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Abstract. This paper investigates the relationship between the heterogeneity of the terrestrial car-

bon cycle and the optimal design of observing networks to constrain it. We combine the methods

of quantitative network design and carbon-cycle data assimilation to a hierarchy of increasingly het-

erogeneous descriptions of the European terrestrial biosphere as indicated by increasing diversity

of plant functional types. We employ three types of observations, flask measurements of CO2 con-5

centrations, continuous measurements of CO2 and pointwise measurements of CO2 flux. We show

that flux measurements are extremely efficient for relatively homogeneous situations but not robust

against increasing or unknown complexity. Here a hybrid approach is necessary, and we recommend

its use in the development of integrated carbon observing systems.

1 Introduction10

CO2 and methane are the most important anthropogenic greenhouse gases. Their increasing concen-

tration is the major reason for global warming (Solomon et al., 2007). It is thus of paramount interest

to quantify and ultimately predict the exchanges of these gases between the terrestrial biosphere and

the atmosphere. At a number of points on the globe, carbon and water fluxes are sampled directly

(see, e.g, http://www.fluxnet.ornl.gov). The interpolation of these measurements to the globe (up-15

scaling) requires external information about the uncertain spatio-temporal flux structure. The same

type of information is required by atmospheric transport inversions (see, e.g., Rayner et al., 1999;

Gurney et al., 2002; Enting, 2002) which infer surface fluxes from atmospheric concentration mea-

surements. The most sophisticated tools for quantifying the structure and variability of carbon fluxes
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are process models of the terrestrial carbon cycle like those used for the assessments of the IPCC20

(Solomon et al., 2007). Underlying these models is the assumption of fundamental equations that

govern the processes controlling the terrestrial carbon fluxes. Uncertainty in the simulation of these

fluxes arises from four sources: first, there is uncertainty in the forcing data (such as precipitation or

temperature) driving the terrestrial processes. Second, there is uncertainty regarding the formulation

of individual processes and their numerical implementation (structural uncertainty). Third, there are25

uncertain constants (process parameters) in the formulation of these processes (parametric uncer-

tainty). Forth, there is uncertainty about the state of the terrestrial biosphere at the beginning of the

simulation.

Observational information helps to reduce these uncertainties. Currently there are several initia-

tives to extend the observational network of the carbon cycle. Europe’s Integrated Carbon Observing30

System (ICOS, see http://www.icos-infrastructure.eu/), for example, aims at setting up an integrated

sampling network for land, ocean, and atmosphere. Ideally, all data streams are interpreted simul-

taneously with the process information provided by the model to yield a consistent picture of the

carbon cycle that balances all the observational constraints, thereby taking the respective uncertainty

ranges into account. Data assimilation systems around prognostic models of the carbon cycle are the35

ideal tools for this integration allowing us to assimilate a wide range of observations. They can, for

example, be applied to systematically reduce parametric uncertainty (Kaminski et al., 2002, e.g.) or

to expose structural errors (Rayner, 2010). In a first step, they use the observations to constrain the

uncertain process parameters (calibration), and in a second step they use the calibrated model for

analysis and prediction. Ideally, both steps include the propagation of uncertainties. This allows us40

to derive uncertainty ranges on simulated target quantities that are consistent with the uncertainties

in the observations and the model. Examples of such target quantities are fluxes of carbon on re-

gional, continental, or global scale, integrated over part of the assimilation period (diagnostic target

quantity) or some period before or after (prognostic target quantity). With regard to a specified target

quantity, such an assimilation system can assess the performance of a given observational network.45

This performance is typically quantified by the uncertainty range.

Quantitative Network Design (QND) aims at constructing an observational network with optimal

performance. The approach is based on Hardt and Scherbaum (1994) who optimised the station

locations for a seismographic network. It was first applied to observational networks of the global

carbon cycle by Rayner et al. (1996), who optimised the locations of atmospheric CO2 and δ13C50

measurements. A pioneering study for sensor design has been performed by Rayner and O’Brien

(2001) who established the required precision for observations of the column-integrated atmospheric

CO2 concentration from space.

The latter two studies investigated purely atmospheric networks. To assist the design of an inte-

grated carbon observing system, we need the capability of evaluating the complementarity of various55

observational data streams including those of the terrestrial biosphere. As outlined by Kaminski and
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Rayner (2008) assimilation systems are the ideal tool for this task. The Carbon Cycle Data Assim-

ilation System (CCDAS, see http://ccdas.org) can assimilate several observational data streams and

infers uncertainty ranges on diagnosed (Rayner et al., 2005) or prognosed carbon (Scholze et al.,

2007; Rayner et al., 2011) and water (Kaminski et al., 2011) fluxes. The first QND applications60

investigated the utility of space borne observations of atmospheric CO2 (Kaminski et al., 2010) or

vegetation activity (Kaminski et al., 2011) in constraining various surface fluxes. Another study ex-

plores the atmospheric in situ network and its ability to constrain the productivity of the terrestrial

biosphere (Koffi et al., 2012).

Kaminski and Rayner (2008) noted two general aspects of QND studies. The first is the depen-65

dence on the target quantity; clearly different networks are optimal for constraining different things

(Rayner et al., 1996). The second is the dependence on prior knowledge brought to the problem.

For traditional inversions of fluxes this information takes the form of the covariance of prior uncer-

tainty. For CCDAS it is determined by the process resolution of the underlying dynamical model

(how many processes are modelled) and the spatial detail at which these processes are allowed to70

vary independently. The level of heterogeneity of the biosphere is a fundamental question which

goes beyond CCDAS; it determines how much any understanding of processes gained locally can

be more widely applied. However it is clear that observing networks presupposing a given hetero-

geneity are at some risk. Current earth system models map this spatial heterogeneity by dividing the

global vegetation into a small number of plant functional types (PFTs). Groenendijk et al. (2011)75

demonstrate through calibration of a terrestrial model against direct flux measurements the limit of

this approximation and the difficulty in deriving a realistic PFT classification.

This paper uses the network designer, a CCDAS-based interactive QND tool, to investigate the

performance of several networks composed of direct flux observations and flask or continuous sam-

ples of the atmospheric carbon dioxide concentration. In particular we investigate the robustness of80

network performance to various choices of target quantities and levels of heterogeneity. The outline

of the paper is as follows. Section 2 describes our QND methodology and Sect. 3 the networks we

consider. Then Sect. 4 will present and discuss the evaluations. Finally, in Sect. 5 we summarise our

conclusions.

2 Methods85

CCDAS is built around the Biosphere Energy Transfer HYdrology scheme (BETHY, Knorr, 2000;

Knorr and Heimann, 2001), a global model of the terrestrial vegetation. The version used here is

described in Rayner et al. (2005). This section gives brief descriptions of BETHY, the observational

data types, CCDAS and of the QND approach.
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2.1 BETHY90

Following Wilson and Henderson-Sellers (1985) BETHY decomposes the global terrestrial vegeta-

tion into 13 PFTs as listed in Table 1. Each grid cell can be covered by up to three PFTs. Figure 1

shows the distribution of the dominant PFT. As in Scholze et al. (2007) we integrate the model over

21 yr from 1979 to 1999 on a global 2 by 2 degree grid and use observed meteorological driving

data (Nijssen et al., 2001).95

The process formulations within BETHY are controlled by a set of process parameters (see Ta-

ble 2). For this study we use the model version of Scholze et al. (2007) with the extension of

simulating hourly Net Ecosystem Productivity (NEP). This is done by dividing the daily calculated

heterotrophic respiration flux into 24 equal-sized hourly fluxes and subtracting these fluxes from the

hourly simulated Net Primary Productivity (NPP). BETHY simulates 13 PFTs including 21 different100

parameters. Three of these parameters are PFT-specific and 18 are applied globally, i.e. they refer

to all PFTs. We thus have 18+3×13 = 57 parameters. The role of the individual parameters is

described elsewhere (Rayner et al., 2005; Scholze et al., 2007). In our context of network design it

is important to know to which parameters our respective target quantities are sensitive. We will use

regional integrals of the NPP and the NEP as target quantities. The latter is net CO2 flux between105

the atmosphere and the biosphere and defined as the difference of NPP and heterotrophic soil respi-

ration. Except for one atmospheric parameter c0, all parameters impact NEP. NPP is sensitive to all

parameters, except c0 and the soil and carbon balance parameters.

2.2 Observational data types

In this study we use three types of observational data: direct (NEP) flux measurements, flask and110

continuous samples of the atmospheric CO2 concentration. Within the model, a flux measurement

is represented by a time series of hourly NEP samples of the grid cell the site is located in. The

atmospheric data types require, as a so-called observation operator, an atmospheric transport model

to transform the global NEP field into atmospheric concentrations. Flask samples are represented

by a time series of monthly mean concentrations at the sampling location as simulated by the atmo-115

spheric transport model TM2 (Heimann, 1995), which is run at 8 by 10 degree horizontal resolution

and with nine vertical levels. As in Carouge et al. (2010a,b) continuous samples are represented by

a time series of daily mean concentrations at the sampling location as simulated by the atmospheric

transport model LMDZ (Hauglustaine et al., 2004), which is run at 3.75 by 2.5 degree resolution

over most of the globe but a zoomed 0.5 degree resolution over Europe. For each data type the ob-120

servational time series covers the 20 yr period from 1980 to 1999. By representing flask samples in

the model as monthly means, much of the synoptic signal is averaged out. Likewise by representing

continuous measurements by daily means the diurnal signal is averaged out. This averaging reduces

the information content of the observations but is also less demanding of the models’ performance,
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i.e. a conservative choice.125

2.3 CCDAS

CCDAS uses a gradient method to adjust BETHY’s process parameters in order to minimise a cost

function. This cost function quantifies the fit to all observations plus the deviation from prior knowl-

edge on the process parameters:

J(x̃)=
1

2

[
(M(x̃)−d)TC(d)−1(M(x̃)−d)+(x̃−x0)

TC(x0)
−1(x̃−x0)

]
(1)130

where M denotes the model considered as a mapping from parameters to observations, d the obser-

vations with data uncertainty C(d), x0 the prior parameter values with uncertainty C(x0), and the

superscript T the transpose.

The second derivative (Hessian) of the cost function at the optimum x is used to approximate the

inverse of the covariance matrix C(x) that quantifies the uncertainty ranges on the parameters that135

are consistent with uncertainties in the observations and the model. In a second step, the linearisation

N ′ (Jacobian) of the model N used as a mapping from parameters to target quantities is used to

propagate the parameter uncertainties forward to the uncertainty in a target quantity σ(y):

σ(y)2 =N ′C(x)N ′T +σ(ymod)
2 . (2)

σ(ymod) quantifies all uncertainty in the simulation of the target quantity except the uncertainty in140

x (which we resolve explicitly). If the terrestrial model was perfect, σ(ymod) would be zero. In

contrast, if the parameters were perfectly known, the first term on the right hand side would be zero.

Likewise the data uncertainty C(d) is the sum of the observational uncertainty and all uncertainty in

the simulation of the observations except the uncertainty in the parameter vector.

All derivative information is provided with the same numerical accuracy as the original model145

in an efficient form via automatic differentiation of the model code by the automatic differentiation

tool TAF (Giering and Kaminski, 1998).

2.4 QND

In network design mode, CCDAS is restricted to the uncertainty propagation for candidate networks.

It builds on the optimal parameter set estimated from data of the available network for the evaluation150

of the required first and second derivatives. In our case the optimal parameter vector is taken from

the study of Scholze et al. (2007). For the evaluation of potential networks, the Hessian is evaluated

for d=M(x). In this case the posterior target uncertainty solely depends on the prior and data

uncertainties and linearised model responses at observational locations and for target quantities. The

approach does not require real observations, and can thus evaluate hypothetical candidate networks155

(see Kaminski and Rayner, 2008; Kaminski et al., 2010). Candidate networks are defined by a set of

observations characterised by observational data type, location, and data uncertainty. In practise for
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pre-defined target quantities and observational types and locations, model sensitivities can be pre-

computed and stored. A network composed of these pre-defined observations, can then be evaluated

in terms of the pre-defined target quantities without further model evaluations. Only matrix algebra160

is required to combine the pre-computed sensitivities with the data uncertainties.

This is the approach implemented in the network designer (see http://imecc.ccdas.org), an interac-

tive software tool that evaluates networks composed of flask and continuous samples of atmospheric

CO2 and direct flux measurements. Available target quantities are NPP and NEP over three regions:

Europe, Brazil, and Russia (see Fig. 2). They are provided in the form of annual mean values av-165

eraged over the 20 yr assimilation period. Model sensitivities have been pre-computed for a list of

atmospheric sampling sites (see Fig. 3 and Table 4). For flux measurements, model sensitivities have

been pre-computed for every terrestrial grid cell and all PFTs that are available in the grid cell. When

defining the site, the user can specify a mix among these PFTs. Uncertainties for data sampled at

different sites and times are assumed to be uncorrelated. The uncertainty for each site is quantified170

by a standard deviation σ(d), that reflects the combined effect of observational σ(dobs) and model

error σ(dmod):

σ(d)2 =σ(dobs)
2+σ(dmod)

2 (3)

The unit of the data uncertainties depends on the data type. For flask and continuous samples of

atmospheric CO2 it is ppm, for eddy flux measurements it is gCm−2day−1 (where gC stands for175

grams of carbon). The output of the network designer is the list of posterior uncertainties σ(y) of

the target quantities according to Eq. (2). σ(ymod) can be specified by the user as a percentage of

the 20 yr average of annual mean NPP.

3 Experimental setup

We will be evaluating several networks. To define these networks we have to select the sampling180

locations and the respective data uncertainties. Data uncertainty is generally difficult to estimate,

especially in advance of actual measurements. In the following we give some motivation for our

choices and for some cases we will test the effect of an alternative choice in Sect. 4.

The thrust of our study is the interaction between the spatial density of various classes of measure-

ments and assumed heterogeneity of the spatial biosphere. It is important therefore that our choice of185

data uncertainty does not overly influence the results. We therefore make the most neutral possible

choice of a uniform data uncertainty for each class of measurement. We also assume uncorrelated

uncertainties in space and time. This is partly justified by the reduction in the underlying datasets

to either daily or monthly means and, more importantly, by the focus of our study. We note that,

in principle, systematic errors (biases) in the observations or the model (which would give rise to190

uncertainty correlations along the entire time series) can be removed or at least reduced by bias cor-

rection schemes. For example, Pillai et al. (2010) assess biases for the atmospheric data types and
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derive a recipe for their reduction.

For the flux measurements we use an uncertainty of 10 gCm−2day−1. With respect to the mini-

mum uncertainty of 3×10−6molm−2s−1≈ 3.11gCm−2day−1 chosen by Knorr and Kattge (2005)195

this is a factor of about
√
10 larger. This effective sample size of 10 corresponds to ignoring half

of the data because of nighttime sampling and allowing another factor of 5 to account of correlated

uncertainties.

For the atmospheric data types we assume the combined error in the terrestrial and transport mod-

els to be the dominant contribution to data uncertainty. For flask samples (represented by monthly200

mean values) we use a data uncertainty of 1.0ppm, above the average assigned by Rödenbeck et al.

(2003) for the combined observational and transport model error. For continuous observations,

which are more difficult to simulate, we use an uncertainty of 1.5 ppm. We can regard the fac-

tor of 1.5 compared to flask samples as an inflation of the data uncertainty, to achieve an effective

sample size that is reduced by a factor of 2. With roughly 30 times as many measurements this still205

gives continuous observations greater weight than flask measurements but this is reasonable given

their greater ability to represent a monthly mean.

Next we have to define the sampling locations. For each observational data type we define a base

network:

– The atmospheric flask sampling network flask, which consists of the 41 monitoring stations210

listed in Table 2 of Kaminski et al. (2002) and shown in Fig. 3.

– The atmospheric continuous sampling network cont, which consists of the 15 sites listed in

Table 4 and indicated with symbol “X” in Fig. 4.

– The eddy flux network flux, which consists of a dedicated site for each of the ten PFTs that

are available to the model over Europe (PFT numbers 3–5 and 7–13 of Table 1). Each site is215

defined such that it is covered to 100% by the respective PFT. Table 3 lists the sites and Fig. 4

indicates their locations with the symbols “+”.

We evaluate the networks in terms of the uncertainty reduction (Kaminski et al., 1999) in six target

quantities:

1− σ(y)

σ(yprior)
, (4)220

where σ(yprior) denotes the uncertainty in the target quantity without any observational constraint

and σ(y) is taken from Eq. (2). The prior uncertainties for our target quantities are computed by

propagating the prior parameter uncertainties of Scholze et al. (2007) via the Jacobian N ′ (Eq. 2).

They are 0.45GtC, 1.45GtC, and 1.13GtC for NEP over Europe, Russia, and Brazil, respectively,

and 0.66GtC, 1.08GtC, and 4.86GtC for NPP. σ(ymod) is an offset in Eq. (2). If the term was225

very high it would dominate the posterior uncertainty. To render the contrasts between the networks
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more drastic, we use a value of zero, i.e. we only analyse the effect of the networks on the parametric

uncertainty in the target quantities.

In the above-described default set up BETHY runs with 13PFTs. To investigate the robustness of

the network performance with respect to model complexity in terms of the number of available PFTs,230

we extend the default set up as follows: We split the global vegetation into several equal fractions.

Each fraction has its own set of 57 independent parameters with uncorrelated prior uncertainty. All

fractions of a PFT share the location of the original PFT. In other words, a grid cell that in the default

setup is populated by a single PFT is now composed of equal subgrid patches, each with their own

PFT; the corresponding surface fluxes add up to one grid cell flux to be used for the atmospheric235

networks (hence the patches can be said to have the same location) but they are separately monitored

by the flux network. In the following we will call the number of fractions multiplicity. With mul-

tiplicity 4, for example, we have 4×13= 52PFTs and 57×4= 228 parameters. A parameter that

was global in the default configuration is no longer global, because its validity is restricted to one

of the fractions of the global vegetation. A change of multiplicity also affects the prior uncertainty240

in the target quantities. Introducing the multiplicity m means that m copies have to share the same

area. Hence, compared to the original flux y the flux yi from each copy (i counting the copies) is

reduced by a factor of m. And with it the original flux uncertainty σ(yprior) is also reduced by a

factor of m for each copy σ(yi,prior). Since there is no correlation of the prior uncertainty among

the copies, the total flux uncertainty σ(yprior,m) is the square root of the sum of squares:245

σ(yprior,m)=

√ ∑
i=1,m

σ(yi,prior)2 =

√√√√ ∑
i=1,m

(
σ(yprior)

m
)2 =

σ(yprior)√
m

. (5)

This means, for example, quadrupling the multiplicity halves the prior uncertainty.

4 Results and discussion

We start this section with evaluations of simple networks composed of one or two flux sites. Then

we move on to the base networks defined in Sect. 3 and, finally, study the effect of increasing the250

number of PFTs that are available to the model.

4.1 Simple configurations of flux sites

The selection of a site location for sampling a particular PFT defines the Jacobian matrix that pro-

vides the link from the model parameters (required for simulating that PFT) to the simulated flux.

To understand the effects which we will later see in larger networks, it is instructive to evaluate first255

a series of small networks consisting of one or two flux sites. We start with the separate evaluation

of two sites which both observe PFT 9 (C3 grass) to 100%, namely “site1731-9” in Southern Spain

and “site143-9” in Northern Scandinavia. Note that we can populate any given location with up to

three PFTs. For the current experiment we take the location of “site143-5” from Table 3 but populate
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it to 100% with PFT 9. For convenience, for the remainder of this subsection, we will refer to the260

sites just as “143” and “1731”. The respective uncertainty reductions are displayed by blue (site

“143”) and orange (site “1731”) bars in Fig. 5. First we note that flux measurements over Europe

can reduce the uncertainty of target quantities over Russia and Brazil. This reflects our assumption

of fundamental processes with a combination of universal and PFT-specific parameters: An obser-

vation provides information beyond its sampling time and location helping to reduce uncertainty265

everywhere. Figure 6 shows for site “1731” the uncertainty reduction in NEP per grid cell. This

quantifies how the observational information of the site is spread around the globe. Comparing with

Fig. 1 we note high uncertainty reduction where the dominant PFT is C3 grass.

Among the two sites in terms of NEP site “1731” performs only marginally better, but in terms

of NPP it performs about 10 percentage points better.1 Next we investigate the complementarity270

between the two sites, i.e. we use a network that consists of both sites and note a slight improvement

for NPP over Europe and Russia (yellow bar in Fig. 5) compared to the better site “1731” alone. For

these two target quantities the weaker site “143” is not redundant in this two site network, because it

brings at least a little bit of extra information. In other words there is at least a slight complementarity

between the two sites with respect to the two target quantities.275

For the analysis of the above effects, recall that each scalar target quantity is (through the vector

N ′ of Eq. 2) influenced by its own one-dimensional sub-space of the parameter space, i.e. a target

direction in parameter space. Likewise each scalar observation constrains a direction in parameter

space (observed direction). We can use the analogy of a perspective under which the target direction

is observed. If the target and observed directions are orthogonal, the observation can not reduce280

the uncertainty in the target quantity. If both directions are collinear, i.e. in the same subspace

of the parameter space, the observation can most efficiently reduce the uncertainty in the target

quantity. This means, for example, that even a hypothetically perfect measurement that removed

all uncertainty for all parameters pertinent to one PFT would not completely constrain any of our

target quantities (which are all influenced by several PFTs). In other words a one-site flux network285

is incomplete with respect to our target quantities. The strength of an observational constraint on

a target quantity depends 1) on the sensitivity of the observed quantity to a parameter change in

the observed direction (signal size), 2) on how well the observed direction projects onto the target

direction (perspective), and 3) on the data uncertainty. We use the same data uncertainty for both

sites and the same target directions. The observed direction and signal size depend 1) on the PFT,290

2) on the sampling time, and on 3) the meteorological driving data. Our two flux sites provide

measurements at the same times (hourly for 20 yr) and of the same PFT. The only different factors

are the meteorological driving data. Indeed the meteorology in Southern Spain is quite different

from Scandinavia.
1The unit percentage point quantifies an absolute change in the percentage value. For example, for a value of 40% an

increase by 50 percentage points yields 90%. By contrast, an increase by 50% corresponds to 20 percentage points and

yields 60%.
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To isolate the effects of the perspective and the signal size on performance of the individual sites295

we reduce their respective data uncertainties by a factor of 100 (green and brown bars in Fig. 5).

This can compensate for a weaker signal but does not change the perspective. Now both sites show

exactly the same performance, i.e the Scandinavian site has just a smaller signal. In other words, we

find the relevant information at both sites, but at sites with a larger signal we can afford a larger data

uncertainty or, probably, a shorter observational period.300

A common property between all networks evaluated in Fig. 5 is the larger uncertainty reduction

for NPP compared to NEP. This happens although we sample hourly NEP, i.e. we should match

the perspective for long-term NEP quite well. On the other hand, the target space for NPP has

fewer dimensions, because it depends on fewer parameters. The extra parameters in NEP play an

important role. This effect would probably be even more pronounced if NEP was compared with the305

Gross Primary Productivity (GPP) which is influenced by even fewer parameters (Koffi et al., 2012).

Another point to note is that for Brazil the prior uncertainty in NPP is about four times higher than

for NEP, and thus easier to reduce.

4.2 Base networks and their combinations

The performance of the three base networks flask (blue bars), cont (orange bars), and flux (yellow310

bars) is shown in Fig. 7. Over Europe, the flux network achieves an uncertainty reduction of about

99% for both NEP and NPP and outperforms both atmospheric networks. The reason for the strong

performance of flux over Europe is its completeness with respect to the European target quantities,

i.e. the fact that for each PFT over Europe it contains a dedicated site. With respect to the Brazilian

target quantities, in turn, the network flux is incomplete because it does not cover the tropical PFTs.315

This is why flux is weaker than the global network flask, in particular for NEP where the performance

difference between both networks is over 50 percentage points.

The above suggests we would always attempt complete flux networks. In reality this will be hard

to achieve, because we do not know how many PFTs are required to simulate the terrestrial carbon

cycle, nor do we know their spatial distribution (Groenendijk et al., 2011). Hence, it may happen320

that we accidently miss a PFT in our flux network. We can test the effect of this by removing from

network flux the site “1731-9” (network flux-C3). The performance over Europe drops by about 69

percentage points for NEP and 58 for NPP (green bars). Over Brazil the effect of missing the C3

grass site is only marginal (performance drop of less than four percentage points for NEP and less

than two for NPP).325

For the atmospheric networks, flask outperforms cont over Europe by 2 and 10 percentage points

for NEP and NPP despite the European focus of cont. Obviously, for the atmosphere, the large-

scale information matters. For Brazil or Russia it is not surprising that the global network flask is

more powerful than the network cont. The most important aspect is that the atmospheric networks

outperform the incomplete flux network flux-C3. The only exception is NPP over Brazil, where the330
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loss of C3 had only a marginal effect on the performance of the flux network and flux-C3 is stronger

than cont but not than flask. We note that the relatively coarse resolution of TM2 may yield a slight

overestimation in the integrative capacity of flask. For any given monthly mean sample, the higher

resolution of LMDZ would resolve a finer influence structure (footprint) within the TM2 grid cells.

On the other hand, our sampling period of 20 yr would probably average out much of this time-335

dependent fine-scale structure, a mechanism that tends to increase the footprint. Increasing the data

uncertainty of cont yields only small performance reductions of 3 percentage points over Europe,

6-7 percentage points over Russia and below one percentage point over Brazil (not shown).

To assess the complementarity of atmospheric and flux networks, we combine the networks flux-

C3 and flask. Over Europe the resulting network flux-C3 + flask performs almost as well as the340

complete flux network flux, and over Brazil and Russia even better. Both networks (flux-C3 and

flask) complement each other. Given the experience from the two grass sites we evaluated initially

(Sect. 4.1), we can think of the atmospheric network as an observer of averages over multiple sites.

We can regard its addition to the flux network as an insurance against the incompleteness of the flux

network.345

What can we do in the case where we can not afford enough sites to sample all PFTs over our

target region? Is it useful to have a flux site which observes two PFTs? We test this by removing the

site “site1731-9” from the network flux and modify the PFT fractions at site “site143-9” to 50% each

for PFTs 5 and 9. This network has the same number of sites as flux-C3 but much better performance

(not shown). Uncertainty reduction for NEP over Europe is 76%, and for the other target quantities350

the performance is only marginally (less than one percentage point) inferior to flux. This performance

enhancement is based on the same principle as atmospheric sampling, the integration of a multi-PFT

signal. This result seems surprising. It arises from the ability of a long time series to observe the

different dynamics of the two underlying PFTs.

We can also investigate the complementarity of the base networks. Since the uncertainty reduc-355

tion for the network flux is above 99% already, in this set of assessments we rather quantify the

performance gain by the reduction in posterior uncertainty relative to the posterior uncertainty of

flux. Adding both atmospheric networks to network flux reduces NEP uncertainty over Europe by

over 30% and NPP by 20%. For the other regions the effect is much larger (up to 99% reduction

for NEP over Brazil).360

4.3 Increased model complexity

The above network evaluations are based on the default model setup with 13PFTs. In the following

we investigate the robustness of the results with respect to model complexity in terms of the number

of available PFTs. To increase the number of PFTs we use the procedure described in Sect. 3.

For multiplicity 4, Fig. 8 shows the performance of the three base networks. Among the atmo-365

spheric networks flask is superior to cont for all target quantities, except for NEP over Europe where
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flask is slightly inferior. The network flux, in turn, is superior to flask except for NEP over Brazil

and Russia. We define the network M4-1 flux, which is incomplete over Europe, by excluding one

parameter copy out of the 4 from the network flux. This means M4-1 flux samples 30 out of the

40PFTs that are available over Europe. As in the case of multiplicity 1, the incompleteness is re-370

flected in a strong drop in uncertainty reduction in particular over Europe, where the performance is

roughly halved (green bars in Fig. 8). Combining M4-1 flux with flask is only marginally superior to

flask alone. Apparently M4-1 flux is too incomplete to bring extra information. Put another way, the

unobserved parts of the domain dominate the final uncertainty.

For multiplicity 25 (not shown), flux achieves uncertainty reductions close to 100% over Europe375

and above 85% elsewhere. We define two incomplete flux networks over Europe, one with one

parameter copy out of 25 removed (over Europe 240 of 250PFTs sampled) and the other one with

two parameter copies out of 25 removed (230PFTs sampled). Over Europe, compared to flux, the

first network suffers a performance drop of about 20 percentage points, and the other one of almost

30 percentage points. Over Europe the flask performance (78% for NEP and 74% for NPP) lies380

in-between both incomplete flux networks, which also holds for NPP over Russia. Elsewhere flask

is better than the two networks. Even with a highly increased number of PFTs, an incomplete flux

network that misses only a small fraction of the total PFTs is outperformed by flask. Combining flask

with either one of the incomplete networks increases the flask performance over Europe by about ten

percentage points for the smaller flux network and by another three percentage points for the larger385

network. This means both incomplete networks exhibit enough complementarity to flask to achieve

a significant performance gain. Note that with multiplicity 25 the prior uncertainty is reduced by a

factor of five (see Eq. (5)). For example, an uncertainty reduction of 80% corresponds to the same

posterior uncertainty as an uncertainty reduction of 96% (100-(100-80)/5%) in BETHY’s default

setup (i.e., multiplicity 1). This means that the posterior uncertainty in NEP over Europe of flask390

(uncertainty reduction of 78%) is similar to that in the default setup (uncertainty reduction of 94%).

5 Conclusions

QND is well-suited to explore the performance of observational networks of the carbon cycle. The

network designer is a fast and easy-to-use QND implementation, that enables interactive network

evaluations, e.g. within a meeting. Its current focus is on the continental-scale carbon balance.395

Figures 2, 3 and 5 in this paper are directly obtained from the network designer.

As mentioned above the particular performance values are consequences of specific choices such

as the complexity of the underlying terrestrial model. There are, however, a set of general findings

that follow from the above-mentioned assumption of fundamental equations that govern the pro-

cesses controlling the terrestrial carbon fluxes. First, for direct flux observations, it is important to400

cover the full range of different PFTs and not the range of climates to which a given PFT is exposed.
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An incomplete flux network, i.e. one that misses a fraction of the PFTs risks a considerable perfor-

mance loss. Atmospheric measurements are less prone to this problem, thus we can say that flux

networks are more powerful while concentration networks are more robust. The combination can

provide both qualities, i.e. atmospheric and flux networks complement each other.405

The implications for the design of integrated observing strategies for the continental carbon bal-

ance seem clear. The baseline requirement is an atmospheric sampling network. That way if we

underestimate the heterogeneity we will not find ourselves suddenly terribly undersampled. The

strongest constraint, however, will come by overlaying this with a flux network which is as com-

prehensive as possible. Oversampling important PFTs will also give a diagnostic of heterogeneity.410

If parameters retrieved from one flux site enable us to predict the fluxes at a second then these are

properly considered the same PFT for CCDAS, otherwise we need to increase the multiplicity.

This study addressed parametric and, to a certain extent, initial value uncertainty. To resolve struc-

tural uncertainty, it is important to build into the network the flexibility to detect features that are not

or badly included in the model, i.e. the capability to discover surprises. Here, we have focused on415

carbon dioxide fluxes, however, observational networks for other trace gases, e.g. methane, can be

evaluated with the same approach. Also, it is possible to evaluate networks that combine observa-

tions from space with in situ measurements as shown by Kaminski et al. (2010) and Kaminski et al.

(2011). Similarly the column integrated CO2 measurements collected by the Total Carbon Column

Observing Network (TCCON, http://www.tccon.caltech.edu/) can be included, as an extra data type,420

in the network designer. The approach can also be extended to oceanic networks.

Acknowledgements. We thank Han Dolman and Antoon Meesters as well as Christoph Gerbig for their reviewer

comments and Dietrich Feist for his interactive comment. These comments improved the manuscript signifi-

cantly. This work was supported in part by the European Community within the 6th Framework Programme for

Research and Technological Development under contract no. 026188. PR is in receipt of an ARC Professorial425

Fellowship (DP1096309).

13



References

Carouge, C., Bousquet, P., Peylin, P., Rayner, P. J., and Ciais, P.: What can we learn from European continuous

atmospheric CO2 measurements to quantify regional fluxes – Part 1: Potential of the 2001 network, Atmos.

Chem. Phys., 10, 3107–3117, http://dx.doi.org/10.5194/acp-10-3107-2010doi:10.5194/acp-10-3107-2010,430

2010a.

Carouge, C., Rayner, P. J., Peylin, P., Bousquet, P., Chevallier, F., and Ciais, P.: What can we learn from

European continuous atmospheric CO2 measurements to quantify regional fluxes – Part 2: Sensitivity of

flux accuracy to inverse setup, Atmos. Chem. Phys., 10, 3119–3129, http://dx.doi.org/10.5194/acp-10-3119-

2010doi:10.5194/acp-10-3119-2010, 2010b.435

Enting, I. G.: Inverse Problems in Atmospheric Constituent Transport, Cambridge University Press, Cambridge,

2002.

Giering, R. and Kaminski, T.: Recipes for adjoint code construction, ACM T. Math. Software, 24, 437–474,

1998.

Groenendijk, M., et al., Assessing parameter variability in a photosynthesis model within and between plant440

functional types using global fluxnet eddy covariance data, Agricultural and Forest Meteorology, 151, 22–38,

2011.

Gurney, K. R., Law, R. M., Denning, A. S., Rayner, P. J., Baker, D., Bousquet, P., Bruhwiler, L., Chen, Y.-

H., Ciais, P., Fan, S., Fung, I. Y., Gloor, M., Heimann, M., Higuchi, K., John, J., Maki, T., Maksyutov, S.,

Masarie, K., Peylin, P., Prather, M., Pak, B. C., Randerson, J., Sarmiento, J., Taguchi, S., Takahashi, T.,445

and Yuen, C.-W.: Towards robust regional estimates of CO2 sources and sinks using atmospheric transport

models, Nature, 415, 626–630, 2002.

Hardt, M. and Scherbaum, F.: The design of optimum networks for aftershock recordings, Geophys. J. Int., 117,

716–726, 1994.

Hauglustaine, D. A., Hourdin, F., Jourdain, L., Filiberti, M. A., Walters, S., Lamarque, J. F., and Hol-450

land, E. A.: Interactive chemistry in the Laboratoire de Météorologie Dynamique general circulation
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Table 1. Plant Functional Types (PFTs) defined in CCDAS and their abbreviations, taken from Rayner et al.

(2005).

PFT No. PFT Name Abbreviation

0 Not vegetated

1 Trop. broadleaved evergreen tree TrEv

2 Trop. broadleaved deciduous tree TrDec

3 Temp. broadleaved evergreen tree TmpEv

4 Temp. broadleaved deciduous tree TmpDec

5 Evergreen coniferous tree EvCn

6 Deciduous coniferous tree DecCn

7 Evergreen shrub EvShr

8 Deciduous shrub DecShr

9 C3 grass C3Gr

10 C4 grass C4Gr

11 Tundra vegetation Tund

12 Swamp vegetation Wetl

13 Crops Crop

Fig. 1. Distribution of the dominant CCDAS Plant Functional Type (PFT) per grid cell, PFT labels are given in

Table 1, taken from Rayner et al. (2005).
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Table 2. Process parameters, their symbols (2nd column), their description (3rd column), whether their scope

is PFT specific or global (4th column), whether NEP (5th column) or NPP (6th column) are sensitive to them.

Number Symbol Description scope NEP NPP

1 V 25
max maximum carboxylation rate (C3) PFT X X

2 aJ,V ratio V 25
max over max electron transport J25

max PFT X X

3 αq photon capture efficiency (C3) global X X

4 αi quantum efficiency (C4) global X X

5 K25
C Michaelis-Menten constant CO2 global X X

6 K25
O Michaelis-Menten constant O2 global X X

7 aΓ,T temperature slope CO2 compensation point global X X

8 EKO activation energy, O2 global X X

9 EKC activation energy, CO2 global X X

10 EVmax activation energy, carboxylation rate (C3) global X X

11 Ek activation energy, carboxylation rate (C4) global X X

12 ERd activation energy, dark respiration global X X

13 fR,leaf leaf respiration ratio global X X

14 fR,growth growth respiration ratio global X X

15 fS fraction of fast soil decomposition global X

16 κ soil moisture exponential for soil respiration global X

17 Q10,f soil respiration temperature factor, fast pool global X

18 Q10,s soil respiration temperature factor, slow pool global X

19 τf fast pool soil carbon turnover time global X

20 β net CO2 sink factor PFT X

21 c0 atmospheric concentration offset global

Table 3. Network flux. First number in site name indicates model grid cell and second number PFT.

Name Included Uncertainty [gCm−2day−1] lon lat

site1413-3 yes 10.0 9.0 45.0

site1025-4 yes 10.0 35.0 53.0

site143-5 yes 10.0 19.0 69.0

site148-7 yes 10.0 29.0 69.0

site1495-8 yes 10.0 −5.0 43.0

site1731-9 yes 10.0 −5.0 37.0

site1578-10 yes 10.0 −5.0 41.0

site377-11 yes 10.0 −21.0 65.0

site388-12 yes 10.0 29.0 65.0

site621-13 yes 10.0 13.0 61.0
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Table 4. Network cont of continuous atmospheric sampling sites over Europe.

Name Included Uncertainty lon lat

CBW yes 1.5 4.9 52.0

CMN yes 1.5 10.7 44.1

DGR yes 1.5 22.07 54.15

FDA yes 1.5 25.3 45.47

HUN yes 1.5 16.6 46.9

MHD yes 1.5 −9.9 53.33

NGB yes 1.5 13.05 53.15

PAL yes 1.5 24.12 67.97

PRS yes 1.5 7.7 45.9

PUY yes 1.5 3.0 45.8

SAC yes 1.5 2.2 48.7

SBK yes 1.5 12.98 47.05

SCH yes 1.5 8.0 48.0

WES yes 1.5 8.0 55.0

WHF yes 1.5 10.77 52.8

Fig. 2. Regions for computation of target quantities: Grid cells contributing to fluxes over Europe (blue), Russia

(red), both (violet), and Brazil (green).
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Fig. 3. Observational network flask providing atmospheric flask samples.

Fig. 4. Observational networks flux (+) providing flux measurements and cont (X) providing continuous atmo-

spheric samples.
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Fig. 5. Evaluation of two flux sites (blue and orange bars), of their combination (yellow bars), and of each site

with data uncertainty reduced by a factor of 100 (green and brown bars): Uncertainty reduction for NEP and

NPP integrated over three regions.

Fig. 6. Uncertainty reduction in NEP per grid cell, for a network consisting of a single flux site (site 1731-9 in

Table 4)
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Fig. 7. Evaluation of three base networks, a flux network flux-C3 that is incomplete over Europe and the

combined flux-C3+flask network.

Fig. 8. Evaluation for multiplicity 4 of three base networks, an incomplete flux network with one copy of each

PFT unsampled, and the combination of the incomplete flux network with the flask network.
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