Atmos. Chem. Phys. Discuss., 12, C27–C28, 2012 www.atmos-chem-phys-discuss.net/12/C27/2012/ © Author(s) 2012. This work is distributed under the Creative Commons Attribute 3.0 License.

Interactive comment on "Differences between downscaling with spectral and grid nudging using WRF" by P. Liu et al.

H. von Storch (Referee)

hvonstorch@web.de

Received and published: 26 January 2012

The paper presents an interesting comparison of spectrally and fully nudged regional long-term simulations.

I want to raise four issues, with which the authors should deal with:

- a) An additional comparison with "free" simulations would be interesting.
- b) What are the synoptic (large scale) situations when the simulations differ strongly on the smaller scales?
- c) The concept that a difference between an RCM simulation and observations would necessarily represent an "error" is wrong; RCM simulations are ill-posed problems, and

C27

due to the internal chaotic dynamic, the model may develop different trajectories – a tendency which is strongly reduced when nudging is applied. This phenomenon is long known, and discussed in some detail in Weisse, R., H. Heyen and H. von Storch, 2000: Sensitivity of a regional atmospheric model to a sea state dependent roughness and the need of ensemble calculations. Mon. Wea. Rev. 128: 3631-3642 (see further references in that paper)

d) Unfortunately, the authors have overseen the rich literature on related issues since our von Storch et al. (2000) paper, in particular: Feser, F., B. Rockel, H. von Storch, J. Winterfeldt, and M. Zahn, 2011: Regional climate models add value. Bull. Amer. Meteor. Soc. 92: 1181–1192 with many relevant references, and Feser, F., 2006: Enhanced detectability of added value in limited area model results separated into different spatial scales. Mon. Wea. Rev. 134(8), 2180-2190, in which a similar strategy was employed as in the present manuscript, namely regional analyses as a reference for determining the added value over the driving NCEP re-analyses.

Interactive comment on Atmos. Chem. Phys. Discuss., 12, 1191, 2012.