. The full LOCTPW categorization has a more realistic amount of scatter, but 21 

all three of CPW, CTPW and LOCTPWboth that and the LOτTPWF categorizations  have a steeper slope 22 

and higher correlation than in the observations. The retrieval-based operator in Fig. 5b, by contrast, had a 23 

too-flat slope and weak correlation. Over land, the approximated TS control on pD was of the opposite 24 
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sign for the C,  and PW, and CPW categorizations (Fig. 13 e, f), and best approximated by the full 1 

LOCTPW categorization (Fig. 13h).  2 

Overall, the LOτTPWF  and LOCTPW categorizations performed best in approximating controls on 3 

retrieval quality and pD. Both were equally deficient in not having a strong enough decrease in retrieval 4 

quality with TS over land, and an overly strong increase in pD with PWF over the ocean. These are likely 5 

the greatest source of selection error in applying the categorical TES operator to raw model δD fields. 6 

6. TES operator effects on δD fields 7 

6.1 Comparison of retrieval-based and categorical TES operators 8 

Ultimately, we are interested in the effects of applying the different TES operators to raw ModelE δD 9 

fields. Fig. 14 shows this effect for the retrieval-based TES operator over the whole analysis period. 10 

Again, the retrieval-based operator has been applied regardless of agreement between the retrieved and 11 

modeled values of CF, PWF and Ts. The effect of sampling along the orbital path can be seen by the less 12 

smooth field of Fig. 14b compared to Fig. 14a. Application of Eq. (1) to the raw model fields after quality 13 

filtering results in an average δD increase of 8.8 ‰ over ocean and 6.4 ‰ over land (Fig. 14c), but this 14 

reflects larger regional changes. In general, the largest absolute changes occur where there is the largest 15 

difference between the raw model field and the prior δD over 825 hPa to 510 hPa, which is roughly -150 16 

‰ when vertically weighted by specific humidity. Over northern Africa, the high model δD decreases 17 

toward the prior by up to 40 ‰, whereas over South America and the Maritime Continent the low δD 18 

increases toward the prior by up to 35 ‰.  19 

Fig. 15 shows the result of applying the different categorical TES operators. The changes in δD are 20 

similar to the retrieval-based operator in that regions of low raw ModelE δD tend to increase toward the 21 

TES prior, but there are significant regional differences for the C and PW categorizations. Using the C 22 

categorization (Fig. 15a), there is a strong decrease in δD over the anticyclones in the Pacific and 23 
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Atlantic, despite the raw ModelE δD not being particularly high. This is due to the effect of not including 1 

PW in the categorization and consequently not capturing the variation in pD. Using only clouds in the 2 

categorization, these regions are simply classified as having low CF, and will be associated with 3 

averaging kernel shapes similar to those in Fig. 6a. This averaging kernel is inappropriate, however, as it 4 

does not capture the higher pD associated with the PWF less than 10mm (Fig. 7c) which occurs in those 5 

regions. As a result, the mid-tropospheric δD composition, which is low, has an overly strong influence in 6 

applying Eq. (1), resulting in an overly strong δD decrease. Using the PW categorization (Fig. 15b), this 7 

problem is absent, but there is a weaker increase in δD over the western Pacific warm pool. The 8 

remaining, more complex categorizations result in similar changes to the δD field (Fig. 15c-d), not 9 

varying by more than 1 ‰ in their overall mean and with only small regional differences. With a 10 

sufficient CF control on retrieval quality and PWF control on pD, the deficiencies over the ocean for the C 11 

and PW categorizations are absent for each.  12 

The ModelE δD changes in δD underfor the categorical operators result from approximating the controls 13 

on retrieval quality and pD using conditions in the model, rather than from collocated TES retrievals. They 14 

are accurate to the extent that the approximated controls in Fig. 11 and Fig. 13 agree with the 15 

observational controls in Fig. 4. Focusing on the full LOCTPW categorization, the most significant 16 

deficiency was the PWF control on pD over the ocean (Fig. 13d), where the approximated slope was -1.6 17 

hPa/mm too strong compared to observations. We can see, however, that while the slope for the 18 

LOτTPWF categorization was only -1.2 hPa/mm too strong, this translated into less than a 1 ‰ difference 19 

in the mean change in δD over the ocean from the LOCPTW categorization (Fig. 15 c, d). This suggests 20 

that if a categorization existed that more closely approximated the observed PWF control on pD in the 21 

observations, this would not likely result in change of more than several ‰ to the transformed δD field, 22 

ignoring the contributions of other secondary controls. This provides a sense of the maximum error in the 23 

transformed δD field associated with errors in quality filtering and averaging kernel selection. We note 24 

also that in this case, the change in δD for the retrieval-based and LOCTPW categorical operator were 25 
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very similar, owing to the agreement in the underlying PWF fields, and because of the shared HDO prior 1 

and raw model δD fields.  2 

6.2 Sensitivity tests 3 

To further understand how the change in δD might vary with different configurations, we examined the 4 

sensitivity of the LOCPTW-based operator to the effects of orbital sampling, a fixed H2O prior 𝒙𝒂𝑯, and 5 

also the performance outside of the tropics. 6 

The effect of sampling the model at all points and not just along the TES orbital path was primarily a 7 

smoother transformed field (Fig. 16a) compared to without (Fig. 15e) owing to a much greater sampling 8 

frequency. Aghedo et al. (2011) found that the effects of orbital path sampling were also minimal on 9 

modeled CO, O3, temperature and H2O at a monthly scale. Voulgarakis et al. (2011) also reached to a 10 

similar conclusion regarding the correlation between daily O3 and CO.  The TES sampling frequency is 11 

therefore sufficient to capture variability in the model over several years, although it remains to be seen 12 

whether this is the case at shorter time scales. 13 

Unique to the joint TES HDO/H2O retrievals is the use of a changing H2O prior 𝒙𝒂𝑯 . It must also be 14 

chosen in applying the TES operator, representing another potential source of categorical selection error. 15 

We assume that the quality of averaging kernel selection for the AHH, ADH and AHD operators for different 16 

categorizations follows that of ADD. As a test of the importance of 𝒙𝒂𝑯  selection on the TES operator in 17 

Eq. (1), we fixed 𝒙𝒂𝑯 to the constant profile of the ‘Single’ categorization, but with the averaging kernels 18 

still chosen from the LOCTPW categorization. This had little effect (Fig. 16b), which likely means that 19 

the AHH and ADH terms are typically very similar (as was the case for the example profile in Fig. 2), and 20 

that the strength of TES operator is largely controlled by the second term on the RHS of Eq. (1). 21 

The focus of future comparisons between the modeled and observed δD fields will be over the tropics, 22 

following a series of recent studies (Lee et al., 2011; Kurita et al., 2011; Berkelhammer et al., 2012; Kim 23 

et al., in press). For broader potential application, however, we tested the performance of the TES HDO 24 
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simulator outside of the tropical domain. The LOCTPW categorization was re-calculated from TES 1 

measurements over 60°S to 60°N. The range of the surface temperature categories was increased from 2 

260K to 330K to capture a wider observed temperature range. Model simulations were run with the TES 3 

operators applied over 60°S to 60°N. To assess performance outside of the tropics, we examine the degree 4 

to which observed variation in relationship strength by latitude is captured by the categorical TES 5 

operator. 6 

Fig. 17 shows the correlation between retrieval quality and pD and the primary control variables at 7 

different latitudes. Observed retrieval quality over the oceans (Fig. 17a) remains negatively correlated 8 

with CF, weakening slightly at high northern latitudes. The retrieval-based operator performs poorly in 9 

capturing this association, but the categorical operator performs well. Over land (Fig. 17c), the observed 10 

negative correlation between retrieval quality and TS becomes positive at high latitudes, presumably due 11 

to the covariation moving poleward between TS and atmospheric moisture content. This change is 12 

captured by both operators, but too sharply in the case of the categorical operator. 13 

The associations between pD and the primary control variables are not generally well-captured over the 14 

wider latitude range. Over the ocean (Fig. 17b), the overly-strong negative correlation between pD and 15 

PWF over the tropics compared to observations (in Table1) increases moving poleward. The observed 16 

decrease in correlation outside of the tropics is captured to some degree by the categorical operator, but 17 

with a lag, and nor is there any modeled rebound in correlation at high latitudes. Over land, there is an 18 

observed positive relationship between TS and pD across all latitudes (Figure 2d). This is poorly captured 19 

by the categorical operator, for which there is no correlation between 40°S and 0°. In fact, over land, 20 

when extratropical TES measurements are included in calculating the categorization, the performance of 21 

the operator is degraded in the tropics. When the categorization is calculated only from TES 22 

measurements between 15S and 15N, the correlation between pD and TS of 0.64  is in good agreement 23 

with the observed correlation of 0.51. When the operator is based on measurements between 60S to 60N, 24 

however, the correlation over 15S to 15N is 0.00. So not only is prediction of pD in the extra tropics poor, 25 
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but it contaminates the fairly good performance over the tropical land shown in Fig. 13j. Application of 1 

the categorical TES operator outside of the tropics will likely require that latitude-specific categorizations 2 

be computed from the TES retrievals, and possibly that other control variables be considered.  3 

6.3 Comparison with TES δD  4 

Comparisons between the TES and ModelE δD are shown in Fig. 18. The raw ModelE δD is on average 5 

17 ‰ lower than TES over the ocean and  41 ‰ lower than TES over land, but with negative biases of up 6 

to 63 ‰ and 96 ‰ over each, respectively (Fig. 18b). The negative bias over the ocean occurs over the 7 

tropical rain bands and in the dry regions off of the west South American and central African coasts. In 8 

the latter cases, the bias likely results from outflow of strongly depleted vapor due to continental 9 

convection.  10 

The negative bias over the ocean is reduced to ~7 ‰ after applying either the retrieval-based (Fig. 18c) or 11 

categorical (Fig. 18d) TES operators, and more weakly reduced to ~35 ‰ over land. The changes in bias 12 

over the ocean are interpreted as follows. Where there is heavy, precipitating cloud, observed retrieval 13 

quality is lower (Fig. 3a). Because precipitation tends to lower vapor δD (e.g. Lee and Fung, 2008), this 14 

introduces an observational bias toward higher δD through the exclusion of retrievals under cloudy and 15 

lower δD conditions, and relaxation toward a prior constraint with higher δD. By applying the TES 16 

operator, these effects are captured (Fig. 14c, Fig. 15e) leading to the more accurate comparisons in Fig. 17 

18 c,d. It also becomes more apparent that the model bias toward lower δD is specific to a model process 18 

over land. It was beyond the scope of this paper to understand these biases, but immediate candidates that 19 

will be investigated in the future are too-strong continental convection and too-weak transpiration. 20 

7. Discussion 21 

Changes to the raw model δD over the tropics from applying the TES operators were large. Over the 22 

ocean, the mean increase in modeled δD from applying the TES operator was 9 ‰, and was up to 30 ‰ 23 
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over regions with low, raw δD such as the west Pacific warm pool. Over land, there was a mean increase 1 

of 6 ‰, but with increases of up to 30 ‰, and decreases of up to 40 ‰ over northeastern Africa where 2 

raw δD is very high.  3 

To put these changes in context, they are of the same order as the δD model biases in previous 4 

comparisons against the TES δD retrievals. Yoshimura et al. (2011) saw a systematic bias of -20 ‰ in the 5 

IsoGSM model over the same vertical layer. Risi et al. (2012) saw a bias of 30 ‰ in their comparison of 6 

LMDz at 619 hPa. That the regional differences to the raw ModelE δD fields resulting from the TES 7 

operator are of the same magnitude confirm its importance in any quantitative comparison between the 8 

model and satellite measurements. Similarly, Aghedo et al. (2011) determined that the error associated 9 

with not applying the TES retrieval operator to retrieved CO, O3, temperature, and particularly H2O, was 10 

much larger than the error associated with monthly averaging or the absence of orbital sampling.  11 

The changes in δD for the cloud-only categorization were unrealistic owing to poor pD  approximation. 12 

For this nudged simulation, the new δD fields for retrieval-based and full LOCTPW categorical operators 13 

were in good agreement because of the similarity of their PWF and TS fields and because of accurate 14 

mapping of these quantities to a suitable averaging kernel. The LOτPWF categorization generally 15 

performed well through its inclusion of the most important controls on retrieval quality and pD, and has 16 

the advantage of having far fewer categories, but the influence of TS on pD over land was too strong. The 17 

accuracy of the modeled PWF field is likely the result of the nudged, large-scale control on the humidity 18 

field and averaging over four years. It is doubtful that this agreement will be the case for free-running 19 

simulations with strongly perturbed physics or over shorter time scales, in which case the categorical 20 

operator would be more appropriate.  21 

Particularly for retrieval quality, the categorical operator performed poorly over land compared to the 22 

ocean. One factor is simply that estimates of categorical retrieval quality averaging kernel structure over 23 

land will be less robust because there are fewer TES measurements. More importatntly is that there are 24 
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likely additional factors influencing retrieval quality and averaging kernel structure over land that we 1 

have not considered. For pD in particular, the observational controls over land were weaker (Table1), 2 

making their approximation in the simulator more difficult. As the categorical operator evolves, we will 3 

start by testing topography, land cover type, and, related to both, thermal contrast between ground and air, 4 

which will be greater over land than ocean. In the latter case, the apparently worse performance over land 5 

could be because we considered daytime retrievals only.  6 

Further refinements will be required to use the categorical operator outside of the tropics. Over the 7 

oceans, more PWB and PWF categories will be required at the low ends of their scales, assuming that 8 

vertical moisture gradients continue to be the dominant control on pD outside of the tropics. Any 9 

improvements that are obtained over land in the tropics should improve performance in the extratropics, 10 

particularly in the northern hemisphere. We hope to avoid computing the categorizations separately for 11 

different latitude bands, but this might be inevitable. 12 

In that context, isotopicIsotopic constraints provide a new way of assessing GCM simulations of 13 

processes which are highly sensitive to perturbed cloud physics, such as those driving the Madden-Julian 14 

Oscillation (MJO). Berkelhammer et al. (2012) separated the contributions of evaporative and convergent 15 

moisture phases during different phases of the MJO. Kim et al. (in press) showed how the absence of an 16 

MJO in the default AR5 version of ModelE could be rectified by increasing the entrainment and 17 

reevaporation strength in the convective parameterization, but at the expense of the mean state of 18 

precipitation. It would be instructive to compare the isotopic response of these changes to TES HDO 19 

retrievals, given the sensitivity of isotopic composition to these types of processes (Worden et al., 2007b; 20 

Lee et al., 2009; Field et al., 2010). The categorical TES operator provides a means of doing this for 21 

arbitrary convective configurations, although further refinements will be required for studies outside of 22 

the tropics. 23 
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In comparisons between retrieved and simulated HDO for other models, regardless of which operator 1 

approach is taken, or some other approach, we suggest looking at the agreement between retrieved and 2 

modeled CF, PWF and TS. This will give a sense of how appropriate the retrieval quality filtering and 3 

averaging kernel selection is for the modeled meteorology, particularly as observational constraints are 4 

weakened with free-running perturbed physics experiments. It remains to be seen how the categorical 5 

approach performs for free-running model simulations or for other isotopically-equipped AGCMs. The 6 

modeled retrieval quality and pD fields (i.e. in Fig. 10 and Fig. 12) will change to the extent that the 7 

underlying control fields change, or rather, to the extent that the covariation between the control variables 8 

changes. One potential weakness is that a new model configuration will have an increase in the frequency 9 

of conditions corresponding to categories that were not well populated by TES measurements and for 10 

which the retrieval quality and mean averaging kernels are less robust (although the opposite could also 11 

be true). This type of evaluation could also be extended to other species, such as O3 and CO, after 12 

identifying the strongest controls on their retrieval quality and averaging kernel structure, as could the 13 

categorical TES operator for use in non-nudged composition-climate model evaluation. We note that 14 

cloud cover and surface temperature will likely play an important role for most species, but the 15 

importance of atmospheric moisture content is likely specific to HDO.  16 
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Tables1 

Table 1. Pattern correlation between TES HDO retrieval quality (Fig. 3a) and pD (height of peak HDO averaging kernel sensitivity) (Fig. 3b) and candidate variables. 2 
Cloud fraction is the frequency of occurrence within a grid cell of observations with τ greater than 0.3. For pD, correlations are for high-quality observations only. The 3 
strongest correlation in for each column is shown in bold. 4 

 

 

Retrieval quality  
Pressure of peak HDO 

sensitivity (pD) 
Description Variable Ocean Land 

 
Ocean Land 

Cloud optical depth τ -0.38 0.30  -0.39 -0.35 
Cloud fraction (%) CF -0.70 0.39 

 
-0.55 -0.28 

Cloud top pressure (hPa) CTP 0.33 0.15 
 

0.13 0.00 
Prcp. water in bdy. layer (mm) PWB -0.15 0.57 

 
-0.29 -0.39 

Prcp. water in free. atm. (mm) PWF -0.43 0.32 
 

-0.70 -0.50 
Prcp. water total (mm) PWT -0.35 0.44  -0.58 -0.48 

Surface temperature (K) TS -0.28 -0.72 
 

0.04 0.51 
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 1 

Table 2. Category values for different parameters. 2 

Identifier Description Category ranges 
LO Land / ocean  

C τ 0, 0.3, 1.3, 3.6, 23, > 23 
CTP (hPa) 0, 440, 680, > 680 

   
C_fine τ 0, 0.3, 1.3, 3.6, 9.4, 23, 60, > 60 

CTP (hPa) 0, 180, 310, 440, 560, 680, 800, > 800 
   T TS (K) < 295, 295, 300, 305,310, 315, > 315 

   PW PWB, PWF (mm) 0, 10, 20, > 20 

   PW_fine PWB, PWF (mm) 0, 5, 10, 15, 20, 25, 30, > 30 
 3 

4 
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Table 3. Frequency of occurrence (%) for TES retrievals for the C categorization. There was a total of 202 713 retrievals 1 
during daytime over the tropics. 2 

    Cloud optical depth 
  0 -0.3 0.3 - 1.3 1.3 - 3.6 3.6 - 23 > 23 
Cloud top 
pressure 

(hPa) 

0 - 440 43.3 7.3 4.1 5.8 0 
440 - 680 17.2 4.2 5.6 1.6 0 
680 - 1000 3.5 2 2.5 2 0.8 

3 
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Table 4. Percentage of TES retrievals that were high quality for the C categorization. Overall, 69% of retrievals were 1 
high quality. 2 

    Cloud optical depth 
  0 - 0.3 0.3 - 1.3 1.3 - 3.6 3.6 - 23 > 23 
Cloud top 
pressure 

(hPa) 

0 - 440 79 86.1 11.6 0  
440 - 680 78.8 85.5 39 10.4  
680 - 1000 68.2 81 83.1 64.4 26.8 

 3 

4 
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Figures 1 

 2 
 3 

 4 

Fig. 1. Aura TES nadir orbit for December 9, 2006 during daytime over 15 °S to 15 °N. Only the 85 high quality HDO retrievals are shown, of 133 in total. 5 
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1 

 2 

Fig. 2. Averaging kernels for the retrieval at 10:00 UTC, December 9, 2006 at (3.0N, 53.75E).  3 
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 1 

 2 

Fig. 3. a) TES HDO retrieval quality and b) mean pD (height of peak HDO sensitivity) over 825 to 510 hPa for high quality retrievals only. Both fields are the mean 3 
across all retrievals from 2006-2009.4 
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 1 

Fig. 4. TES retrieval quality (left) and pD (height of peak HDO sensitivity, right) as a function of primary control 2 
variables identified in Table 1 over ocean (top) and land (bottom). Dashed lines show the 95% prediction intervals.3 
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 1 

 2 

Fig. 5. Same as Fig. 4, but with control variables from TES replaced with those from ModelE. Black dashed lines show the 3 
corresponding linear fits from TES observations in Fig. 4.4 
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 1 

 2 

Fig. 6. HDO averaging kernel rows (grey) at 618 hPa for CTP less than 440 hPa and for τ a) less than 0.3 b) between 0.3 and 1.3 c) between 1.3 and 3.6. Black profiles 3 
show the grand mean HDO averaging kernel row at 618 hPa across all high quality retrievals. Error bars show the standard deviation at each level. These averaging 4 
kernels correspond to the first three entries in the top row of Table 4. 5 
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 1 

Fig. 7. HDO averaging kernel rows (grey) at 618 hPa for CTP less than 440 hPa, τ less than 0.3, PWB greater than 20mm, and PWF: a) greater than 20mm (15% 2 
frequency, 81% quality) b) between 10mm and 20mm (14% frequency, 79% quality) c) less than 10mm (3% frequency, 82% quality). Black profiles show the grand 3 
mean HDO averaging kernel row at 618 hPa across all high quality retrievals. Error bars show the standard deviation at each level.4 
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 1 

Fig. 8. Mean difference between HDO retrieval quality within each category and the overall quality for the Single 2 
categorization (68%), for eleven twelve different categorizations. Differences are weighted by frequency of occurrence 3 
within each category. Numbers in parentheses indicate the total number of categories in each categorization. 4 

5 
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 1 

Fig. 9. RMSE of pD (height of peak HDO sensitivity) for the eleven twelve categorizations, and the ‘Single’ categorization. 2 
Numbers in parentheses indicate the total number of categories within each categorization. 3 

 4 

 5 
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 1 

Fig. 10. Approximated retrieval quality for five four representative categorizations. 2 
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 1 

Fig. 11. Approximated retrieval quality as function of CF over the ocean (top) and TS over land (bottom) for five four representative categorizations. Grey dashed lines 2 
show the 95% prediction intervals. Black dashed lines show the corresponding linear fits from TES observations in Fig. 4a and Fig. 4c. 3 
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 1 

Fig. 12. Approximated pD (height of peak HDO sensitivity) for five four representative categorizations. 2 
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  1 

Fig. 13. Approximated pD (height of peak HDO sensitivity) as a function of  PWF over the ocean (top) and TS over land (bottom) for five four representative 2 
categorizations. Grey dashed lines show the 95% prediction intervals. Black dashed lines show the corresponding linear fits from TES observations in Fig. 4b and Fig. 3 
4d.4 
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 2 

3 

 4 

Fig. 14. a) Raw ModelE vapor δD  between 825 and 511 hPa during  2006 and 2009 for all months b) ModelE vapor δD after application of the retrieval based operator 5 
c) difference between b) and a). The vertical mean of δD is weighted by specific humidity and pressure.6 
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 1 

Fig. 15. Same as Fig. 14 c), but for the categorical TES operator with the five four representative categorizations.  2 
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 1 

Fig. 16. Same as Fig. 15, but for two LOCTPW sensitivity tests: a) full daytime sampling and not just along the orbital path b) a fixed H2O prior. 2 
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 1 

Fig. 17. Correlation between retrieval quality and pD (height of peak HDO sensitivity) with primary predictor variables 2 
over different latitudes.  3 
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 2 

Fig. 18. a) Retrieved TES δD (‰). Difference between ModelE and TES for: b) raw model δD c) model δD after applying the retrieval-based operator d) model δD after 3 
applying the LOCTPW categorical operator. 4 


