Response to Reviewer Comments

"Statistics of severe tornadoes and severe tornado outbreaks" by B.D. Malamud and D.L. Turcotte [*Atmos. Chem. Phys. Discuss.*, 12, 6957-6988, 2012]

1.0 INTRODUCTION

We thank Reviewer 1 (Harold Brooks, NOAA) and Reviewer 2 (anonymous) for their comments.

In light of these helpful comments, and others that we have received from the international community when presenting our research at conferences, we have carried out several new analyses and revised the text, figures and tables from our original manuscript. Examples of changes are the inclusion of the year 2011, changing all instances of a 24 hr period based on a 'calendar day' to be based on a convective day (12:00-12:00 UTC), inclusion of standard error of the slope to give a better impression of trend uncertainty, comparison of our results with severe tornadoes as defined by F2 or greater, a more intuitive inclusion of individual tornado and outbreak events, and an expanded discussion. As a result of these and other changes as a response to comments made by reviewers, we have added a total of five new figures, seven new equations, updated all of our figures, and made text changes for clarification and further discussion of certain issues. A summary of new figures and major updates to figures is given in *Table 1*.

Table I. Summary of new figures and major updates to figures. Note that all figures, where appropriate, have been updated to include the 2011 year, and changed 24 hour periods considered to be convective days (12:00–12:00 UTC) instead of calendar days.

Original Manuscript Figure Number	Revised Manuscript Figure Number	Comments	
1 ab	1ab	Symbols changed to lines, to enhance visibility.	
(New Figure)	2	New figure: Cumulative # of tornadoes per year with path lengths $\ge L$ as function of <i>L</i> , 1982–2011, L \ge 0 km. Includes identification of 3 longest path lengths and rough estimates for 1, 10, 100 yr tornadoes.	
2	3		
3	4		
4	5		
5	6	Standard error of slope now included.	
6ab	7abc	Original 6a became 7a (with appropriate updates). New panels, 7b & 7c: 7b is # of tornadoes per year, 1982–2011, with Fujita Scale F2 or greater. 7c is ratio of 7a to 7b. Standard error of slope now included.	
(New Figure)	8abc	Original 6b became 8a (with appropriate updates). New panels, 8b & 8c: 8b is total length of tornadoes per year, 1982–2011, with Fujita scale F2 or greater. 7c is ratio of 7a to 7b. Standard error of slope now included.	
7	9	Addition on plot of data for 7b vs. 8b. Standard error of slope now included for both sets of data.	
8	10	Added vertical error bars (equivalent to ± 2 standard deviations) to the frequency densities.	
9	11		
(New Figure)	12	New figure: Cumulative # of continental USA tornado outbreaks per year with daily total path lengths $\geq L_{\rm D}$, given as function of $L_{\rm D}$, for six 10-year periods from 1952–2011.	
(New Figure)	13	New figure: Cumulative # of continental USA tornado outbreaks per year with daily total path lengths $\geq L_D$ given as function of L_D , 1952–2011. Includes identification of 3 longest outbreaks and rough estimates for 1, 10, 100 yr outbreaks.	
10	14		
11	15	Added vertical error bars (equivalent to ± 2 standard deviations) to the frequency densities.	
(New Figure)	16	New figure: Distribution of severe tornado path lengths during two convective day (12:00–12:00 UTC) outbreaks in the continental USA, 27 April 2011 and 25 May 2011.	

Attached we have answered each of the reviewers' comments, and include a revised manuscript using track changes. We again thank the reviewers for their comments which we believe have helped us to improve the clarity and relevance of the original manuscript.

Bruce D. Malamud

(Department of Geography, King's College London, UK, bruce.malamud@kcl.ac.uk)

Reviewer 1: Harold Brooks

I like the work that's been done here, in general, and would be open to future collaboration on this or related topics. [Author Response: Thank you. Although we have not met, we would also enjoy working with you on this or related topics, and in revising our manuscript, found a number of items that might warrant further investigation.]

1. p. 5: Verbout et al. (2006) don't really discuss the path length issue. Their focus was on the damage estimates. *[Author Response: We have removed them as a reference for path-lengths.]*

2. The trends in Figs. 5 and 6 need to be interpreted with caution. It would be good to have estimates of the error bars on the slope from the regression at the very least. In addition, the length of record used here is a matter of concern. Some measures, such as the count of F1+ tornadoes per year (a reasonable robust measure) indicated that the early 1970s were particularly active for tornadoes. If you take the data back to 1971, the overall linear trend goes to zero or negative for the quantities shown. The quality of the reporting database and all of the issues the authors allude to on that would make any "real error bars" larger than would be estimated from purely statistical reasoning.

[Author Response: We agree that the trends in Figs. 5 and 6 (now Figs. 6, 7, 8) need to be interpreted with caution. We have now added standard error of the slope to these (and several other) trend lines throughout the paper, and included these errors on the graphs themselves, and a discussion (within the context of 95% confidence intervals) in the text. We have also added a new figure for F2+ tornadoes per year (both count and total path length), and show that despite a gentle positive trend, that within the 95% confidence limits of the slope, a negative or zero trend cannot be rejected.]

3. There's no reason to bring up global warming at all. Our expectations for how tornadoes will change aren't particularly strong. In general, the predicted small decrease in wind shear over the US would almost certainly be difficult to detect given the large interannual variability.

[Author Response: We agree with the reviewer, and made a point in our paper's original draft (and the rewrite) not to associate our results with anthropogenic or natural induced global warming.]

4. How are "days" defined, e.g. midnight-midnight local, UTC? For many purposes, using the so-called "convective day" (12 UTC-12 UTC) is useful. That's what I typically use in analyses.

[Author Response: In our analyses, we had originally defined the 24 hr period of a day as 00:00–00:00 CST (Central Standard Time), i.e. a calendar day. However we agree with the reviewer that a convective day (12:00–12:00 UTC, i.e. 06:00–06:00 CST) is more appropriate. We have therefore repeated all of our original analyses, but now for each 24 hr period used a convective instead of a calendar day. All figures have been updated and appropriate text added to the manuscript and figure captions.]

5. The total path length for a day can almost certainly be extended earlier in the record. Even if individual tornado lengths have shown a change as seen in Fig. 1, that does not mean that the summed lengths of all tornadoes on a day will suffer from the same problem. It is likely that one major reason for the reduction of length of the longest tornadoes is because of better surveying leading to what would have been reported as a single tornado historically as multiple tornadoes now. The total path length of those paths would not be changed much.

[Author Response: We have now included two new figures (**Figs. 12 & 13**), for the 1952–2011 period, the cumulative number of outbreaks with total path length per day L_D as a function of L_D , and highlight in the figures three of the largest outbreak events. We do this based on severe tornadoes (path lengths $L \ge 10$ km) and it highlights going back in time.

As an interesting note, we compared (but did not include in the paper) the ratio of total daily path length L_D (using all tornado path lengths L > 0 km) to total daily path length L_D (using severe tornado path lengths $L \ge 10$ km) to get an idea of how this ratio has changed over time (and not shown here, how for the most recent decade of data, this ratio changes as a function of size of a severe tornado outbreak). This ratio is given in **Figure A** below, and it can be seen that during the first three decades the smaller tornado path lengths (L < 10 km) do not contribute as much to the overall daily path length as in the later decades, i.e. the ratios are systematically closer to 1 in early decades compared to later decades. From **Fig. 10** (new manuscript) we see that the frequency-size distribution of tornado path lengths has a high exponent (-3.0) for 10 km $\le L < 300$ km, although this distribution rolls over as one approaches L = 10 km. This high exponent, and other studies we did, indicate that for later decades, as there are a significantly large number of smaller tornado path length than larger ones (with rough scaling), that these smaller tornadoes contribute significantly more to the overall daily path length in an outbreak L_D (based on $L \ge$ 10 km) is nearer to 10 km, just one severe tornado is involved in the 'total', and if one then includes 'smaller' tornadoes ($L \le$ 10 km) in the convective day total path length, they can contribute significantly to the overall total .

When doing the cumulative distributions by decade (N_c vs. L_D) in the new figure (**Fig. 12**), for the 1952–2011 period and using only path lengths of severe tornadoes $L \ge 10$ km, we found that the early decades did not systematically deviate from the later decades as they did when we did the cumulative dependence of N_c vs. L (**Fig. 1**). As alluded to by the reviewer, the outbreak

total path length data for convective days, do not seem to be biased systematically from earlier to later decades as to where they appeared vertically relative to one another. We believe that the total daily path length L_D is a relatively robust measure for a daily outbreak, when considering only severe tornadoes ($L \ge 10$ km), but believe (and would welcome further investigation of this with the reviewer in future work) that the increased reporting of much smaller tornado path lengths over time would reflect itself in creating a bias in L_D if they were included. In other words, we agree that better surveying has led to what would have been reported as a single tornado historically as multiple tornadoes now, but also (as also reported in publications by Harold Brooks) that smaller and smaller tornado path lengths are now being systematically reported that previously would not have been reported, so that some care should be taken when considering total path length per day and one needs to take a threshold, as the smaller ones tend to add significantly more to the total path length.]

Figure A. Ratio of total daily (convective day, 12:00-12:00, UTC) path lengths L_D in the continental USA for individual outbreaks based on two measures. L_D (based on all individual tornado path lengths L > 0 km) and L_D (based on severe tornadoes with path lengths $L \ge 10$ km). A ratio of 1 would indicate that tornadoes with path length L < 10 km do not contribute much to the overall summed daily path length.

6. By my calculation, the longest path length convective day of the 1981-2010 period was a little less than 1300 km (13 March 1990). That's the 5th longest path length day in the 1950-2010, plus the preliminary April 2011 dataset. 3 April 1974 had 3995 km of tornadoes, followed by 27 April 2011, 11 April 1965, and 26 April 2011. Taking the daily path length back earlier in time won't change the results of the analysis shown here, but it would allow for an estimate of how often we should expect to see something like 3 April 1974.

[Author Response: We have now (see response to the last point) included the 1952 to 2011 entire period and highlighted several of the key outbreak evens going further back in time, along with a rough estimate of the size of outbreaks on recurrence intervals of 1, 10 and 100 yr.]

7. The relationship between path length and number of tornadoes is not surprising. Tornado occurrence depends, in large part, on the presence of strong vertical wind shear. Strong wind shear environments typically produce fast storm motions, which lead to longer path lengths. Thus, the two are physically linked. The late 1980s, characterized by low wind shear values over the US, have short annual total path lengths and few tornadoes, and the early 1970s and late 1990s, characterized by high wind shear values, have long annual total path lengths and many tornadoes. *[Author Response: We thank the reviewer for these comments. We would be interested in relating the statistics we have presented in this paper, to a yearly correlation of vertical wind shear, if the reviewer was interested in further work.]*

ANONYMOUS REVIEWER (Referee # 2)

The authors pick up an earlier defined hypotheses and confirm it. The hypotheses states that a tornado touchdown path length relates to the its strength. Furthermore, the authors find a power law relation for the frequency density function of the (total) path length and the (total) path length itself. I enjoyed reading the manuscript.

An analogy between the development of the intensity scales of earthquakes and tornadoes is made. However, this analogy is broadened to relate the aftershock sequence of earthquakes with the clustering of tornado numbers due to the seasons (page 11). I am not able to follow this argument and disagree that an aftershock sequence related to an earthquake can be compared to the seasonal cycle of tornado occurrence. *[Author Response: We have removed these sentences from our discussion.]*

In the figure caption of Fig.6: a and b are reversed.

[Author Response: Thank you for noticing this. We have revised the figure, text and figure caption (parts a and b are now in two separate figures, and we have added on an additional two new panels).]

Statistics of severe tornadoes and severe tornado 1

- outbreaks 2
- 3

Bruce D. Malamud¹ and Donald L. Turcotte² 4

[1] {Department of Geography, King's College London, Strand, London, WC2R 2LS, UK} 5

6 [2] {Department of Geology, University of California, Davis, CA 95616, USA }

Correspondence to: Bruce D. Malamud (bruce.malamud@kcl.ac.uk) 7

8

9 Abstract

The standard measures of the intensity of a tornado in the USA and many other countries are 10 the Fujita and Enhanced Fujita scales. These scales are based on the damage that a tornado 11 causes. Another measure of the strength of a tornado is its path length of touchdown, L. In this 12 study we consider severe tornadoes, which we define as $L \ge 10$ km, in the continental USA 13 14 (USA Storm Prediction Center Severe Weather Database). We find that for the period <u>1982–2011</u>, for individual severe tornadoes $(L \ge 10 \text{ km})$: (i) There is a strong linear scaling 15 between the number of severe tornadoes in a year and their total path length in that year. (ii) 16 The cumulative frequency path length data suggests that the longest severe tornado path 17 length (or greater) expected in a year (on average) is L = 115 km and in a decade (on average) 18 is L = 215 km. (iii) The noncumulative frequency-length statistics of severe tornado 19 touchdown path lengths, 20 < L < 200 km, is well approximated by an inverse power-law 20 21 relationship with exponent near 3. We then take the total path length of severe tornadoes in a convective day (12:00-12:00 UTC), L_D, as a measure of the strength of a 24-hour USA 22 23 tornado outbreak. We find that: (i) For 1982–2011, the number of severe tornadoes in a USA α convective day outbreak has, a strong power-law relationship (exponent 0.80) on the 24 <u>convective day</u> total path length, L_{D_r} (ii) For 1952–2011, the cumulative frequency path 25 length data for severe tornado outbreaks suggests that the longest daily outbreak path length 26 total (or greater) expected in a year (on average) is $L_D = 480$ km and in a decade (on average) 27 is $L_{\rm D} = 120$ km. (iii) For 1982–2011, the noncumulative frequency-length statistics of tornado 28 outbreaks, $10 < L_D < 1000$ km dy⁻¹, is well approximated by an inverse power-law relationship 29 with exponent near 1.8, Finally, we consider the frequency path-length scaling of severe 30

Deleted: 4061
Deleted: (
Deleted: d
Deleted:)
Deleted: for the time period 1981–2010
Deleted: s
Deleted: i
Deleted: (ii) There is a strong linear scaling between the number of severe tornadoes in a year and their total path lengths in that year.
Deleted: (i) On average, the number of days per year with at least one continental USA severe tornado (path length $L \ge 10$ km) has increased 16% in the 30-year period 1981–2010.
Formatted: Highlight
Formatted: Highlight Deleted: i
Deleted: i
Deleted: i Deleted: T
Deleted: T Deleted: T Deleted: daily
Deleted: i Deleted: T Deleted: daily Deleted: s
Deleted: i Deleted: T Deleted: daily Deleted: s Deleted: ve
Deleted: i Deleted: T Deleted: daily Deleted: s Deleted: ve Deleted: 7
Deleted: i Deleted: T Deleted: daily Deleted: s Deleted: ve Deleted: 7 Deleted: their
Deleted: i Deleted: T Deleted: daily Deleted: s Deleted: ve Deleted: 7 Deleted: their Deleted: daily
Deleted: i Deleted: T Deleted: daily Deleted: s Deleted: ve Deleted: 7 Deleted: their Deleted: daily Deleted: s Deleted: s Deleted: , over the range $20 < L_D < 1000$
Deleted: i Deleted: T Deleted: daily Deleted: s Deleted: ve Deleted: 7 Deleted: their Deleted: daily Deleted: s Deleted: , over the range $20 < L_D < 1000$ km dy ⁻¹

Malamud and Turcotte. Statistics of Tornadoes & Severe Tornado Outbreaks. Submitted to ACPD (2nd version, This draft: 7 August 2012)

p. 2 of 45

60tornadoes $(L \ge 10 \text{ km})$ during two tornado outbreaks, 27 April 2011 (67 severe tornadoes) and6125 May 2011 (16 severe tornadoes), and find similar statistical distributions with robust62scaling. We believe that our robust scaling results provide evidence that touchdown path63lengths can be used as quantitative measures of the systematic properties of severe tornadoes64and severe tornado outbreaks.

65 [Manuscript length: <u>387</u> word abstract, <u>8048</u> word main text, <u>17</u> references, 2 tables, <u>16</u> figures]

66 **1 Introduction**

This paper introduces and tests hypotheses for quantifying the intensities of severe tornadoes 67 and tornado outbreaks. Our approach is in analogy to the historic evolution of the qualitative 68 (damage-based) Mercalli scale relative to the quantitative (displacement-based) Richter scale 69 for earthquakes. The Fujita and Enhanced Fujita scales, currently used for tornadoes, are 70 71 based qualitatively on damage, from which wind intensity and other quantitative measures are 72 estimated. Ideally, tornado intensities would be based on the distribution of velocities in a tornado. However, as noted by Doswell et al. (2009), systematic and high-resolution Doppler 73 remote sensing of wind velocities in tornadoes is not possible at this time. 74 75 In this paper, we will use the tornado path length L as a quantitative measure of tornado intensity and on the basis of our frequency-length statistics (shown in the next section), we 76 will define a severe tornado as having $L \ge 10$ km. A detailed study of the statistical 77

relationship between tornado path lengths L and Fujita scale intensities has been given by Brooks (2004). In this paper we extend his approach, to <u>further</u> develop <u>individual tornado</u> and tornado outbreak path length statistics to aid in improving our understanding of tornado climatology.

The standard measure of the tornado intensity is the Fujita scale (Fujita, 1971, 1981; Fujita 82 83 and Pearson, 1973) also referred to as the Fujita-Pearson scale. This scale was introduced in the 1970s as a measure of tornado intensity, with tornadoes rated on a scale of F0 to F5 based 84 on the damage caused. In the United States, the enhanced Fujita scale replaced the Fujita scale 85 for intensity assessment on 2 February 2007, using different and more specific criteria for 86 assessment (Doswell et al., 2009). In terms of applications, the Fujita scale and the enhanced 87 Fujita scale are considered equivalent, so that in the remainder of this paper we will refer to 88 the Fujita scale. 89

	Deleted: 290
	Deleted: 5064
Ì	Deleted: 15
¹	Deleted: 11

Deleted: robust scaling

Deleted: relationships

Malamud and Turcotte. Statistics of Tornadoes & Severe Tornado Outbreaks. Submitted to ACPD (2nd version, This draft: 7 August 2012)

96 It is of interest to compare probabilistic risk assessment for tornadoes with that of earthquakes. From 1880 until 1935 the Mercalli scale was used to determine the intensity of 97 98 earthquakes. The Mercalli scale was based on damage, and is in direct analogy to the Fujita scale for tornadoes (Doswell et al., 2009). In 1935 the Mercalli scale was replaced by the 99 Richter scale (Richter, 1935) as the accepted measure of earthquake intensity. The Richter 100 scale utilized the displacement amplitudes obtained from regional seismographs to quantify 101 the ground shaking responsible for damage and deaths. In 1979 seismograph displacements 102 103 were used to directly determine the moment (radiated energy) of an earthquake (Hanks and Kanamori, 1979). Earthquake moments are then converted to moment magnitudes because of 104 105 the public acceptance of the Richter magnitude scale. The association between earthquake and 106 tornado risk assessments has also been discussed by Schielicke and Névir (2011).

The principle purpose of this paper is to carry out a study of the statistics of tornado 107 108 touchdown path lengths, L. In Sect. 2 we discuss the data. Because of data quality, we will 109 consider only severe tornadoes, and utilize two definitions: (i) Tornadoes having touchdown path lengths $L \ge 10$ km (and all Fujita scales F0 and greater); (ii) Only strong (F2 and F3) and 110 violent (F4 and F5) tornadoes (and all $L \ge 0$ km). These two definitions have approximately 111 112 the same number of tornadoes for the period considered. However, only about one half of the 113 severe tornadoes are included in both definitions. We will conclude that the path-length definition for severe tornadoes ($L \ge 10$ km) is preferable, and will use it for the rest of our 114 115 studies. In Sect. 3, we consider the statistics of individual severe tornadoes ($L \ge 10$ km) during the period 1982–2011, including the statistics of severe tornado occurrence as a function of 116 the hour of day, day of the year, total number vs. path length per year, and the probability of a 117 given length L occurring. Then in Sect. 4, we extend our studies of individual severe 118 tornadoes to the total path length of severe tornadoes in a <u>convective day (12:00–12:00 UTC)</u>, 119 120 $L_{\rm D}$, which we take as a measure of the strength of a continental USA tornado outbreak in a one-day period. Doswell et al. (2006) have suggested that L_D is the preferred measure of the 121 strength of a tornado outbreak. Verbout et al. (2006) also discuss using the number of 122 tornadoes above a given threshold in a convective day as a measure of the strength of a 123 124 tornado outbreak. We show that the number of tornadoes in a convective day scales with the total length of tornadoes in that convective day, and consider the probability of a given 125 outbreak total path length $L_{\rm D}$ occurring, along with the statistics of path length in two 126 convective day outbreaks. We also consider the cumulative frequency-path length statistics of 127

Deleted:

p. 3 of 45

Deleted: tornadoes during the 30-year period 1981–2010 and Deleted: , which we will define as having Deleted: Deleted: . Based on the work of Brooks

(2004) and our studies, this lower limit approximately eliminates tornadoes F0 and F1, leaving o

- 1	Deleted:
- 1	Deleted: ¶
• -{	Deleted: 1
1	Deleted: 0

Malamud and Turcotte. Statistics of Tornadoes & Severe Tornado Outbreaks. Submitted to ACPD (2nd version, This draft: 7 August 2012) p. 4 of 45

143

144 **2 Data**

In this paper we consider the statistics of tornado occurrence in the continental United States. 145 We use six decades of the National Weather Service (NWS) Storm Prediction Centre (SPC) 146 database of tornadoes (McCarthy, 2003) for the time period 1952 to 2011 (NOAA, 2012). For 147 the 56,755 tornado records during this period, information includes (in most cases) tornado 148 date, time, location (latitude, longitude, county, state), Fujita scale (or enhanced Fujita scale) 149 150 value, injuries, fatalities, damage, and touchdown path length and width. A number of records were removed based on the listed values of tornado path length, L. In the original database, 151 tornadoes that touched down in more than one state had a path length record for each state, 152 and another one for the entire summed path length for the multiple states. Therefore <u>990</u> 153 values (1.7%) of the original dataset records) were removed that were one part of a multi-state 154 record (the multi-state record was left in place). Also removed from the original dataset were 155 156 157 80, 50, 30, 25, 20, 15, 10, 8 miles (the original units of the database), but where the starting and ending latitude and longitude coordinates were listed as being exactly the same (i.e., 0 158 159 miles traversed). It was assumed that these records were in error due to being exactly on 160 multiples of one-hundred (or 10) and having zero path length based on touchdown starting/ending coordinates. The final database used here for 1952-2011 (all touchdown path 161 lengths L), had a total of 5<u>5,703 tornadoes</u>. 162 We first consider the frequency-path length statistics for all tornadoes. In Fig. 1 we give the 163

cumulative number of tornadoes per year N_c with touchdown path lengths greater than L, as a 164 function of L. Values are given for six 10-year periods, 1952–2011. In Fig. 1a we consider all 165 tornadoes of any path length L (55,703 values) and in Fig. 1b just those tornadoes with $L \ge 10$ 166 167 km (8018 values). There is a clear visual difference between the three 10-year frequency-size distributions for 1952-1981, compared to the three 10-year frequency-size distributions during 168 the period 1982-2011. Many fewer long path lengths were recorded in the later period. 169 Schaefer et al. (2002) and Brooks (2004) have previously noted this difference and suggested 170 that the difference in completeness is related to the beginning of real-time touchdown surveys. 171

Deleted: We relate the total number of severe tornadoes in an outbreak to $L_{\rm D}$ and find power-law scaling, then use $L_{\rm D}$ to observe trends over the last 30 years.

Deleted: We recognize the limitations of our approach, but obtain a sequence of well-defined scaling relationships similar to the established Gutenberg–Richter frequency-magnitude scaling for earthquakes. We believe our approach will augment the Fujita (and Enhanced Fujita) scale for the quantification of the tornado hazard.

-{	Deleted: 1
-{	Deleted: 0
1	Deleted: 1
1	Deleted: 5
1	Deleted: 233

Deleted: 905	
Deleted: 6	
Deleted: 7	

Deleted: 0
Deleted: 0
Deleted: 4
Deleted: 271
Deleted: unique
Deleted: records
Deleted: Mean v
Deleted: 1
Deleted: 0
Deleted: 4
Deleted: 271
Deleted: 7711
Deleted: 1
Deleted: 0
Deleted: 1
Deleted: 0
Deleted: ,
Deleted: and Verbout et al. (2006)

Malamud and Turcotte. Statistics	of Tornadoes & Severe Tornado Outbreaks. Submitted to ACPD (2nd version, This draft: 7 August 2012)	р.
----------------------------------	---	----

5 of 45

The emphasis in this paper is on the statistics of tornado path lengths as a measure of tornado 240 intensity. Since the standard measure of tornado intensity is the Fujita scale, it is important to 241 242 consider relations between the Fujita scale values and tornado path lengths. Brooks (2004) has

Deleted: 1
Deleted: 0
Deleted: 3
Deleted: 418
Deleted: 1
Deleted: 0
Deleted: 1
Deleted: 0
Deleted: 1
Deleted: 0
Deleted: ¶

	Malamud and Turcotte. Statistics of Tornadoes & Severe Tornado Outbreaks. Submitted to ACPD (2 nd version, This draft: 7 August 2012) p. 6 of 45
259	studied in detail the statistical distribution of path lengths for F0 to F5 tornadoes. He carried
260	out his study for all tornadoes from 1950–2001. In Fig. 3, we relate the statistical measures of Deleted: 2
261	tornado touchdown path lengths L as a function of Fujita scale for intensities F0 to F5, for all
262	tornadoes 1982–2011, For each Fujita intensity, we give the mean touchdown path length (red
263	diamonds), median (grey circles), and the 75 th and 25 th percentiles (upper and lower
264	horizontal lines). For F2 to F5 (i.e., strong to violent) tornadoes, the best-fit linear trend line
265	(thick red line) to the mean path length values is:
266	$\log \overline{L}_{Fj} = 0.241(\pm 0.026) j + 0.641, j = 2, 3, 4, 5, (1)$
267	where \overline{L}_{Fj} is the mean of all tornado path lengths L at a given Fujita scale value, Fj, j =

268 2,3,4,5, and the uncertainties are ±1 s.e. (standard error) on the slope, Eq. (1) can be written
269 as:

270

I

$$\frac{L_{\mathrm{F}(j+1)}}{\bar{L}_{\mathrm{F}j}} = 10^{0.241(\pm 0.026)} = 1.64 - 1.85, \qquad j = 2, 3, 4, 5, \tag{2}$$

280From Fig. 9, we see that reasonably good scaling of the mean outendown path lengths (red281diamonds) as a function of Fujita intensity is obtained for tornadoes F2 to F5. The deviation282from this scaling for F0 and F1 tornadoes is likely due to limitations of the Fujita scale for283weak tornadoes and/or measurement problems with determining path lengths for these weak284tornadoes. For these reasons, one possible definition for severe tornadoes, in terms of the285Fujita scale, includes those that are F2 or larger (i.e., 'strong' and 'violent' tornadoes). Since286our studies are based on tornado path lengths, an alternative definition for a severe tornado,287which we will use later, is a tornado that has a touchdown path length $L \ge 10$ km. We will

Comment [B2]: Numbers updated and added standard error of the slope.

Deleted:
Deleted: 67
Deleted:
Deleted: 67
Deleted: 4
Deleted: 6
Deleted: 1
Deleted: 0

Deleted: 2

Deleted: we will limit further statistical studies in this paper to Deleted: which Deleted: we will Deleted: define here as those Deleted: we will define Deleted: to be

Malamud and Turcotte. Statistics of Tornadoes & Severe Tornado Outbreaks. Submitted to ACPD (2 th version, This draft: / August 2012)	Malamud and Turcotte. Statistics of	f Tornadoes & Severe Tornado Outbreaks, Submitted to ACPD (2nd version, This draft: 7 August 2012)	p. 7
--	-------------------------------------	--	------

discuss these two severe tornado definitions in Sect. 3. In terms of path lengths, we see from Fig. 3 and Table 1 that on average, the minimum touchdown path length value in our definition of severe tornadoes approximately coincides with F2 (strong) tornadoes, at L = 12, 1,km, with F0 and F1 (weak) tornadoes having path lengths that significantly deviate from the

scaling seen for strong (F2 and F3) and violent (F4 and F5) tornadoes.

- 313 In **Table 2** we give the number of continental USA tornadoes with L < 10 km and $L \ge 10$ km as a function of Fujita intensity for the time period 1981-2010. The total number of 'severe' 314 tornadoes ($L \ge 10$ km) that we consider in this paper is 43.17 (12% of the database's 315 tornadoes, 1982-2011, with <u>30010</u> tornadoes (L < 10 km) omitted. We recognize that a 316 substantial fraction of our severe tornadoes ($L \ge 10$ km) have designation F0 (i.e., 3% of all 317 318 F0 tornadoes) and F1 (16% of all F1 tornadoes), and that a substantial fraction of the tornadoes we do not consider (L < 10 km) have designation F2 (59% of all F2 tornadoes) to 319 320 F5 (5% of all F5 tornadoes). We also note that from the results of Brooks (2004) and this paper (see Fig. 3, Table 1) there is a systematic increase in tornado path lengths as a function 321 of increasing F value. However, there is a large scatter. An important question is whether this 322 scatter can be primarily associated with the damage assessments that give the F values or 323 whether path lengths are simply not a good measure of tornado intensities. 324
- In order to address this question we return to the comparison between the damage-based 325 326 Mercalli scale for earthquakes and the Fujita scale for tornadoes. When a strong earthquake occurs, maps of Mercalli intensities are obtained. These intensities systematically decrease 327 away from the earthquake epicenter, as expected. There are also local variations in values due 328 to local variations in ground shaking intensity. However, in a strong earthquake, hundreds to 329 330 thousands of Mercalli values are obtained, so that averaging can be carried out to obtain smoothed maps of intensity. These maps are considered useful even if instrumental 331 earthquake magnitudes are available 332
- 333

334 **3 Statistics of severe tornadoes**

335	In this section we carry out a systematic study of the statistics of severe tornadoes ($L \ge 10$ km)
336	during the period 1982-2011. We first give the dependence of tornado occurrence on time of
337	day, day of the year, and year. In Fig. 4, we give a histogram of times of occurrence of severe

Deleted: Deleted: 2 Deleted: 11 Deleted: 6

of 45

Deleted: 061	
Deleted: 1	
Deleted: 0	
Deleted: 29	
Deleted: 357	
Deleted: 5	
Deleted: 61	
Deleted: 7	
Deleted: 2	

Deleted: ¶

Del Del Del Del

There is no question that Fujita scale evaluations of tornado intensities are very useful. However, results in this paper, along with other work, would indicate that tornado touchdown path lengths may also be a very useful measure of the intensity of both individual tornadoes and tornado outbreaks. We believe that the definition provided here of a severe tornado $(L \ge 10 \text{ km})$, is easily quantifiable, and roughly corresponds with the Fujita intensities F2 to F5. We will now use this database of 4,061 severe continental USA tornadoes $(L \ge 10 \text{ km})$ that occurred over the time period 1981-2010.

eted: , 1981–2010
eted: 1
eted: 0
eted: 3

$$\mathbf{p}(h) = \frac{n_h}{N_T} \tag{3}$$

374	where n_h is the number of severe tornadoes ($L \ge 10$ km) initiated during hour h CST (Central	Deleted: N _h
375	Standard Time), and $N_{\rm T}$ is the total number of tornadoes ($L \ge 10$ km) during the period 1982	Deleted: 1
376	2011. The dependence of $p(h)$ on h is given in Fig. 4. There is an afternoon peak in activity h	Deleted: 0
377	= 15 to 20 CST. Maximum activity is at $h = 17$ to 18 CST, with 12% of all tornadoes initiated	Deleted: 3
378	during this hour. The results are similar to those given by Kelly et al. (1978) for 17 659	
379	tornadoes that occurred between 1950 and 1976.	
380	In Fig. 5, we give the statistics of severe tornado occurrence as a function of day of the year	Deleted: 4
381	(leap days, 29 February omitted). We use here 'convective' days, i.e. the 24 hour period from	
382	12:00 UTC (Coordinated Universal Time) of a given day to 12:00 UTC of the following day;	
383	this is the same as 06:00–06:00 CST. For each day of the year, 1 to 365, we give the number	Deleted:
384	of years from 1982–2011, with at least one severe tornado $L \ge 10$ km. There is a peak from	Deleted: 1
385	April to July (days 91 to 212). The highest peak activity was on day 151 (31 May), with on	Deleted: 0
386	this day, 15 of the 30 years having at least one severe tornado.	
387	We next turn to annual variability over the period considered. In Fig. 6, for each year $t = 1982$	Deleted: 5
388	to 201 <u>1</u> , we give $n_{\rm D}$ the number of days per year in which one or more severe tornadoes ($L \ge$	Deleted: 1
389	10 km) occurred. The best-fit linear correlation of this data gives	Deleted: 0 Deleted: n
i		Comment [B3]: Numbers updated and
390	$n_{\rm D} = 0.280(\pm 0.178)t - 510, \tag{4}$	added standard error of the slope.
391	where the uncertainties represent ± 1 s.e. (standard error) of the slope. The standard error is	
392	based on the standard deviation of the $n_{\rm D}$ values about this trend line, which is 8.3 dy. We	
393	will use this definition of uncertainty on the slope throughout the paper. On average, the	
394	number of days in a year with at least one severe tornado ($L \ge 10$ km) increased from $n_{\rm D} = 44$	Deleted: n
395	dy in 1982 to 52 dy in 2011. The standard error on the slope results in a 95% confidence	Deleted: 1
396	interval of [-0.085, 0.645] dy yr ⁻¹ ; in other words, considering the scatter of values around the	Deleted: 1
397	best-fit trend line, there is 95% confidence that the slope lies somewhere in the range of	Deleted: 0
398	-0.085 to 0.645 dy yr ⁻¹ , and therefore a slightly negative or zero trend cannot be rejected.	Formatted: Lowered by 3 pt
230		Deleted: The standard deviation of the values about this trend line is 8.4 dy.

	Malamud and Turcotte. Statistics of Tornadoes & Severe Tornado Outbreaks. Submitted to ACPD (2 nd version, This draft: 7 August 2012) p. 9 of 45		
419	We next consider the number of severe tornadoes per year in the continental USA for the		
420	period 1982-2011. We will utilize two definitions of severe tornadoes, one based on path		
421	length exceedance, the other based on Fujita scale exceedance. We first give the annual		
422	number of tornadoes per year with path lengths $L \ge 10$ km (and all Fujita intensities Fj, $j\ge 0$),		
423	which we will notate as $N_{Y[L \ge 10 \text{ km}]}$. These values are given in Fig. 7a , for each year $t = 1982$		
424	to 2011. The best-fit linear trend for the annual number of tornadoes is given by:		Deleted: In Fig. 6 , for all tornadoes $(L \ge $
			10 km) we give the annual number $N_{\rm Y}$ and annual total path length $L_{\rm Y}$, for each year t
425	$N_{\rm Y}[L \ge 10 \rm km] = 4.03(\pm 1.10)t - 7900 (5)$		= 1981 to 2010. Comment [B4]: Numbers updated and
426	In terms of this best-fit, the annual number of tornadoes increased from, on average,		added standard error of the slope.
427	$N_{Y^{[L \ge 10 \text{ km}]}} = \frac{87}{10}$ tornadoes yr ⁻¹ in 1982 to <u>204</u> tornadoes yr ⁻¹ in 201 <u>1, with the 95%</u>		Deleted: yearly Deleted: Ny
120	confidence limits on the slope given by $[1.78, 6.28]$ tornadoes yr^{-2} i.e. within a 95%		Deleted: 93
428			Deleted: 1
429	confidence, a positive (non-zero) trend is very likely.		Deleted: 177
430	As an alternative definition of severe tornadoes, we consider those tornadoes with Fujita	Ň,	Deleted: . The standard deviation of the
431	intensities F2 or larger. Other authors have also considered similar definitions. For example,		values about this trend line is 41.5 tornadoes yr ⁻¹ .
432	Verbout <i>et al</i> (2006) explored the annual variability for tornadoes with F_j , $j \ge 2$, $j \ge 3$, $j \ge 4$, for		
433	the period 1954–2003. In Fig. 7b we give the annual number of tornadoes per year with Fujita		
434	intensities Fj, $j \ge 2$ (and all path lengths $L \ge 0$ km), which we will notate as $N_{Y}[Fj, j \ge 2]$. The		
435	best-fit linear trend for the annual number of tornadoes is given by:		
		,	Comment [B5]: New equation.
436	$N_{Y}[F_{j, j \ge 2]} = -0.299(\pm 1.046)t + 743.$ (6)		Comment [Do]. New equation.
437	In terms of the best-fit, the annual total number of severe tornadoes (Fj, $j \ge 2$) decreased		
438	slightly from, on average, $N_{y}[F_{j}, j \ge 2] = 150$ tornadoes yr^{-1} in 1982 to 139 tornadoes yr^{-1} in		
439	2011, but with a large standard error on the slope resulting in a large 95% confidence interval		
440	over which the slope might occur [-2.44, 1.84].		
4.4.1	The two methods for defining severe tornadoes have a different dependence on time. To study		
441			
442	<u>further this difference, we give the annual ratios</u> $N_{Y}[L \ge 10 \text{ km}] / N_{Y}[Fj, j \ge 2]$ in Fig. 7c . The best-		
443	fit linear trend to the ratios is given by		
444	$N_{Y}[L \ge 10 \mathrm{km}] / N_{Y}[Fj, j \ge 2] = 0.0258(\pm 0.0029)t - 50.4. $ (7)	11	Comment [B6]: New equation.
	·		

	Malamud and Turcotte. Statistics of Tornadoes & Severe Tornado Outbreaks. Submitted to ACPD (2 nd version, This draft: 7 August 2012) p. 10 of 45		
458	In terms of this best-fit, the ratio increases, on average, from 0.73 in 1982 to 1.1 in 2011, with		
459	<u>95% confidence limits on the slope [0.020, 0.032], indicating that within a 95% confidence, a</u>		
460	positive (non-zero) trend is likely.		
464			
461	The increase in deviation between the two measures of the annual numbers of severe		
462	tornadoes as a function of year, 1982–2011, appears to be systematic. Before discussing this		
463	result we consider, for both definitions of severe tornadoes, the annual total path lengths of		
464	severe tornadoes in the continental USA over the period 1982-2011. In Fig. 8a we give for		
465	each year $t = 1982$ to 2011, $L_{\gamma}[L \ge 10 \text{ km}]$, the annual total path length considering tornadoes		
466	with path lengths $L \ge 10$ km (and all Fujita intensities Fj, j \ge 0). The best-fit linear trend for the		
467	annual total path length of severe tornadoes ($L \ge 10$ km) is given by:		
468	$L_{\rm Y}[L \ge 10\rm{km}] = 83.6(\pm 31.8)t - 163000 (8)$		Comment [B7]: Numbers updated and added standard error of the slope.
469	In terms of the best-fit, the annual total path length of severe tornadoes ($L \ge 10$ km) increased		Deleted: 6
470	from, on average, $L_{y[L \ge 10 \text{ km}]} = 2\underline{700} \text{ km yr}^{-1}$ in 1982 to $\underline{5120} \text{ km yr}^{-1}$ in 2011. The standard		Deleted: L _Y
		<u></u>	Deleted: 530
471	deviation of the values about this trend line is $L_{Y^{[L \ge 10 \text{ km}]}} = 1480 \text{ km yr}^{-1}$ and the 95%		Deleted: 1
472	confidence range on the slope is [18.4, 148.8] km yr ⁻² in other words, within the 95%	11 I 11 I 11 I	Deleted: 3850
473	confidence, a positive (non-zero) trend is very likely.		Deleted: <i>L</i> _Y
			Deleted: 150
474	In Fig. 8b we give for each year $t = 1982$ to 2011, $L_{Y}[Fj, j \ge 2]$ the annual total path length	N.	Deleted: .
475	considering tornadoes with Fujita intensities F_{j} , $j \ge 2$ (and all path lengths $L \ge 0$ km). The best-		
476	fit linear trend is given by:		
			Comment [B8]: New equation.
477	$L_{Y}[Fj, j \ge 2] = 28.5(\pm 24.3)t - 54300$, ^f	Comment [Do]. New Equation.
478	In terms of the best-fit, the annual total path length of severe tornadoes (Fi, ≥ 2) increased		
479	from, on average, $L_{Y}[F_{j, j} \ge 2] = 2190 \text{ km yr}^{-1}$ in 1982 to 3010 km yr}^{-1} in 2011. The standard		
475			
480	deviation of the values about this trend line is $L_{Y^{[L \ge 10 \text{ km}]}} = 1130 \text{ km yr}^{-1}$ and the 95%		
481	confidence range on the slope is [-24.3, 78.3] km yr ⁻² ; a zero or negative trend cannot be		
482	rejected.		
483	The annual total path lengths for both methods increase with time, but the increase is greater		
484	for $L_{y[L \ge 10 \text{ km}]}$. We again study the differences between the two definitions of severe		

	Malamud and Turcotte. Statistics of Tornadoes & Severe Tornado Outbreaks. Submitted to ACPD (2 nd version, This draft: 7 August 2012) p. 11 of 45		
494	tornadoes by taking the ratios $L_{Y}[L \ge 10 \text{ km}] / L_{Y}[Fj, j \ge 2]$ as shown in Fig. 8c. A best-fit linear		
495	trend is given by:		
496	$L_{Y}[L \ge 10 \text{ km}] / L_{Y}[F_{j, j} \ge 2] = 0.0182(\pm 0.0031)t - 34.9 $ (10)		Comment [B9]: New equation.
497	The increase in the annual path length ratios appears systematic, although smaller than the		
498	annual number ratios as given in Fig. 7c .	į	Deleted: In Figs. 5 and 6, for severe tornadoes ($L \ge 10$ km), we have shown
499	We next study the correlation between the annual numbers of severe tornadoes $N_{\rm Y}$ and the		general increasing trends over the 30-year period (1981–2010) in the variables n
500	annual total path lengths $L_{X_{e}}$ This correlation is illustrated in Fig. 2, where for all severe		(number of days per year with at least one severe tornado), $N_{\rm Y}$ (number of tornadoes per year), and $L_{\rm Y}$ (total path length per
501	tornadoes $(L \ge 10 \text{ km})$ from 1982–2011, the <u>annual number</u> $N_{Y[L \ge 10 \text{ km}]}$ is plotted as a		year). For n , the increase of values over the time period is 16% (Fig. 5), and the
502	function of the <u>annual</u> total path length $L_{Y[L \ge 10 \text{ km}]}$ (blue circles). Assuming an intercept of 0,		standard deviation of these values around the trend line (8.4 dy) is 17% of the mean of <i>n</i> (48.3 dy). Similarly (Fig. 6), the
503	the best-fit linear correlation is given (Fig. 2) by:		increase over the 30-year period for $N_{\rm Y}$ is 90% and for $L_{\rm Y}$ 50%, with corresponding percentage standard deviations (around the
504	$N_{Y}[L \ge 10 \text{ km}] = 0.0408(\pm 0.0009)L_{Y}[L \ge 10 \text{ km}] $ (11)		trend line) compared to the mean, equal to 36% and 31%. Although increasing trends are apparent, it is not clear that the increases are statistically significant,
505	with $L_{Y[L \ge 10 \text{ km}]}$ in km, and relatively little scatter ($r^2 = 0.92$). Also shown on Fig. 9 are, for		considering the large scatter in the data.¶ From Fig. 6 it is apparent that there is a strong correlation
506	the Fujita-based severe tornado definition (Fj, $j \ge 2$), the annual number $N_{Y}[Fj, j \ge 2]$ plotted as		Deleted: ; when values of one variable are large (small), the same behaviour is seen in the other variable
507	<u>a function of the annual total path length</u> $L_{Y}[Fj, j \ge 2]$ (red triangles) Again, assuming an		Deleted: 7
508	intercept of 0, the best-fit linear correlation is given (Fig. 9) by:		Deleted: 1
			Deleted: 0
509	$N_{Y}[F_{j, j} \ge 2] = 0.0555(\pm 0.0025)L_{Y}[F_{j, j} \ge 2] $ (12)		Deleted: yearly Deleted: Ny
		1999) 1999 - 1999 1999 - 1999	Deleted: yearly
510	with $L_{\gamma}[F_{j, j \ge 2}]$ in km, and some scatter ($r^2 = 0.44$), a much larger scatter than $N_{\gamma}[L \ge 10 \text{ km}]$ VS.		Deleted: L _Y
511	$L_{\gamma[L \ge 10 \text{ km}]}$ (Eq. 11). It is not unreasonable to expect that as the number of tornadoes increases		Deleted: The
011			Deleted: 7
512	in a year, so does the total path length of the tornadoes. The relationship shown for the		Comment [B10]: Numbers updated and added standard error of the slope.
513	number-length correlations of severe tornadoes will have a tighter linear correlation if the		Deleted: 7
514	number-length ratio is the same in years of few severe tornadoes and years with many severe	$\sum_{i=1}^{n} i_i$	Deleted: L _Y
515	tornadoes, i.e. <u>a ratio that is independent of the length considered (scale invariant)</u> .		Deleted: and the intercept assumed to be 0
540	In Fig. (we showed that for the number of days non-score as where at least one second		Comment [B11]: New equation.
516 517	In Fig. 6, we showed that for the number of days per year, n_D , where at least one severe tornado with $L \ge 10$ km occurred, there was a 18% increase over the 30-year period (1982–		Deleted: Setting $N_{\rm Y} = 1$ tornado yr ⁻¹ in Eq. (7) gives the mean length of severe tornadoes ($L \ge 10$ km) during this 30-year
518	2011), but that within the 95% confidence range of the slope, this trend cannot be considered		period, $\overline{L}_{Y} = 24 \text{ km yr}^{-1}$. The results given in Fig. 7 are evidence of the scale invariant
519	statistically significant. In Fig. 7, we have given the number of severe tornadoes per year for		in Fig. 7 are evidence of the scale invariant nature of tornadoes on a year to year basis. T
			Deleted: the

Deleted: the

	Malamud and Turcotte. Statistics of Tornadoes & Severe Tornado Outbreaks. Submitted to ACPD (2 version, This draft: / August 2012) p. 12 01 45
566	the period 1982-2011. We have used two definitions of severe tornadoes, the first based on
567	path lengths $L \ge 10$ km (and all Fujita intensities, Fj, $j \ge 0$), the second based on Fujita scale
568	considering only those tornadoes with Fj, $j \ge 2$ (and all path lengths $L \ge 0$ km). The results
569	shown in Figs. 6a and 6b show different trends for the two definitions. The length-based
570	definition has an increase of 135% over the 30-year period and is found to be statistically
571	significant within the 95% confidence limits of the best-fit slope; whereas, the Fujita scale
572	definition has a decrease of some 7% and is found not to be statistically significant. To study
573	the difference between the two severe tornado definitions, in Fig. 7c, we took the ratio of the
574	values given in Fig. 7a and 7b, and found a systematic increase in the ratios over time.
575	In Fig. 8 we have given the annual total path length of severe tornadoes, again using the two
576	definitions for severe tornadoes, for the period 1982-2011. The results given in Fig. 8a (based
577	on path lengths $L \ge 10$ km) and Fig. 8b (based on Fujita scale Fj, $j \ge 2$) again show different
578	trends for the two definitions, but the difference between the trends is smaller than we saw
579	above for the numbers of severe tornadoes per year (Fig. 7). The length-based definition has
580	an increase of 90% over the 30-year period and is found to be statistically significant within
581	the 95% confidence limits of the best-fit slope; whereas, the Fujita scale definition has an
582	increase of 37% and is found not to be statistically significant. In Fig. 8c, we took the ratio of
583	the values given in Fig. 8a and 8b, and found a systematic increase in the ratios over time.
584	One possible explanation for the different trends observed over the period 1982-2011
585	between annual total number and annual total path length for severe tornadoes, is an
586	improvement or change in the surveying. For example, one possibility is that what would
587	have been reported as a single tornado early in the period, is now reported as multiple
588	tornadoes. The annual total path length would not change very much, but the number of
589	tornadoes would increase significantly.
590	When comparing the two definitions for severe tornadoes, it is important to recognize that for
591	the period considered (1982-2011) only about 50% of the tornadoes are common to both
592	definitions (i.e., those with Fj, $j \ge 2$ and $L \ge 10$ km). The Fujita-based severe tornado
593	definition (Fj, $j \ge 2$) has 4384 tornadoes, of which 2204 have path lengths L < 10 km (and
594	thus excluded from the path length definition of severe tornadoes). The path length definition
595	($L \ge 10$ km) has 4317 tornadoes, of which 2137 are F0 and F1 (and thus excluded from the
596	Fujita-based definition of severe tornadoes). It is these differences in tornadoes considered in
597	the two severe tornadoes definitions which result in the different trends observed.
I	

598	We will use the length-based definition for severe tornadoes ($L \ge 10$ km; all F _j , $j \ge 0$) in the	
599	remainder of this paper for two reasons: (i) We see in Fig. 9 that the proportionality between	
600	the annual numbers and path lengths is much more robust for the length-based definition of	
601	severe tornadoes compared to the Fujita-scale definition of severe tornadoes. (ii) The focus of	
602	this paper will be on path length statistics, thus it is appropriate to define our definition of	
603	severe tornadoes using a path length criteria ($L \ge 10$ km, all F _i , $j \ge 0$) rather than a Fujita	
604	Scale criteria (Fi, $j \ge 2$; $L \ge 0$ km).	
		Deleted #
605	We now consider the noncumulative frequency-length statistics of all severe tornadoes ($L \ge 1$	Deleted: ¶
606	10 km) during the time period 1982–2011, Frequency densities are defined as:	Deleted: 1
	δN	Deleted: 0
607	$f(L) = \frac{\delta N}{\delta L},$ (13)	Deleted: 8
		Deleted: 8
608	where δN is the number of tornadoes with lengths between L and $L + \delta L$. In Fig. 10, we plot	
609	f(L) as a function of L, on logarithmic axes, and find a reasonably good power-law	
610	correlation:	
611	$f(L) = 1.27 \times 10^6 L^{-3.00} $ (14)	Comment [B12]: Numbers updated.
611	$f(L) = 1.27 \times 10^6 L^{-3.00}, \qquad (14)$	Comment [B12]: Numbers updated.
611 612	$f(L) = 1.27 \times 10^6 L^{-3.00}$, (14) with L in km. The best-fit of the scaling relationship, Eq. (14), to the frequency densities, is	Deleted: 9 Deleted: 9
	with L in km. The best-fit of the scaling relationship, Eq. (14), to the frequency densities, is $\frac{14}{14}$	Deleted: 9 Deleted: 9 Deleted: ≤
612 613	with L in km. The best-fit of the scaling relationship, Eq. (<u>14</u>), to the frequency densities, is between $20 \le L \le 200$ km, with some data curvature for $L \le 20$ km. Maximum likelihood	Deleted: 9 Deleted: 9 Deleted: ≤ Deleted: ≤
612 613 614	with L in km. The best-fit of the scaling relationship, Eq. (14), to the frequency densities, is between $20 \le L \le 200$ km, with some data curvature for $L \le 20$ km. Maximum likelihood analysis was also used to fit a power-law to the original non-binned $L \ge 20$ km data with a	Deleted: 9 Deleted: 9 Deleted: ≤ Deleted: a slight underfitting for Deleted: The implication of the inverse
612 613	with L in km. The best-fit of the scaling relationship, Eq. (14), to the frequency densities, is between $20 \le L \le 200$ km, with some data curvature for $L \le 20$ km. Maximum likelihood analysis was also used to fit a power-law to the original non-binned $L \ge 20$ km data with a power-law exponent found of -2.93 ± 0.04 (± 2 sigma), Kolmogorov–Smirnov $D = 0.11$,	Deleted: 9 Deleted: 9 Deleted: ≤ Deleted: a slight underfitting for Deleted: The implication of the inverse power-law scaling with exponent near 3, is that for the time period given and defined
612 613 614	with L in km. The best-fit of the scaling relationship, Eq. (14), to the frequency densities, is between $20 \le L \le 200$ km, with some data curvature for $L \le 20$ km. Maximum likelihood analysis was also used to fit a power-law to the original non-binned $L \ge 20$ km data with a	Deleted: 9 Deleted: 9 Deleted: ≤ Deleted: ≤ Deleted: a slight underfitting for Deleted: The implication of the inverse power-law scaling with exponent near 3, is that for the time period given and defined spatial region, a tornado with a factor of 10 longer path length has a probability of
612 613 614 615	with L in km. The best-fit of the scaling relationship, Eq. (14), to the frequency densities, is between $20 \le L \le 200$ km, with some data curvature for $L \le 20$ km. Maximum likelihood analysis was also used to fit a power-law to the original non-binned $L \ge 20$ km data with a power-law exponent found of -2.93 ± 0.04 (± 2 sigma), Kolmogorov–Smirnov $D = 0.11$,	Deleted: 9 Deleted: 9 Deleted: ≤ Deleted: ≤ Deleted: The implication of the inverse power-law scaling with exponent near 3, is that for the time period given and defined spatial region, a tornado with a factor of 10 longer path length has a probability of occurrence that is about 1000 less. For example, the probability of a tornado with
612 613 614 615 616	with L in km. The best-fit of the scaling relationship, Eq. (14), to the frequency densities, is between $20 \le L \le 200$ km, with some data curvature for $L < 20$ km. Maximum likelihood analysis was also used to fit a power-law to the original non-binned $L > 20$ km data with a power-law exponent found of -2.93 ± 0.04 (± 2 sigma), Kolmogorov–Smirnov $D = 0.11$, We briefly consider the relationship between the cumulative frequency-length data given in	Deleted: 9 Deleted: 9 Deleted: ≤ Deleted: a slight underfitting for Deleted: a slight underfitting for Deleted: The implication of the inverse power-law scaling with exponent near 3, is that for the time period given and defined spatial region, a tornado with a factor of 10 longer path length has a probability of occurrence that is about 1000 less. For example, the probability of a tornado with an L = 200 km path length is 1000 times smaller than the probability of an L = 20 km
612 613 614 615 616 617 618	with L in km. The best-fit of the scaling relationship, Eq. (14), to the frequency densities, is between $20 \le L \le 200$ km, with some data curvature for $L < 20$ km. Maximum likelihood analysis was also used to fit a power-law to the original non-binned $L > 20$ km data with a power-law exponent found of -2.93 ± 0.04 (± 2 sigma), Kolmogorov–Smirnov $D = 0.11$, We briefly consider the relationship between the cumulative frequency-length data given in Fig. 2 and the noncumulative data given in Fig. 10. The cumulative number N_c ($\ge L$) is related to the frequency density defined in Eq. 13 by	Deleted: 9 Deleted: 9 Deleted: ≤ Deleted: a slight underfitting for Currence: a slight underfitting for currence that is about 1000 less. For example, the probability of a tornado with an <i>L</i> = 200 km path length is 1000 times smaller than the probability of an <i>L</i> = 20 km path length. Deleted: The use of these frequency-size
612 613 614 615 616 617	with L in km. The best-fit of the scaling relationship, Eq. (14), to the frequency densities, is between $20 \le L \le 200$ km, with some data curvature for $L < 20$ km. Maximum likelihood analysis was also used to fit a power-law to the original non-binned $L > 20$ km data with a power-law exponent found of -2.93 ± 0.04 (± 2 sigma), Kolmogorov–Smirnov $D = 0.11$, We briefly consider the relationship between the cumulative frequency-length data given in Fig. 2 and the noncumulative data given in Fig. 10 . The cumulative number N_c ($\ge L$) is related	Deleted: 9 Deleted: 9 Deleted: ≤ Deleted: a slight underfitting for Deleted: The implication of the inverse power-law scaling with exponent near 3, is that for the time period given and defined spatial region, a tornado with a factor of 10 longer path length has a probability of occurrence that is about 1000 less. For example, the probability of a tornado with an L = 200 km path length is 1000 times smaller than the probability of an L = 20 km path length.
612 613 614 615 616 617 618 619	with <i>L</i> in km. The best-fit of the scaling relationship, Eq. (14), to the frequency densities, is between $20 \le L \le 200$ km, with some data curvature for $L < 20$ km. Maximum likelihood analysis was also used to fit a power-law to the original non-binned $L > 20$ km data with a power-law exponent found of -2.93 ± 0.04 (± 2 sigma), Kolmogorov–Smirnov $D = 0.11$, We briefly consider the relationship between the cumulative frequency-length data given in Fig. 2 and the noncumulative data given in Fig. 10. The cumulative number N_c ($\ge L$) is related to the frequency density defined in Eq. 13 by $N_c = \int_{L}^{\infty} f(L')dN$.(15)	Deleted: 9 Deleted: 9 Deleted: ≤ Deleted: ≤ Deleted: The implication of the inverse power-law scaling with exponent near 3, is that for the time period given and defined spatial region, a tornado with a factor of 10 longer path length has a probability of occurrence that is about 1000 less. For example, the probability of a tornado with an L = 200 km path length is 1000 times smaller than the probability of an L = 20 km path length. Deleted: The use of these frequency-size statistics to calculate the probability of given path length tornadoes occurring, implicitly assumes weak stationarity of the severe tornado time series. We
 612 613 614 615 616 617 618 619 620 	with <i>L</i> in km. The best-fit of the scaling relationship, Eq. (14), to the frequency densities, is between $20 \le L \le 200$ km, with some data curvature for $L \le 20$ km. Maximum likelihood analysis was also used to fit a power-law to the original non-binned $L \ge 20$ km data with a power-law exponent found of -2.93 ± 0.04 (± 2 sigma), Kolmogorov–Smirnov $D = 0.11$, We briefly consider the relationship between the cumulative frequency-length data given in Fig. 2 and the noncumulative data given in Fig. 10 . The cumulative number $N_c (\ge L)$ is related to the frequency density defined in Eq. 13 by $\underbrace{N_c = \int_L^{\infty} f(L') dN}_{L} $ (15) Thus N_c is a function of all values of $N(L)$ in the range <i>L</i> to infinity, whereas $f(L)$ is a local	Deleted: 9 Deleted: 9 Deleted: ≤ Deleted: ≤ Deleted: The implication of the inverse power-law scaling with exponent near 3, is that for the time period given and defined spatial region, a tornado with a factor of 10 longer path length has a probability of occurrence that is about 1000 less. For example, the probability of a tornado with an L = 200 km path length is 1000 times smaller than the probability of an L = 20 km path length. Deleted: The use of these frequency-size statistics to calculate the probability of given path length tornadoes occurring, implicitly assumes weak stationarity of the severe tornado time series. We acknowledge that there exists a yearly seasonality within the time series, and a
612 613 614 615 616 617 618 619	with <i>L</i> in km. The best-fit of the scaling relationship, Eq. (<u>14</u>), to the frequency densities, is between $20 \le L \le 200$ km, with <u>some data curvature for <i>L</i> < 20 km. Maximum likelihood</u> analysis was also used to fit a power-law to the original non-binned <i>L</i> > 20 km data with a power-law exponent found of -2.93±0.04 (±2 sigma), Kolmogorov–Smirnov <i>D</i> = 0.11, We briefly consider the relationship between the cumulative frequency-length data given in Fig. 2 and the noncumulative data given in Fig. 10 . The cumulative number $N_c (\ge L)$ is related to the frequency density defined in Eq. 13 by $N_c = \int_L^{\infty} f(L')dN$ (15) Thus N_c is a function of all values of $N(L)$ in the range <i>L</i> to infinity, whereas $f(L)$ is a local measure of the variation of $N(L)$ with <i>L</i> (normalized to 'unit' size bins, i.e. 1 km). The	Deleted: 9 Deleted: 9 Deleted: ≤ Deleted: ≤ Deleted: a slight underfitting for Deleted: The implication of the inverse power-law scaling with exponent near 3, is that for the time period given and defined spatial region, a tornado with a factor of 10 longer path length has a probability of occurrence that is about 1000 less. For example, the probability of a tornado with an L = 200 km path length is 1000 times smaller than the probability of an L = 20 km path length. Deleted: The use of these frequency-size statistics to calculate the probability of given path length tornadoes occurring, implicitly assumes weak stationarity of the severe tornado time series. We acknowledge that there exists a yearly seasonality within the time series, and a clustering of values for tornadoes that occur with given atmospheric conditions.
 612 613 614 615 616 617 618 619 620 	with <i>L</i> in km. The best-fit of the scaling relationship, Eq. (14), to the frequency densities, is between $20 \le L \le 200$ km, with some data curvature for $L \le 20$ km. Maximum likelihood analysis was also used to fit a power-law to the original non-binned $L \ge 20$ km data with a power-law exponent found of -2.93 ± 0.04 (± 2 sigma), Kolmogorov–Smirnov $D = 0.11$, We briefly consider the relationship between the cumulative frequency-length data given in Fig. 2 and the noncumulative data given in Fig. 10 . The cumulative number $N_c (\ge L)$ is related to the frequency density defined in Eq. 13 by $\underbrace{N_c = \int_L^{\infty} f(L') dN}_{L} $ (15) Thus N_c is a function of all values of $N(L)$ in the range <i>L</i> to infinity, whereas $f(L)$ is a local	Deleted: 9 Deleted: 9 Deleted: ≤ Deleted: a slight underfitting for Deleted: A slight underfitting for Deleted: The implication of the inverse power-law scaling with exponent near 3, is that for the time period given and defined spatial region, a tornado with a factor of 10 longer path length has a probability of occurrence that is about 1000 less. For example, the probability of a tornado with an L = 200 km path length is 1000 times smaller than the probability of an L = 20 km path length. Deleted: The use of these frequency-size statistics to calculate the probability of given path length tornadoes occurring, implicitly assumes weak stationarity of the severe tornado time series. We acknowledge that there exists a yearly seasonality within the time series, and a clustering of values for tornadoes that occur
 612 613 614 615 616 617 618 619 620 621 	with <i>L</i> in km. The best-fit of the scaling relationship, Eq. (<u>14</u>), to the frequency densities, is between $20 \le L \le 200$ km, with <u>some data curvature for <i>L</i> < 20 km. Maximum likelihood</u> analysis was also used to fit a power-law to the original non-binned <i>L</i> > 20 km data with a power-law exponent found of -2.93±0.04 (±2 sigma), Kolmogorov–Smirnov <i>D</i> = 0.11, We briefly consider the relationship between the cumulative frequency-length data given in Fig. 2 and the noncumulative data given in Fig. 10 . The cumulative number $N_c (\ge L)$ is related to the frequency density defined in Eq. 13 by $N_c = \int_L^{\infty} f(L')dN$ (15) Thus N_c is a function of all values of $N(L)$ in the range <i>L</i> to infinity, whereas $f(L)$ is a local measure of the variation of $N(L)$ with <i>L</i> (normalized to 'unit' size bins, i.e. 1 km). The	Deleted: 9Deleted: 9Deleted: \leq Deleted: \leq Deleted: \leq Deleted: a slight underfitting forDeleted: The implication of the inverse power-law scaling with exponent near 3, is that for the time period given and defined spatial region, a tornado with a factor of 10 longer path length has a probability of occurrence that is about 1000 less. For example, the probability of a tornado with an $L = 200$ km path length is 1000 times smaller than the probability of an $L = 20$ km path length.Deleted: The use of these frequency-size statistics to calculate the probability of given path length tornadoes occurring, implicitly assumes weak stationarity of the severe tornado time series. We acknowledge that there exists a yearly seasonality within the time series, and a clustering of values for tornadoes that occur with given atmospheric conditions. However, the clustering of values is in

shown for several sets of ecological data by Humphries et al. (2010) (see their Figure 1), and

from a theoretical point of view by White et al. (2008),

624

625

Malamud and Turcotte. Statistics of Tornadoes & Severe Tornado Outbreaks. Submitted to ACPD (2nd version, This draft: 7 August 2012)

p. 13 of 45

Deleted: 9
Deleted: 9
Deleted: ≤
Deleted: ≤
Deleted: a slight underfitting for
Deleted: The implication of the inverse power-law scaling with exponent near 3, is that for the time period given and defined spatial region, a tornado with a factor of 10 longer path length has a probability of occurrence that is about 1000 less. For example, the probability of a tornado with an $L = 200$ km path length is 1000 times smaller than the probability of an $L = 20$ km path length.
Deleted: The use of these frequency-size statistics to calculate the probability of given path length tornadoes occurring, implicitly assumes weak stationarity of the severe tornado time series. We

statistics in a similar way that is currently

used for earthquake hazard assessment, resulting in the conclusion that a tornado with a touchdown path length L_1 is 1000

times more probable than a tornado path length 10 times longer, $L_2 = 10L_1$.

666 **4** Statistics of severe tornado outbreaks,

667 An important aspect of tornado climatology is the occurrence of tornado outbreaks. One definition of a tornado outbreak is the occurrence of multiple tornadoes within a particular 668 synoptic-scale weather system (Glickman, 2000). The NWS SPC database of tornadoes used 669 670 here does not explicitly categorize individual tornadoes as part of a specific tornado outbreak. 671 In this paper, we follow the approach of Doswell et al. (2006) and will define a tornado outbreak to include all tornadoes in a convective day (12:00-12:00 UTC) in the continental 672 USA. However, consistent with our studies of individual severe tornadoes, we will consider a 673 severe tornado outbreak to include only those tornadoes with path lengths $L \ge 10$ km. 674 Doswell et al. (2006) considered a variety of measures of the strength of a tornado outbreak 675 based on daily records. They gave the highest weight to the total path length of all tornadoes 676 during a day. In this paper, we will consider the statistics of the total path length, L_D, of all 677 severe tornadoes ($L \ge 10$ km) in a <u>convective</u> day in the continental USA. In Fig. 11, for 678 1982–2011, for each <u>convective</u> day that has at least one severe tornado ($L \ge 10$ km), we give 679 the daily total path length of tornadoes, $L_{\rm D}$, for that day. The distribution appears to be 680 681 relatively uniform over this period. In Fig. 12 we give the cumulative number of severe tornado outbreaks per year N_c with 682

- convective daily total path lengths greater than $L_{D_{0}}$ as a function of $L_{D_{0}}$. Values are given for 683 684 six 10-year periods, 1952–2011; only $L \ge 10$ km (severe tornadoes) are used in summing a daily total path length L_D. It is of interest to compare the daily total path lengths in Fig. 12 685 with the individual path lengths ($L \ge 10$ km) given in Fig. 1b. In Fig. 1b individual curves for 686 the first 30 years (1952-1981) were consistently higher than for the second 30 years (1982-687 688 2011). This is not the case for the outbreak total path length data (N_c vs. L_D) shown in Fig. 12. The daily outbreak L_D data for 1952–1961 and 2002–2011 were generally high; whereas, the 689 data for 1982–1991 and 1992–2001 were generally low. We conclude that although 690 differences in reporting certainly exist, the early data for total lengths of severe tornadoes ($L \ge$ 691 10 km) during a convective day were more robust than the early data for tornado path lengths 692 taken individually. 693
- We next make a rough estimate of the risk of severe tornado outbreaks (total daily path length
 L_D) in analogy to our estimate for the risk of individual tornadoes (individual path lengths L)

Deleted: , 1981-2010

	Deleted: 9
	Deleted: 1
	Deleted: 0

700	given in Fig. 2. In Fig. 13 we give the outbreaks per year N_c with convective daily total path
701	lengths greater than L_{D} , as a function of L_{D} . Consistent with the discussion given above, for
702	the purposes of this estimate, we use all data from 1952-2011. During this 60-year period, the
703	longest daily total path length $L_{\rm D}$ = 3852 km occurred on 3 April 1974 and included 105
704	tornadoes with $L \ge 10$ km, the 2 nd longest $L_{\underline{D}} = 2815$ km on 27 April 2011, and the 3 rd longest
705	$L_{\rm D}$ = 1566 km on 11 April 1965. The 4 th and 5 th longest daily outbreaks also occurred in April
706	<u>(30 April 1954, $L_{\rm D}$ = 1412 km; 26 April 2011, $L_{\rm D}$ = 1313 km).</u>
707	We use the data in Fig. 13 to give a rough estimate of the hazard of severe tornado outbreaks
708	and estimate the annual tornado outbreak to have a daily path length of $L_{\rm D} \ge 480$ km. On
709	average, not taking into account any changing trends over time, we would expect in any given
710	year an outbreak with daily path length of $L_{\rm D} \ge 480$ km. The ten year tornado outbreak (the
711	longest path length or greater expected in a 10-year period) is $L_{\rm D} \ge 1200$ km. An extrapolation
712	of the curve is (similar to Fig. 2) difficult for longer recurrence periods, as the shape of the
713	statistical distribution for the largest lengths is again unclear. One estimate is that the 100 year
714	tornado (the longest path length or greater expected in a 100-year period) is in the range of
715	2000-10 000 km. This estimate has a large uncertainty as the extrapolation of the data is
716	uncertain for these extreme values. It is interesting to note that in the 60-year period from
717	<u>1952–2011 we had two tornado outbreaks with $L_{\rm D} > 2800$ km.</u>
718	As just discussed above, we believe that over the period 1952-2011, total convective day
719	lengths of severe tornadoes ($L \ge 10$ km) are relatively robust when comparing early decades
720	with later decades in terms of data quality. However, for the remainder of the analyses of this
721	section, as some differences do exist between the earlier and the later decades, and so that we
722	are consistent with earlier sections in this paper, we will return to considering only the period
723	<u>1982–2011.</u>
724	We now consider (Fig. <u>14</u>) for the period 1982–2011 the correlation between $N_{\rm D}$ the total
725	number of severe tornadoes ($L \ge 10$ km) in a <u>convective</u> day (i.e., a continental USA
726	'outbreak') and $\overline{L_{D}}$ the mean of the <u>convective</u> daily total tornado path lengths for all days
727	where $N_{\rm D}$ is the same value. We also consider the standard deviation of $L_{\rm D}$ for each $N_{\rm D}$. For
728	example, there are $\frac{79}{2}$ days where $N_{\rm D} = 4$ severe tornadoes occur during the day; the mean $\pm \frac{1}{2}$
729	standard deviation of the total tornado daily path lengths $L_{\rm D}$ for those 74 occurrences is $\overline{L_{\rm D}}$ =
730	91.7 ± 34.7 km. Because there are relatively few outbreaks with large values of N _D , we

Deleted: 10

p. 15 of 45

Deleted: 74
Deleted: 9
Deleted: 37
Deleted: 1
Deleted: For very large values of
Deleted: , because there are very few of them

consider the mean of all $L_{\rm D}$ over multiple values of $N_{\rm D}$. The best-fit linear correlation to $N_{\rm D}$ as 739 a function of $\overline{L_{\rm D}}$ is a power-law relationship: 740

761

762

763

764

765

766

767

741	$N_{\rm D} = 0.080 \left(\overline{L_{\rm D}}\right)^{0.871} $ (<u>16</u>)
742	over the range $20 < \overline{L_{\rm D}} < 1000$ km dy ⁻¹ . This power-law correlation is quite robust as it
743	extends over almost two orders of magnitude. With a power-law exponent of 0.870, the
744	correlation between the number of severe tornadoes in a daily USA outbreak, $N_{\rm D}$, and the
745	mean daily total tornado path length, $\overline{L_{\rm D}}$, is almost linear (i.e., exponent 1.0). We conclude
746	that $N_{\rm D}$ and $\overline{L_{\rm D}}$ (calculated for all tornadoes $L \ge 10$ km) are equivalent measures of the
747	strength of a USA severe tornado outbreak.
748	We next give the frequency-length statistics of daily USA tornado outbreaks for the time
749	period 1982–2011. Similar to the definition of the frequency-density function $f(L)$ given in
750	Eq. (13), we plot $f(L_D)$ vs. L_D in Fig. 15 on logarithmic axes, and find an excellent power-law
751	correlation:
752	$f(L_D) = 8325L_D^{-1.81}$ (17)
753	with $L_{\rm D}$ in km dy ⁻¹ . This power-law relationship is found to be robust over about two orders
754	of magnitude, 10 km dy ⁻¹ < $L_{\rm D}$ < 1000 km dy ⁻¹ . Maximum likelihood analysis was also used
755	to fit a power-law to the original non-binned $L_{\rm D}$ data, with a power-law exponent found of –
756	<u>1.76±0.03 (±2 sigma)</u> , Kolmogorov-Smirnov $D = 0.10$. The cumulative frequency-length data
757	given in Fig. 13 for N_c ($\geq L_D$) has a 'rollover' for large L_D , compared to the noncumulative
758	data given in Fig. 15. The explanation given at the end of Sect. 3 for cumulative vs.
759	noncumulative statistics of severe individual tornado path length statistics L, is also applicable
760	

Deleted: 1 Deleted: 0 Deleted: 8 Deleted: 11 Comment [B14]: Numbers updated Deleted: 11

Comment [B13]: Numbers updated

Deleted: 10

Deleted: 4

p. 16 of 45

to the outbreak data $L_{\rm D.}$ As our final study of tornado statistics, we will consider the distribution of tornado path lengths during a severe tornado outbreak. For this purpose, we consider two different sized outbreaks, a very large outbreak on 27 April 2011 with 67 severe tornadoes (total path length $L_{\rm D}$ = 2816 km) and a smaller outbreak on 25 May 2011 with 16 severe tornadoes (total path length $L_{\rm D}$ = 376 km). As both outbreaks are chosen from 2011 records, we believe that the

path lengths recorded should be very robust. The outbreak on 27 April 2011 was the second largest continental USA outbreak during the period 1952-2011 (Fig. 13), the 25 May 2011

Deleted: Just as in the case of severe individual tornadoes, this power-law relationship can be used to estimate the relative probabilities of occurrence of severe tornado outbreaks. The probability severe tornado outbreaks. The probability of a $L_D = 100 \text{ km dy}^{-1}$ outbreak is a factor of about $10^{1.726} \approx 50 \text{ less likely to occur}$ than a $L_D = 100 \text{ km dy}^{-1}$ outbreak. Similarly, an $L_D = 1000 \text{ km dy}^{-1}$ outbreak is a factor of about 50 times less likely to occur than a $L_{\rm D}$ = 100 km dy⁻¹ outbreak. It is interesting to note how this factor of 50 compares with the factor $10^{3.104} \approx 1300$ for individual severe tornadoes obtained from Eq. (9). Because the exponent in Eq. (11) is much less than that in Eq. (9), very severe tornado outbreaks are more likely to occur than very severe individual tornadoes

Malamud and Turcotte. Statistics of Tornadoes & Severe Tornado Outbreaks. Submitted to ACPD (2nd version, This draft: 7 August 2012) p. 17 of 45

793the 80th largest. In Fig. 16 we give the cumulative number of tornadoes N_c with path lengths794 $L \ge 10$ km, as a function of L. The longest path length for 27 April 2011 was L = 212.4 km and795for 25 May 2011 L = 76.3 km. In both the large and medium convective day outbreak, there is796a similar and systematic distribution of severe tornado path lengths, with similar scaling. The797examples given in Fig. 16 show that tornado outbreaks appear to have robust distributions of798severe tornado intensities as given by path lengths.

799

800 5 Discussion and Conclusions

801 In any study of the statistics of a natural hazard it is necessary to have a reliable database. In 802 the case of tornadoes, an important question is what a database should contain. The standard measure of tornado intensity is the damage-based Fujita scale. The only other widely 803 available measure of tornado intensity is the path length of touchdown caused by a tornado. In 804 Fig. 1, we have given the cumulative number of tornadoes per year with path lengths greater 805 than L. The data are given for <u>10-year periods</u>, between 1952 and 2011. The data during the 806 three 10-year periods, 1982-2011, are relatively consistent and differ substantially from 807 earlier periods. This difference can be attributed to systematic NWS tornado surveys 808 809 introduced in the early 1980s. Based on Fig. 1's data, we restrict our statistical studies of individual tornado path lengths L to the period 1982–2011. In Fig. 2, we gave cumulative-810 811 path length statistics $(N_c \ge L)$ for the entire period 1982–2011 and $L \ge 10$ km. We used this to 812 make a rough estimate for the longest tornado path length (or greater) expected, on average, every 1, 10, 100 years, giving values (respectively) of 115, 215 and 280-500 km. The use of 813 these frequency-size statistics to calculate the probability of given path length tornadoes 814 815 occurring, implicitly assumes weak stationarity of the severe tornado time series. We

- 816 acknowledge that there exists a yearly seasonality within the time series, and a clustering of
- 817 <u>values for tornadoes that occur with given atmospheric conditions.</u>

The basic purpose of this paper has been to consider the statistics of tornado touchdown path lengths as a measure of tornado intensity. Since the standard measure of tornado intensity in the USA is the Fujita scale, we consider the variability of path lengths for a specified Fujita scale value. This dependence for our period of study, 1982–2011, was given in Fig. 3.

- 822 Although there is a systematic increase in mean path length with increasing Fujita scale value,
- there is also a large variability. A reasonably good scaling of the mean touchdown path

1	Deleted: 10
+	Deleted: 1
١	Deleted: 0
1	Deleted: 1
	Deleted: 0
4	Deleted: 1
+	Deleted: 0

Deleted: ¶

Deleted: 1	
Deleted: 0	
Deleted: 2	

	Malamud and Turcotte. Statistics of Tornadoes & Severe Tornado Outbreaks. Submitted to ACPD (2 nd version, This draft: 7 August 2012) p. 18 of 45		
835	lengths as given in Eq. (1) was found for strong (F2, F3) and violent (F4, F5) tornadoes. The		
836	deviation from this scaling for weak (F0, F1) tornadoes is likely due to limitations of the		
837	Fujita scale for weak tornadoes and/or measurement problems with determining path lengths		
838	for these weak tornadoes. Since our studies utilize path lengths, we define a severe tornado to		
839	be one with a path length $L \ge 10$ km and have restricted our studies to these tornadoes		Deleted: From Fig. 2 and Table 1 we see that an average and definition $(L > 10 \text{ km})$
840	Over the period 1982–2011, we have given (Fig. 6) the annual number of days $n_{\rm D}$ during		that on average our definition ($L \ge 10$ km) corresponds to the size of F2 (strong) tornadoes, and where the lower-limit of the scaling relationship in Fig. 2 is found to
841	which at least one severe ($L \ge 10$ km) tornado occurred and (Figs. 7 and 8), for two different		hold.
842	definitions of severe tornadoes, the annual total number $N_{\rm Y}$ and annual total path lengths $L_{\rm Y}$ of		
843	severe tornadoes. The two definitions of severe tornadoes included: (i) path length-based		
844	($L \ge 10$ km; all Fj, $j \ge 0$) with 4317 severe tornadoes; (ii) Fujita-based (Fj, $j\ge 2$; all L) with		
845	4384 severe tornadoes. However, only about half of the severe tornadoes are included in both		
846	definitions. Although in most cases systematic increases over the period 1982-2011 were		
847	observed, there was also considerable scatter. Only for annual total number and path length		
848	$(N_{Y} and L_{Y})$, using the path-length definition of severe tornadoes, was the increase significant		
849	within the lower and upper limits of the 95% confidence limits on the slope. We note that this		
850	trend for these values is only for the 30 year period 1982-2011, and that extrapolating		
851	forward or backwards in time, will not necessarily have the same positive trend.		Deleted: In Fig. 5, we gave the yearly number of days <i>n</i> in which a severe $(L \ge 10 \text{ km})$ tornado occurred and in Fig. 6, the
852	Jn Fig. 2, we gave the total number of severe tornadoes in a year, $N_{\rm Y}$, as a function of the total	ι.	yearly total number N_Y and yearly total path length L_Y of severe tornadoes. There are
853	path length of tornadoes in that year, $L_{\rm Y}$, for both definitions of severe tornadoes. We		systematic increases of all three quantities $(n, N_{\rm Y}, L_{\rm Y})$ from 1981–2010, but also
854	observed that the correlations are much more robust (using a linear correlation) for the path-		considerable scatter. Deleted: Thus, we hesitate to attribute
855	length definition ($L \ge 10$ km) than the Fujita scale definition (Fj, j \ge 2). We then argued the use	$\frac{\eta}{\eta}$	these increases to causes such as global warming or another external source.
856	of the length-based definition for severe tornadoes ($L \ge 10$ km; all F _j , $j \ge 0$) in the remainder	1	Deleted: 7
857	of the paper based on Fig. 9's more robust behaviour for the length-based definition and also		Deleted: plot
858	the paper's focus on path length statistics. We therefore used this database of 4317 severe		Formatted: Font: Not Bold
859	continental USA tornadoes ($L \ge 10$ km) that occurred over the time period 1982–2011.		
860	There is no question that Fujita scale evaluations of tornado intensities are very useful.		
861	However, results in this paper, along with other work, would indicate that tornado touchdown		
862	path lengths may also be a very useful measure of the intensity of both individual tornadoes		
863	and tornado outbreaks. We believe that the definition provided here of a severe tornado ($L \ge$		
864	10 km), is easily quantifiable and provides robust statistics		Deleted: The strong linear correlation of N_Y with L_Y is evidence for a scale-invariant behaviour in the number length statistics,

Deleted: The strong linear correlation of $N_{\rm V}$ with $L_{\rm V}$ is evidence for a scale-invariant behaviour in the number length statistics, i.e. the ratio remains the same for all scales.

Malamud and Turcotte. Statistics of Tornadoes & Severe Tornado Outbreaks. Submitted to ACPD (2 nd version, This draft: 7 August 2012)	p. 1	19	1 (0	f
--	------	----	-----	---	---

In Fig. 10, we have given the dependence of the frequency density of severe tornado path

lengths L on path length L. The frequency density gives a local measure of path length

scaling. Over the touchdown path length range $20 \le L \le 200$ km, we found reasonably good

888

889

890

p. 19 of 45

Deleted: In order to study the occurrence probability of severe tornado path lengths Formatted: Font: Not Bold Deleted: in Fig. 8

Deleted: Over the touchdown path length range $20 \le L \le 200$ km, we find good power-law scaling (Eq. 9) of the frequency density as a function of *L*. This scaling is valid over only a limited range of *L* but is still useful in forecasting tomado risk in terms of path length. For example, for L = 20 km we have $f(L) \approx 150$ km⁻¹ and for L = 200 km $f(L) \approx 0.15$ km⁻¹. Thus, if the touchdown path length *L* increases by a factor of 10, the probability of occurrence decreases by a factor of about 1000.¶

Deleted: day

891	power-law scaling (Eq. 14) of the frequency density as a function of L, with power-law
892	exponent about -3.0.
893	Tornado outbreaks are an important feature of tornado climatology. Ideally, a tornado
894	outbreak would be associated with a particular synoptic-scale weather system. Although
895	location information is available for each tornado path length, the association of specific
896	tornadoes with a specified outbreak are still difficult to make in a systematic way. We follow
897	the approach used by Doswell et al. (2006) who defines a tornado outbreak to be all tornadoes
898	in a 24 hr period in the continental USA, where the 24 hr period is a convective day (12:00-
899	12:00 UTC, i.e. 06:00-06:00 CST). Consistent with our study of severe individual tornadoes
900	with path lengths $L \ge 10$ km, we define a severe tornado outbreak to be all severe tornadoes (L
901	\geq 10 km) during a <u>convective</u> day in the continental USA. As two measures of severe
902	outbreak intensity, we utilize the number of severe tornadoes during a <u>convective</u> day, $N_{\rm D}$,
903	and the total path length of severe tornadoes during a <u>convective</u> day, $L_{\rm D}$.
904	In Fig. 12, we gave the cumulative number of severe tornado outbreaks per year N_c with daily
905	total path lengths greater than L_{D} , as a function of L_{D} . In analogy to Fig. 1, we do this for six
906	<u>10-year periods between 1952–2011. In Fig. 1, the individual path length statistics (N_c vs. L)</u>
907	for the first three decade periods (1952-1981) were consistently higher than the second three
908	decades (1982–2011). This is not the case for the outbreak daily path length data (N_c vs. L_D)
909	given in Fig. 12, where the six decades do not appear to be biased by being earlier or later in
910	the 60 year period considered. For this reason, we considered next, in Fig. 13, the severe
911	outbreak cumulative path length statistics for the entire period 1952-2011. During this period,
912	the most extreme convective day outbreak was on 3 April 1974, with $L_{\rm D}$ = 3852 km, and the
913	second most extreme on 27 April 2011 with $L_{\rm D}$ = 2815 km. The data in Fig. 13 was used to
914	make a rough estimate for the length (or greater) of a severe outbreak's convective day path
915	make a rough estimate for the length (or greater) of a severe outbreak's convective day path length expected, on average, every 1, 10, 100 years, giving values (respectively) of 480, 1200
916	and 2000–10 000 km.
917	Jn Fig. 14, we found an excellent, near linear relationship, between the number of severe

917 Jn Fig. 14, we found an excellent, near linear relationship, between the number of severe \checkmark 918 tornadoes ($L \ge 10$ km) in a given outbreak N_D , and the average of the total convective day \checkmark Deleted: ¶ Deleted: 10 Deleted: i Deleted: , correlation Deleted: N_D and $\overline{L_D}$. The ratio of the number of Deleted: Deleted: to Deleted: ir Deleted: total

	Malamud and Turcotte. Statistics of Tornadoes & Severe Tornado Outbreaks. Submitted to ACPD (2 nd version, This draft: 7 August 2012) p. 20 of 45	
945	path lengths $\overline{L_D}$ corresponding to outbreaks with that number $N_{\rm D}$. This relationship is the	Deleted: , in any given year,
946	same for severe tornado outbreaks with many tornadoes and also with very few tornadoes. In	Deleted: in years with
947	Fig. 15, we gave the <u>dependence of the frequency density of severe tornado outbreaks as a</u>	Deleted: many
948	function of the total convective day path lengths, $L_{\rm D}$. Over the range $10 < L_{\rm D} < 1000$ km, we	Deleted: and in years with just a few severe tornado outbreaks
949	found reasonably good power-law scaling (Eq. 17) of the frequency density as a function of	Deleted: 11
950	$L_{\rm D}$, with power-law exponent about -1.8 . This approximate scaling is evidence for a degree of	Deleted: i
	· · · · · · · · · · · · · · · · · · ·	Deleted: frequency path length statistics of
951	self-organization in the statistical occurrence of severe tornado outbreaks	Deleted:
952	In addition to our studies of the distributions of path lengths of individual tornadoes and	Deleted: We again find good agreement with a power-law distribution, given in Eq. (11). This scaling is useful in forecasting
953	convective day total path lengths of severe tornado outbreaks, we have also studied the	the risk of severe tornado outbreaks in terms of total path length, $L_{\rm D}$. For example,
954	distribution of path lengths during single severe tornado outbreaks. We considered two	for $L_{\rm D} = 100$ km dy ⁻¹ we have $f(L_{\rm D}) \approx 2$ dy km ⁻¹ and for $L_{\rm D} = 1000$ km dy ⁻¹ , $f(L_{\rm D}) \approx$
955	convective day outbreaks from 2011: 27 April 2011 (67 severe tornadoes) and 25 May 2011	0.04 dy km ⁻¹ . Thus, if the outbreak path length $L_{\rm D}$ increases by a factor of 10, the
956	(16 severe tornadoes). In Fig. 16 we gave, separately for the two severe outbreak days, the	probability of occurrence decreases by a factor of about 50.
957	cumulative number of severe tornadoes with path lengths greater than L as a function of L. An	
958	approximate scaling was observed indicating again, statistical self-organization during the	
959	tornado outbreak itself of the path lengths.	
960	Based on the statistical studies reported in this paper we conclude that:	Deleted: On the basis of our studies we believe it is desirable:
961	1. Touchdown path lengths of $L \ge 10$ km are a good measure for the intensity of severe	
962	tornadoes,	Deleted: To restrict quantitative studies
963	2. The total continental USA path length of severe tornadoes ($L \ge 10$ km) during a	of tornadoes and tornado outbreaks to the time period subsequent to 1980.
964	convective day (12:00–12:00 UTC) is a good measure of the intensity of a severe	
965	torreado authrealt	Deleted: To restrict tornado statistical
905	tornado outoreak,	studies based on touchdown path lengths, to path lengths $L \ge 10$ km. We term these
966	3. We have found strongly non-Gaussian frequency-length statistics for	severe tornadoes and they correspond approximately to F2 to F5 tornadoes on the
967	• Path lengths for severe tornadoes ($L \ge 10$ km).	Fujita scale
968	• Convective day total path lengths of severe tornado outbreaks.	
969	• Path lengths for severe tornadoes during a single outbreak.	
970	4. <u>Tornado path length statistics can be used</u> to estimate the tornado hazard. This is in	Deleted: To determine tornado frequency-size statistics utilizing
971	direct analogy to the way (Schlelicke and Névir, 2011) that the frequency-size	touchdown path length statistics both for individual tornadoes and tornado outbreaks.
	statistics for earthquakes are used to quantify the earthquake hazard.	Deleted: ¶
972		To use these tornado frequency-size statistics

	Malamud and Turcotte. Statistics of Tornadoes & Severe Tornado Outbreaks. Submitted to ACPD (2 nd version, This draft: 7 August 2012) p. 21 of 45
1012 1013	In conclusion, we believe that our <u>studies</u> provide evidence that tornado touchdown path Deleted : robust scaling results lengths can be used as quantitative measures of the systematic properties of severe tornadoes
1014	and severe tornado outbreaks.
1015	Acknowledgements: We thank reviewer Harold Brooks (NOAA) and an anonymous
1016	reviewer for their helpful comments which have improved this manuscript.
1017	

1019 References

- Brooks, H. E.: On the relationship of tornado path length and width to intensity. WeatherForecast., 19, 310–319, 2004.
- Doswell, C.A., Edwards, R., Thompson, R. L., Hart, J. A., and Crosbie, K. C.: A simple and
 flexible method for ranking severe weather events, Weather Forecast., 21, 939–951, 2006.
- Doswell, C.A., Brooks, H.E., and Dotzek, N.: On the implementation of the Enhanced Fujita
 scale in the USA, Atmos. Res., 93, 554–563, 2009.
- 1026 Fujita, T.T.: Proposed characterization of tornadoes and hurricanes by area and intensity.
- 1027 SMRP Research Paper 91, Dept. Geophys. Sciences, Univ. of Chicago. 42 pp., 1971.
- Fujita, T.T.: Tornadoes and downbursts in the context of generalized planetary scales, J.
 Atmos. Sci., 38, 1511–1534, 1981.
- 1030 Fujita, T. T., and Pearson, A. D.: Results of FPP classification of 1971 and 1972 tornadoes,
- Preprints, Eighth Conf. on Severe Local Storms, Denver, CO, Amer. Meteor. Soc., 142–145,1973.
- 1033 Glickman, T.S. (ed.): Glossary of Meteorology, 2nd ed. Amer. Meteor. Soc., 782 p., 2000.
- Hanks, T.C. and Kanamori, H.: A moment magnitude scale, J. Geophys. Res., 84, 2348–2350,1979.
- Humphries, N.E., Queiroz, N., Dyer, J.R.M., Pade, N.G., Musyl, M.K. *et al.* Environmental
 context explains Levy and Brownian movement patterns of marine predators. Nature, 465,
 1066–1069, 2010.
- Kelly, D.L., Schaefer, J.T., McNulty, R.P., Doswell, C.A., and Abbey Jr., R.F.: An
 augmented tornado climatology, Mon. Weather Rev., 106, 1172–1183, 1978.
- 1041 McCarthy, D. W.: NWS tornado surveys and the impact on the national tornado database,
- First Symposium on F-Scale and Severe Weather Damage Assessment, Long Beach, CA,Amer. Meteor. Soc., preprint 3.2, 2003.
- 1044 NOAA (National Oceanic and Atmospheric Administration): Storm Prediction Centre (SPC),
- 1045 Tornado, Hail, and Wind Database. Available online at: www.spc.noaa.gov/wcm/, last
- 1046 accessed <u>30 July</u> 201<u>2</u>

Deleted: 24 December Deleted: 1

p. 23 of 45

- 1049 Richter, C.: An instrumental earthquake magnitude scale, Bull. Seism. Soc. Amer., 25, 1–32,
 1050 1935.
- 1051 Schaefer, J. T., Schneider, R. S., and Kay, M. P.: The robustness of tornado hazard estimates,
- Third Symposium on Environmental Applications, Orlando, FL, Amer. Meteor. Soc., paper4.1, 35–41, 2002.
- 1054 Schielicke, L. and Névir, P.: Introduction of an atmospheric moment combining Eulerian and
- Lagrangian aspects of vortices: Application to tornadoes, Atmos. Res., 100, 357–365, doi:
 10.1016/j.atmosres.2010.08.027, 2011.
- 1057 Verbout, S. M., Brooks, H. E., Leslie, L. M., and Schultz, D. M.: Evolution of the U.S.
 1058 tornado database: 1954–2003, Weather Forecast., 21, 86–93, 2006.
- 1059 White, E.P., Enquist, B.J., and Green, J.L. On estimating the exponent of power-law
 1060 frequency distributions. Ecology 89, 905–912, 2008. doi: 10.1890/07–1288.1

Malamud and Turcotte. Statistics of Tornadoes & Severe Tornado Outbreaks. Submitted to ACPD (2nd version, This draft: 7 August 2012)

1062	List of Symbols	
------	-----------------	--

List of Symbo	DIS		
Variable	Units	Description	
δN	#	The number of tornadoes with lengths between <i>L</i> and $L + \delta L$.	
$f(L), f(L_D)$	varies	Frequency density of L (see Eq. 13) or $L_{\rm D}$.	Deleted: 8
h		Hour of the day.	
j		Variable representing the Fujita scale value, where F0, F1, F2, F3, F4, F5 is given as F_{j} , $j = 0, 1, 2,, 5$.	
L	km	Individual tornado touchdown path length.	
$L_{\rm D}$	$\mathrm{km} \mathrm{dy}^{-1}$	Total touchdown path length of severe tornadoes ($L \ge 10$ km) in a day.	
$\overline{L_{\rm D}}$	$\mathrm{km} \mathrm{dy}^{-1}$	Mean of the daily total path lengths of severe tornadoes ($L \ge 10$ km) over multiple days.	
$\overline{L}_{{ m F}j}$	km	Mean tornado path length for Fujita intensity $F_{j,j} = 0, 1, 2,, 5$.	
$L_{ m Y}$	km yr ⁻¹	Total path length of severe tornadoes in a year.	Deleted: $(L \ge 10 \text{ km})$
$L_{Y}[Fj, j \ge 2]$	$km yr^{-1}$	Total path length of severe tornadoes (defined as Fujita scale intensities F_j , $j \ge 2$ and all $L \ge 0$ km) in a year.	Deleted: <i>n</i> ([1]
$L_{\rm Y}$ [$L \ge 10 {\rm km}$]	<u>km yr⁻¹</u>	Total path length of severe tornadoes (defined as path lengths $L \ge 10$ km and all Fujita scale intensities $F_{j,j} \ge 0$) in a year.	
N _c	#	Cumulative number of: (i) tornadoes with path lengths greater than or equal to L ; (ii) outbreaks with total path lengths in a convective day greater than or equal to $L_{D_{\tau}}$	Deleted: continental USA Deleted: per year Deleted: .
n _D	<u>dy</u>	Number of 'days per year' with at least one severe tornadoes ($L \ge 10 \text{ km}$).	
$N_{ m D}$	$\# dy^{-1}$	Total number of severe tornadoes ($L \ge 10$ km) in a day.	
<i>n</i> _h	#	Total number of severe tornadoes ($L \ge 10$ km) initiated during _ hour, h .	Deleted: N _h
N_{T}	#	Total number of values in the dataset considered.	
<u>n_Y</u>	<u>yr</u>	Number of 'years per day of the year', with at least one severe tornado ($L \ge 10$ km).	
$N_{Y}[Fj, j \ge 2]$	<u># yr⁻¹</u>	Total number of severe tornadoes (defined as Fujita scale intensities F_j , $j \ge 2$ and all $L \ge 0$ km) in a year.	Deleted: N _Y ([2]
$N_{\rm Y}[L \ge 10 {\rm km}]$	<u># yr⁻¹</u>	Total number of severe tornadoes (defined as path lengths $L \ge 10$ km and all Fujita scale intensities F_j , $j \ge 0$) in a year.	
p(<i>h</i>)		Probability of a severe tornado occurring for a given hour of the day, <i>h</i> .	
t	yr	Time in years.	

p. 24 of 45

1063

1073	Table 1. Continental USA tornado touchdown path lengths L as a function of Fujita sca	ale

intensities $F_{j,j} = 0, 1, 2, ..., 5$. (i) The range of path lengths *L* (km) given by Fujita and Pearson

1075 (1973). (ii) Mean tornado path lengths \overline{L}_{Fj} in the continental USA given by Brooks (2004) and

in this paper	r (Fig. <u>3</u>), with all path lengths <i>L</i> of	considered.	<	- Deleted: 2
Fujita	Fujita and Pearson (1973)	Brooks (2004)	This paper	Deleted: of
Intensity	Range of tornado path	1950–2001	198 <mark>2,-201<u>1,</u></mark>	- Deleted: 1
1	lengths L (km)	Mean tornado path	Mean tornado path	Deleted: 0
		length $\overline{L}_{\rm Fj}$ (km)	length $\overline{L}_{\mathrm{F}j}$ (km)	
F0	0.5–1.5	1.4	1.6	
F1	1.6–5.0	4.7	5. <u>4</u>	Deleted: 2
F2	5.1–15.9	10.7	<u>12.1</u>	Deleted: 11 Deleted: 6
F3	16.0–50	22.5	2 <u>5,3</u>	- Deleted: 4 - Deleted: 5
F4	51-159	43.6	443	Deleted: 0 Deleted: 8
F5	160–500	54.6	<u>64,4</u>	Deleted: 54

1077

Malamud and Turcotte. Statistics of Tornadoes & Severe Tornado Outbreaks. Submitted to ACPD (2nd version, This draft: 7 August 2012) p. 26 of 45

Table 2. Number and percentage of continental USA tornado path lengths from 1982–2011 L 1092

< 10 km and $L \ge 10$ km (i.e., 'severe' tornadoes as defined in this paper), as a function of

Fujita scale intensities F. Data are from NOAA (2012).

1093

1094

1095

Fujita Intensity	Tornadoes with L < 10 km # (% in Fujita category)	'Severe' tornadoes with L ≥ 10 km # (% in Fujita category)	All tornadoes (L > 0 km) # (% in Fujita category)
F0	19 255 (97%)	521 (3%)	19 776 (100%)
F1	8552 (84%)	1616 (16%)	10 168 (100%)
F2	1902 (59%)	1305 (41%)	3207 (100%)
F3	273 (29%)	674 (71%)	947 (100%)
F4	28 (13%)	181 (87%)	209 (100%)
F5	1 (5%)	20 (95%)	21 (100%)
Total	30 010 (88%)	4317 (12%)	34 328 (100%)

1096

1097

Comment [B15]: All numbers here updated to reflect changing years from

1981-2010 to 1982-2011. Track changes has been removed.

Deleted: 1 Deleted: 0

Deleted: 1

p. 27 of 45 Malamud and Turcotte. Statistics of Tornadoes & Severe Tornado Outbreaks. Submitted to ACPD (2nd version, This draft: 7 August 2012)

101	Figure Captions	Comment [B16]: See "Reply to Reviewers" for a table that summarizes
102	Fig. 1. Cumulative number of continental USA tornadoes per year N_c with path lengths	new figures added and major changes to figures.
103	greater than or equal to L given as a function of L. Data are given for six 10-year periods	Deleted: are
104	from 1952–2011, (a) All tornadoes. (b) Data for $L \ge 10$ km, which we define to be severe	Deleted: 1
105	tornadoes. Tornado path length data <u><i>L</i></u> are from NOAA (201 <u>2</u>).	Deleted: 0 Deleted: 1
106	Fig. 2. Cumulative number of continental USA tornadoes per year N _c with path lengths	Comment [B17]: New figure.
.107	greater than or equal to L is given as a function of L. The data (NOAA, 2012) are for the	
108	period 1982–2011 and for $L \ge 10$ km, defined in this paper to be severe tornadoes. The three	
109	longest path lengths are identified by vertical arrows. Using this data, rough estimates are	
110	made for the expected 1 year, 10 year, and 100 year tornadoes.	
111	Fig. 3. Continental USA tornado touchdown path length statistics as a function of Fujita scale	Deleted: 2
.112	values F0, F1,, F5, for the time period 1982–2011, with all path lengths L considered.	Deleted: 1
.112	Included are the mean path lengths \overline{L}_{F_j} (red diamonds) for each Fujita scale value ($j =$	Deleted: 0
114	0,1,2,,5), median values (grey circles), and the 75th and 25th percentile (upper and lower	
115	horizontal lines). Also given (thick red line) is the best-fit to the mean values for strong (F2,	
116	F3) and violent (F4, F5) tornadoes (Eq. 1). <u>Tornado data are from NOAA (2012).</u>	
.117	Fig. 4 Histogram of the distribution of continental USA severe tornadoes $(L \ge 10 \text{ km})$ as a	Deleted: 3
118	function of the hour of the day, h (Central Standard Time). The probabilities $p(h)$ of a severe	
119	tornado occurring are given as a function of h for the time period $1982-2011$, Tornado data	Deleted: 1
120	are from NOAA (2012).	Deleted: 0
.121	Fig. 5. Distribution of continental USA severe tornadoes ($L \ge 10$ km) as a function of day of	Deleted: 4
.122	the year <u>(convective days, 12:00–12:00 UTC)</u> . The number of years n_y with at least one	Deleted: n
.123	severe tornado ($L \ge 10$ km) is given for each day of the year, 1 to 365 (leap day removed), for	
.125	the 30-year period $1982-2011$, Tornado path length data L are from NOAA (2012).	Deleted: 1
.124		Deleted: 0
125	Fig. <u>6</u> . Number of days per year $n_{\rm D}$ with at least one continental USA severe tornado with	Deleted: 5
126	path lengths $L \ge 10$ km is given for the time period 1982–2011. The best-fit linear correlation	Deleted: n Deleted: 1
127	is also given (Eq. 4), with uncertainties given as ± 1 s.e. (standard error) of the slope, Tornado	Deleted: 1 Deleted: 0
128	path length data L are from NOAA (2012).	Deleted: .
.129	Fig. 7 Continental USA number of severe tornadoes per year, N _Y , over the time period	Comment [B18]: Parts b and c of figu are new.
130	<u>1982–2011. Shown are the total number per year of (a)</u> severe tornadoes ($L \ge 10$ km).	Deleted: 6

Deleted: are	
	_
Deleted: 1	
Deleted: 0	
Deleted: 1	
Comment [B17]: New figure.	

	Malamud and Turcotte. Statistics of Tornadoes & Severe Tornado Outbreaks. Submitted to ACPD (2 nd version, This draft: 7 August 2012) p. 28 of 45	
1151	$N_{Y}[L \ge 10 \text{ km}]$ (F0 to F5 considered), (b) tornadoes with Fujita (or Enhanced Fujita) scale	
1152	intensities greater than or equal to F2, $N_{Y}[F_{j,j} \ge 2]$, (all path lengths L considered). In (c) is	
1153	shown, per year, the ratio of (a) to (b), i.e. $N_{Y}[L \ge 10 \text{ km}] / N_{Y}[Fj, j \ge 2]$. In all three panels, the	Deleted: , (a) the number per year, $N_{\rm Y}$, and (b) total path length per year, $L_{\rm Y}$, are
1154	best-fit linear correlations are shown, with uncertainties given as ± 1 s.e. (standard error) of the	given for the time period 1981–2010. Deleted: both
1155	slope. Tornado path length data L are from NOAA (2012),	Deleted: cases
		Deleted: is
1156	Fig. 8 . Continental USA total path length of severe tornadoes per year, L _Y , over the time	Deleted: (Eqs. 5 and 6)
1157	period 1982–2011. Shown is the total path length per year for (a) severe tornadoes ($L \ge 10$	Deleted: .
1158	<u>km</u>), $L_{Y[L \ge 10 \text{ km}]}$ (F0 to F5 considered), (b) tornadoes with Fujita (or Enhanced Fujita) scale	Comment [B19]: Parts b and c of figure are new.
1159	intensities greater than or equal to F2, $L_{Y}[F_{j,j} \ge 2]$, (all path lengths L considered). In (c) is	
1160	shown, per year, the ratio of (a) to (b), i.e. $L_{Y}[L \ge 10 \text{ km}] / L_{Y}[Fj, j \ge 2]$. In all three panels, the best-	
1161	fit linear correlations are shown, with uncertainties given as ± 1 s.e. (standard error) of the	
1162	slope. Tornado path length data L are from NOAA (2012).	Comment [B20]: Added NY vs. LY for
1163	Fig. 9. For continental USA severe tornadoes ($L \ge 10$ km), 1982–2011, the number in a given	Fujita F2 and greater (all L).
1164	year, $N_{\rm Y}$, is given as a function of the total path length in that year, $L_{\rm Y}$. Results are given for	Deleted:
1165	two definitions for severe tornadoes: (i) (blue circles) tornadoes with $L \ge 10$ km (F0 to F5	Deleted: 1
		Deleted: 0
1166	considered), (ii) (red diamonds) tornadoes with Fujita (or Enhanced Fujita) scale intensities	Deleted: of the data is also
1167	greater than or equal to F2 (all path lengths L considered). The best-fit linear correlations are	Deleted: (
1168	shown and given in Eqs. (11) and (12), with uncertainties given as ± 1 s.e. (standard error) of	Deleted: 7
1169	the slope. Tornado path length data L are from NOAA (2012),	Deleted:)
1105		Deleted: . Comment [B21]: Added vertical error
1170	Fig. 10, For continental USA severe tornadoes ($L \ge 10$ km), 1982–2011, the frequency	bars
1171	density, $f(L)$ is given as a function of path length L. Vertical error bars represent two standard	Deleted: 8
1172	deviations ($\pm 2\sigma$) of the frequency densities f(L_D), and are calculated as $\pm (2\delta N^{0.5})/\delta L_D$, where	Deleted: 1
		Deleted: 0
1173	δN is the number of tornadoes in a 'bin' from L to $L + \delta L$. The $\pm 2\sigma$ error bars are	Deleted: ies
1174	approximately the same as the lower and upper 95% confidence interval ($\pm 1.96\sigma$). The best-fit	Deleted: are
1175	power-law correlation of the data is also given (Eq. <u>14</u>). <u>Tornado path length data <i>L</i> are from</u>	Deleted: 9
1176	NOAA (2012).	Deleted: daily
11/0		Deleted: s
1177	Fig. 11 . For continental USA severe tornadoes ($L \ge 10$ km), the total path length, L_D , during a	Deleted: are
1178	<u>convective day (12:00–12:00 UTC) is given for the time period 1982–2011</u> Each L_D	Deleted: 1
1179	represents a quantitative measure of a USA 'outbreak' of tornadoes, and is a total of severe	Deleted: 0
11,5	represente a quantitative incubate of a contractional of to induced, and is a total of bevelo	Deleted:

Deleted: daily

	Malamud and Turcotte. Statistics of Tornadoes & Severe Tornado Outbreaks. Submitted to ACPD (2 nd version, This draft: 7 August 2012) p. 29 of 45	
1211	tornado path lengths (individual path length data from NOAA, 2012) during a convective day	Deleted:
1212	Fig. 12. Cumulative number of continental USA severe tornado outbreaks per year N _c with	Comment [B22]: New Figure.
1213	daily total path lengths greater than or equal to L_{D_s} given as a function of L_{D_s} . Data are given	
1214	for six 10-year periods from 1952–2011. Outbreak path lengths $L_{\rm D}$ are based only on	
1215	tornadoes with path lengths $L \ge 10$ km (defined in this paper to be severe tornadoes). Tornado	
1216	path length data L are from NOAA (2012).	
1217	Fig. 13. Cumulative number of continental USA severe tornado outbreaks per year N _c with	Comment [B23]: New Figure
1218	daily total path lengths greater than or equal to L_{D} , given as a function of L_{D} . The data are for	
1219	the period 1952–2011 with outbreak total path lengths $L_{\rm D}$ based only on tornadoes with path	
1220	lengths $L \ge 10$ km (defined in this paper to be severe tornadoes). The three longest outbreaks	
1221	are identified by vertical arrows. Using this data, rough estimates are made for the length of	
1222	the expected 1 year, 10 year, and 100 year outbreaks. Tornado path length data L are from	
1223	<u>NOAA (2012).</u>	
1224	Fig. <u>14.</u> The total number of severe tornadoes ($L \ge 10$ km) in a continental USA 'outbreak'	Deleted: 10
1225	$N_{\rm D}$ during the period (1982–2011), is given as a function of the mean of the convective daily	
1226	total tornado path lengths for all days where $N_{\rm D}$ is the same value, $\overline{L_{\rm D}}$. Daily values are for	Deleted: The number of continental USA severe tornadoes ($L \ge 10$ km), 1981–2010,
1227	<u>convective days (12:00–12:00 UTC).</u> Horizontal error bars represent ± 1 s.d. (standard	in USA daily 'outbreaks' with $N_{\rm D}$, is given as a function of the mean of the daily total
1228	deviation) of the L_D for a given N_D . The best-fit power-law correlation of the data is also	path lengths $L_{\rm D}$.
1229	given (Eq. 16). Tornado path length data L are from NOAA (2012).	Deleted: 13
1230	Fig. 15, The frequency-length statistics of continental USA daily tornado outbreaks during the	Comment [B24]: Added vertical error bars.
1231	period 1982–2011. The frequency densities $f(L_D)$ are given as a function of L_D , the total path	Deleted: 11
1232	length of all <u>severe</u> tornadoes ($L \ge 10$ km) during a USA daily outbreak. Daily values are for	Deleted: 1
1233	convective days (12:00-12:00 UTC). Vertical error bars represent two standard deviations	Deleted: 0
1234	$(\pm 2\sigma)$ and calculated as given in Fig. 10 caption. The best-fit power-law correlation of the	
1235	data is also given (Eq. <u>17</u>). <u>Tornado path length data <i>L</i> are from NOAA (2012).</u>	Deleted: 14
1236	Fig. 16 . Distribution of severe tornado ($L \ge 10$ km) path lengths during two convective day	Comment [B25]: New Figure
1237	(12:00–12:00 UTC) outbreaks in the continental USA. The cumulative number of severe	
1238	tornadoes N_c with path lengths greater than or equal to L, given as a function of L. Results are	
1239	given for outbreaks on the 27 April 2011 (67 severe tornadoes) and 25 May 2011 (16 severe	
1240	tornadoes). Tornado path length data L are from NOAA (2012),	Deleted: ¶
1241		

1257Fig. 1. Cumulative number of continental USA tornadoes per year N_c with path lengths1258greater than or equal to L_c given as a function of L. Data are given for six 10-year periods1259from $1952-2011_c$ (a) All tornadoes. (b) Data for $L \ge 10$ km, which we define to be severe1260tornadoes. Tornado path length data L are from NOAA (2012).1261

Malamud and Turcotte. Statistics of Tornadoes & Severe Tornado Outbreaks. Submitted to ACPD (2nd version, This draft: 7 August 2012)

p. 32 of 45

Malamud and Turcotte. Statistics of Tornadoes & Severe Tornado Outbreaks. Submitted to ACPD (2nd version, This draft: 7 August 2012)

p. 34 of 45

is also given (Eq. 4), with uncertainties given as ± 1 s.e. (standard error) of the slope, Tornado

path length data L are from NOAA (2012).

Deleted: n	
Deleted: 1	
Deleted: 0	
Deleted:	

1307 1308

1309

shown, per year, the ratio of (a) to (b), i.e. $N_{Y}[L \ge 10 \text{ km}] / N_{Y}[F_{j, j} \ge 2]$. In all three panels, the

best-fit linear correlations are shown, with uncertainties given as ± 1 s.e. (standard error) of the

slope. Tornado path length data L are from NOAA (2012),

1323

Fig. 7, Continental USA number of severe tornadoes per year, Ny, over the time period	Comment [B27]: Parts b and c of figu are new.
<u>1982–2011. Shown are the total number per year of (a)</u> severe tornadoes ($L \ge 10$ km),	Deleted: 6
$N_{Y^{[L \ge 10 \text{ km}]}}$ (F0 to F5 considered), (b) tornadoes with Fujita (or Enhanced Fujita) scale	
intensities greater than or equal to F2, $N_{Y}[F_{j,j} \ge 2]$, (all path lengths L considered). In (c) is	Deleted: , (a) the number per year, $N_{\rm Y}$, and (b) total path length per year $L_{\rm Y}$ are

	Deleted: (a) the number per year, N_Y , and (b) total path length per year, L_Y , are given for the time period 1981–2010.
1	Deleted: both
	Deleted: cases
	Deleted: is
	Deleted: (Eqs. 5 and 6)
1-1	Deleted: .

Comment [B28]: Parts b and c of figure are new.

Malamud and Turcotte. Statistics of Tornadoes & Severe Tornado Outbreaks. Submitted to ACPD (2nd version, This draft: 7 August 2012)

p. 38 of 45

Deleted:

Comment [B30]: Added vertical error bars
Deleted: 8
Deleted: 1
Deleted: 0
Deleted: ies
Deleted: are
Deleted: 9

Deleted: 9
Deleted: daily
Deleted: s
Deleted: are
Deleted: 1
Deleted: 0
Deleted:
Deleted: daily
Deleted:

