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Response to Anonymous Referee #1 
 
This study discusses the sensitivity of cloud production of secondary organic aerosol 
(SOA) to several parameters including LWC, T, VOC/NOx, and oxidant 
concentrations. The analysis is conducted using a climate model to examine these 
sensitivities on a global scale. The key finding is that in-cloud SOA production is most 
sensitive to LWC, followed by total carbon chemical loss rate. The topic is of 
relevance to this journal and is an important one to understand since SOA formation 
mechanisms are not fully understood, especially in the aqueous phase. The 
presentation quality of the paper was at an average level.  
 
My issue with this study is that the analysis is superficial and does not significantly 
advance the community’s knowledge of factors influencing SOA production in clouds. 
The key finding is based on correlation coefficients (does not prove cause-and-effect) 
and is arguably a repeat of previous work (e.g. Ervens et al., 2008), including the 
importance of LWC. In contrast to this older 2008 study (just to name one), the 
current one under review is conducted at coarser resolution, which will not provide 
the level of detail needed at the scale of clouds to capture aqueous phase processes in 
cloud drops. Thus I was left struggling to find the critical mass of new findings 
needed that would warrant publication. I cannot support publication of this work. 
More comments can be found below.  
 
 
We thank the reviewer for thoughtful comments that improve this manuscript. Here 
we would like to clarify the primary differences between the previous work (i.e. 
Ervens et al., 2008, hereafter ER08), which informs and influences the work here. 
These manuscripts differ fundamentally in model scale and application, factor 
evaluation, and key conclusion. First, the former study (i.e., ER08) is a process level 
modeling investigation based on a cloud parcel model (including detailed gas-phase 
and liquid-phase chemistry) driven by a prescribed set of trajectories generated in 3D 
large eddy simulations. This study is based on a fully coupled chemistry-climate 
model which solves large-scale clouds at a level to reasonably represent historical 
global climate. The bulk prognostic microphysics cloud scheme for large-scale 
stratocumulus cloud as well as the shallow cumulus and deep convective cloud 
schemes implemented in AM3 have been evaluated against satellite observations for 
actual cloud fraction, cloud-drop radius, liquid water path and precipitation (see 
Donner et al., 2011, J Climate).  This information is sufficient to drive a detailed 
multiphase chemistry scheme and resolve secondary aerosol formation from cloud 
processes, where cloud droplet size, cloud liquid water content, and cloud droplet 
lifetime are the key factors influencing gas-liquid transfer, aqueous-phase chemistry 
and secondary aerosol production. In a cloud parcel model, for droplet lifetime, the 
cloud parcel model tracks the time of passage of an air parcel through cloud (i.e., the 
cloud contact time in ER08), while GCM solves the production and sink of cloud 
liquid water in one grid cell which can be used to quantify cloud cycles in each model 
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time step [Liu et al., 2012]. Therefore, in terms of SOA formation from cloud 
processes, both GCM and cloud parcel model provide suitable details to drive the 
cloud chemistry. The earlier results from cloud parcel model have suggested that 
“SOAdrop can be modeled in bulk cloud water, similar to sulfate, avoiding the solution 
of differential equations for individual drop classes” [Ervens et al., 2008].  This 
suggests implementation of aqueous phase organic chemistry and subsequent SOA 
formation in a larger scale model, such as the GCM employed here, is an appropriate 
progression in the development of chemical schemes for atmospheric models. There 
are also a number of issues related to differences in mechanisms of gas-phase and 
aqueous phase chemistry (e.g., nighttime chemistry, contribution of acetic acid to 
SOAcld, formation of LMC, SOA precursors (i.e., isoprene, terpene and aromatic 
species), photolysis rate, etc.) between ER08 and this work. Further, this study 
employs new lab results, not included in earlier work, such as new insights regarding 
photooxidation products of glycoaldedhye.  
 
Approaches from process level modeling (ER08) to GCMs (work described here) are 
valid and needed to add to the community’s understanding of multiphase chemistry.  
The method we used to determine model sensitivities to physical cloud parameters is 
inherently different from the process-level modeling of ER08. In ER08, factors 
determining production of SOAcld are constrained by setting up 20 sensitivity tests 
with different initial conditions in a closed parcel system. Then it counts the SOA 
accumulation from a 1-hour trajectory (totally 45 trajectories are derived from the 
large eddy simulations) which is repeated five times starting at 10am (solar time). 
Then the production of SOAcld from these trajectories is evaluated against the change 
from initial conditions. Therefore, the results derived from ER08 may depend on the 
experimental design and specific model configuration. However, this study is not 
limited to a set of prescribed cloud physics, rather there is large spatiotemporal 
variability in global scale clouds, enabling targeted understanding the key factors 
influencing the spatiotemporal variability of SOAcld production in a global scale.  
 
Studied factors varied substantially in space and time when studied with a GCM, and 
may result in significant difference in SOA production rates, a research interest of this 
work. We archived SOAcld production every 3-hours during the 1-year simulation 
period for each grid box and derive the relationship between individual factors and 
SOAcld production based on spatiotemporal statistical inference. Within each 3 hour 
period, the production of SOAcld is based on the detailed physiochemical processes 
within the model. Therefore, the production of SOAcld is determined by these factors 
leading to SOAcld changes. Rather than using 20 sensitivity tests, this study includes 
millions of 3-hour tests covering all seasons and locations all over the world and 
evaluates the most influential factors. Our results implicitly reflect true globally 
averaged situations, and are not limited by prescribed configurations.  
 
Finally, we believe our conclusions are inarguably distinct to ER08. In ER08, key 
findings include in-cloud SOA yield is mostly affected by VOC to NOx ratio and 
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cloud contact time, but is less affected by LWC. However, based on global 
spatiotemporal statistical inference, this study found LWC is a dominant factor 
determining the global spatial and temporal distribution of PSOAcld. VOC/NOx could 
be important in specific locations and season, but is insignificant, relative to LWC and 
VOC loss in the broader scale studied here. In addition, this study found a robust and 
stable non-linear relationship that suggests globally, the increase in PSOAcld is slower 
than the increase in VOC loss rate. These new findings could be important in global 
climate models to understand the feedbacks between VOCs, oxidants, SOA, and 
multiphase atmospheric chemistry.  
 
We concur that ER08 is pioneering work which informs our experimental design. To 
address the reviewer’s comments, we made substantial changes in the revised 
manuscript to clarify the unique features of this study to ER08. Please see our reply to 
each comment below. 
 
 
 
Comments:  
 
Introduction: A weakness of this manuscript is that it completely ignores the body of 
literature describing field measurements related to SOA formation in clouds and more 
generally in the aqueous phase. Sufficient treatment is given to model and lab papers, 
but a better balance is needed with field results. 
 
Good comment. We added a paragraph in the introduction to address the importance 
of field measurements related to SOA formation in the aqueous phase. Now we add 
the following in section 1: 
 
“A number of field measurements have confirmed SOA formation in the aqueous 
phase. Sorooshian et al. (2006) found a strong correlation between measured oxalate 
and SO4

2- aloft.  Sulfate and oxalate are well-known to form during aqueous phase 
photooxidation from common water-soluble atmospheric gases.  The strong 
correlations despite large differences in precursors and their emission sources, 
provide evidence for a common production process (i.e., in-cloud production).  
Sorooshian et al. (2007) observed ubiquitous organic aerosol layers above clouds 
with enhanced organic acid levels and their data suggested that aqueous-phase 
reactions to produce organic acids are a source of this elevated organic aerosol level. 
Moreover, based on several airborne field missions, organic acids and a larger body 
of oxygenated species with a mass spectral peak in m/z 44 were found to contribute to 
the total organic aerosol fraction, which increased as a function of RH and aerosol 
hygroscopicity, further indicating the role of aqueous-phase chemistry played on the 
formation organic aerosols (Sorooshian et al., 2010).” 
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Pg 26932, line 26 and forward: it is not clear to me what is new about this paper as 
compared to the studies outlined in the previous category. Is there reason to believe a 
more accurate assessment of factors affecting in-cloud SOA production can be 
obtained with a global model rather than the parcel model in the Ervens et al. study? 
It seems that at coarser resolution, it would be much harder to get a solid 
understanding of factors affecting SOA production in clouds, which occur at a scale 
more relevant to what a cloud parcel model can provide. 
 
The key question here is not model resolution. Instead, it should be what kinds of 
cloud information that cloud chemistry requires to accurately simulate in-cloud 
production of secondary aerosols. Based on the development of aqueous-phase 
chemistry scheme in AM3, the key cloud information needed includes cloud liquid 
water content, cloud droplet size, cloud fraction, and cloud droplet lifetime. As 
mentioned above, this information can be reasonably resolved in AM3 by comparing 
to observations. In addition, both OA and sulfate (well-known in-cloud production 
pathway) simulations are significantly improved after the detailed cloud chemistry 
scheme (developed with an understanding of ER08 in mind) is being used in AM3. 
Even results from cloud parcel model have also shown: “SOAdrop can be modeled in 
bulk cloud water, similar to sulfate, avoiding the solution of differential equations for 
individual drop classes”. Therefore, factors influencing cloud parcel model should 
have a similar effect in GCM at some specific location and time. However, rather than 
focusing on prescribed set of small scale, process-level cloud features (e.g., ER08), 
this study targets on understanding the spatiotemporal features of PSOAcld over the full 
range of cloud and chemical conditions experienced globally. For example, Liu et al., 
2012 has found that huge amount of SOAcld is produced over the western Amazon and 
southern Africa in DJF, and southern China and the boreal forests in Eurasia and 
North America in JJA. Based on spatiotemporal factor analysis, this study confirms 
that PSOAcld is largely controlled horizontally and vertically by the availability of cloud 
water and VOC oxidation, and their combined effects generally determine PSOAcld 
global distribution pattern. However, at specific locations or seasons we have also 
found unique features that require information beyond LWC and TCloss, giving raise 
to the importance in understanding the spatially heterogeneous feature of PSOAcld. This 
will be addressed in our follow-up studies based on process-based models. Therefore, 
our results might reflect the results of repeating ER08 experiments for a larger variety 
of clouds, for example, at all seasons and locations over the world.  
 
To articulate the linkages between ER08, Liu et al 2012, and this study, now we 
include the following text in the introduction: 
 
“Ervens et al. (2008) used a cloud parcel model with explicit kinetic aqueous-phase 
chemistry to study the effects of initial VOC/NOx, cloud PH, cloud contact time, and 
liquid water content (LWC) on SOAcld formation from isoprene. They found that 
SOAcld yield was a function of LWC and cloud contact time under different VOC/NOx 
conditions, and SOAcld could be modeled in bulk cloud water without solving 
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individual drop classes. This suggests implementation of aqueous phase organic 
chemistry and subsequent SOA formation in a larger scale model is an appropriate 
progression in the development of chemical schemes for atmospheric models. Liu et al. 
(2012) implemented a detailed cloud chemistry scheme into a climate model AM3 and 
evaluated the effects of cloud properties on the global SOAcld production and 
distribution. They found that formation of SOAcld varied significantly by time and 
space (i.e., dense production occurs over southern Africa and western Amazon 
tropical forests in DJF, but over southern China and the boreal forests in JJA) and is 
tied to the distribution of cloud water up to 400hPa above the surface.  
 
This study is framed on Liu et al. (2012), but aims firstly to quantitatively understand 
the potential factors contributing significantly to the global spatial and temporal 
diversity of in-cloud formation of SOA, and secondly to establish a relationship 
between SOAcld production and the key factors determining this process 
spatiotemporally. The approach is based on the global chemistry-climate model AM3 
(Donner et al., 2011) with detailed multiphase chemistry developed in Liu et al. (2012, 
more description is given in Section 2.1).” 
 
 
Pg 26932, last line: describe the “framework developed in Liu et al.” Do not expect 
the reader will know what this means when reading this line.  
 
The detailed aqueous-phase chemistry in the framework developed by Liu et al. (2012) 
is described in Section. 2.1. To make it clear, now we have: 
 
“This study aims firstly to quantitatively understand the potential factors contributing 
significantly to the global spatial and temporal variability of in-cloud formation of 
SOA, and secondly to establish a relationship between SOAcld production and the key 
factors determining this process spatiotemporally. The approach is based on the 
global chemistry-climate model AM3 (Donner et al., 2011) with detailed multiphase 
chemistry developed in Liu et al. (2012, more description is given in Section 2.1)” 
 
 
Figure 1. Hard to see the species and text. Make it larger and provide for better 
visual quality. 
 
Thanks for the suggestion. Now we made Figure 1 larger, see below. 
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Section 3: It would be helpful at the beginning of Section 3 to provide background as 
to why these factors are chosen and how they are expected to affect in-cloud SOA 
production. For example, what is the significance of the VOC/NOx ratio. I get the 
impression that the authors assume that the readers know exactly how these factors 
may affect cloud processing, when in fact, this is not the case always. 
 
Good comment. Some factors (i.e., LWC, VOC/NOx ratio, VOC loss rate, oxidants …) 
are chosen because they influence the chemical pathways to generate SOAcld (we 
admit some factors have already been evaluated in previous studies (e.g., ER08, 
Carlton et al., 2010)), others (e.g., temperature) are used because they influence 
chemical kinetics (Liu et al., 2012). We expand our previous discussion (i.e., Section 
2.3) on factor selection in the revised manuscript. Now we have: 
 
“Significance of factors driving the variability of the rate of SOAcld production 
(PSOAcld, expressed as the total SOA mass formed through cloud processes in one unit 
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time, unit: kg·m-3·s-1) is examined by spatiotemporal statistical inference. Based on 
results from previous studies (e.g., Ervens et al., 2008 and Carlton et al., 2009) as 
well as the physical and chemical mechanisms of in-cloud formation of SOA (see 
Section 2.1 or Liu et al., 2012), factors mainly influence SOAcld production include 
LWC, temperature, the chemical loss rate of total carbon mass of primary precursors 
(i.e., isoprene, α-pinene, and toluene), the concentration of OH and O3, and the VOC 
to NOx ratio (VOC/NOx).  
 
Cloud water (i.e., LWC, unit: kg(water)/kg(air) ) serves as the media where SOAcld is 
formed. More cloud water is usually associated with more SOAcld production (Liu et 
al., 2012). Temperature governs the overall reaction rates and is shown in laboratory 
studies to be one of the key factors in SOA formation (Takekawa et al., 2003). VOC 
oxidation rate is an essential factor during the transformation among different 
organics. It indicates the availability of water-soluble gases (e.g., glyoxal and 
methylglyoxal) that are able to form SOAcld. Here we use total carbon chemical loss 
rate (TCloss) of isoprene, α-pinene, and toluene to represent the precursors’ oxidation 
rate: 

)1075(012.0)( 13
pinetolisoploss LLLsmkgCTC ×+×+××=⋅⋅ −−     (1) 

where Lisop, Lpine, and Ltol are the loss rates (unit: mol·m-3·s-1) of isoprene, α-pinene, 
and toluene, respectively.  
 
The concentrations of OH and O3 (unit: mol·m-3) reflect the oxidation power of the 
atmosphere and can affect the reaction rate and pathway of SOA formation in both 
gaseous and liquid phases (Lim and Ziemann, 2005). VOC to NOx ratio could also be 
another factor to influence oxidants and SOAcld yields, which is shown to be the most 
effective factor controlling SOAcld yields in the cloud parcel model (Ervens et al., 
2008). We ignore the factor of cloud fraction since it has been partially included in 
LWC when grid-box averaged LWC is used. Other factors related to cloud properties 
are not considered in this study and will be evaluated in the follow-up studies. ”  
 
 
Section 3: Correlations are not evidence of a cause-and-effect relationship and thus 
much of the conclusions being reached need to be toned down. For example, line 
22-24 of pg 26937 is one such place. Authors must seriously consider what their 
results can unambiguously prove as the analysis is not too detailed (only correlations) 
and the relationships at play may be highly non-linear. 
 
It is true that correlations are not causality.  There are two steps in our analysis and 
each represents a cause-and-effect relationship from different angle. In the first step, 
we generate a cause-and-effect relationship between factors and PSOAcld for each grid 
box in every 3-hour period for a whole year. In such a process, PSOAcld is determined 
by the availability of cloud water, precursors’ oxidation, temperature and overall 
oxidation level, which are physically built in AM3 (see Figure 1 in the manuscript) 
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and are represented by all the linear/nonlinear processes related to the clouds and 
multi-phase chemistry resolved in AM3. In this step, our method is close to ER08 
except that model is configured to a few specific conditions in ER08, whereas we 
archived all the possibilities globally during all seasons.   In the second step, we use 
spatiotemporal statistical inference to understand, in a global scale, to what extent the 
spatiotemporal variability of these factors individually/combined determines the 
spatiotemporal distribution of PSOAcld. Here, the cause is the spatiotemporal variability 
of each factor which is determined by many other linear/nonlinear processes and 
factors (e.g., human activity, ecosystem growth, incoming solar radiation, 
atmospheric transport and climate) except PSOAcld.   We admit that the relationship 
we derived (i.e., the linear relationship between PSOAcld and LWC, and the nonlinear 
relationship between PSOAcld and TCloss) is not perfect (R2 ~ 0.5) since only two factors 
are employed globally. In our parameterization, the variance of PSOAcld has been 
addressed internally by the nonlinear solving of LWC and TCloss in AM3, and 
externally by the non-linear dependence on oxidation of hydrocarbons (i.e., gamma). 
This differs substantially to ER08, in which PSOAcld depends linearly on hydrocarbons. 
Assuming gamma equal to 1 will reduce the explained variance (R2) of PSOAcld to 0.35. 
The unexplained variance by our parameterization should be mainly imbedded in the 
non-linearly solving of gas-phase and aqueous-phase chemistry, which we believe 
could not be easily addressed by adding a few more predictors.  
 
In sum, the overarching goal of this work is to explore the key factors determining the 
global spatiotemporal variability of PSOAcld. In the follow-up studies, we will focus 
more on specific region and season, and testify the predictability of other factors. 
 
To make this clear and to tone down the conclusions, we explicitly expressed our 
goals and method in the revised manuscript. Now we have: 
 
Last paragraph of Section 1: “This study aims firstly to quantitatively understand the 
potential factors contributing significantly to the global spatial and temporal 
variability of in-cloud formation of SOA, and secondly to establish a relationship 
between SOAcld production and the key factors determining this process 
spatiotemporally. The approach is based on the global chemistry-climate model AM3 
(Donner et al., 2011) with detailed multiphase chemistry developed in Liu et al. (2012, 
more description is given in Section 2.1)” 
 
Section 2.2: “In this study, the emission inventories used for both gas and aerosol 
species are obtained from the database developed for IPCC AR5 studies (Lamarque et 
al., 2010). Sea ice cover and sea surface temperature (SST) are prescribed using 
databases developed at the Hadley Center (Rayner et al., 2003). Cloud droplet 
lifetime is set to be 30 minutes. Cloud droplets sizes and cloud fraction are using the 
model default values as described in Liu et al. (2012). Entrainment between the 
cloudy and non-cloudy areas is neglected here. We conduct a one-year simulation, 
and factors potentially influencing formation of SOAcld (see Section 2.1 and Figure 1) 
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are archived every 3 hours. Therefore, for each grid box, the modeled production of 
SOAcld in each timestep is physicochemically determined by the availability of cloud 
water, water-soluble gases, oxidants, etc.” 
 
Last paragraph of Section 2.3: “The spatiotemporal dependence of PSOAcld on a 
variety of individual meteorological and chemical factors and their combinations are 
examined based on correlation analysis and multiple regression models with/without 
nonlinear transformations (e.g., logarithm or categorizing our analysis by VOC/NOx). 
We note that factors could be significantly involved in the non-linear production of 
SOAcld but show little direct spatiotemporal association to PSOAcld. Such factors will 
not typically be given strong weight by spatiotemporal statistical inference, consistent 
with our goal of identifying the key factors (or best predictors) best explaining the 
spatial and temporal diversity of PSOAcld. The final parameterization predicting PSOAcld 
is explored based on both statistical inference and sensitivity analysis.” 
 
Beginning of Section 3.1: “Spatiotemporal associations between daily PSOAcld and 
each of the six factors (i.e., LWC, TCloss, concentrations of OH and O3, VOC/NOx, and 
temperature) are examined by a correlation analysis with a sample size of 
approximately 95 million. Here we apply a linear relationship to non-linear processes 
of PSOAcld, but those non-linear processes are partially accounted for in the prognostic 
model simulation (though not perfect).” 
 
 
Section 3.1/3.2: What factors co-vary with LWC and Total Carbon Loss Rate, which 
could potentially assist with SOA production? When putting too much weight into 
correlations, it is critical to provide perspective on what co-varies with the most 
important parameters. 
 
As we mentioned before, all the factors we chosen in our analysis can physically 
determining PSOAcld directly or indirectly. The cause-and-effect relationship is already 
built in our model. Correlation is used to determine the most critical factors to 
investigate spatiotemporal differences and examine relationships. In a fully coupled 
climate system, basically every two variables can co-vary either linearly or 
non-linearly to some extent. For example, LWC should co-vary with processes related 
to large-scale condensation. Total carbon loss rate is directly determined by VOCs, 
oxidants and factors influencing their reaction rates, and is indirectly determined by 
the VOCs emissions/transport and other factors controlling oxidants and temperature. 
Since LWC and TCloss could be solved in most global chemical transport models and 
new-generation climate models with online gas-phase chemistry, factors physically 
plausible confounding LWC or TCloss are investigated. For example, in section 3, we 
list the correlation matrix among the six factors in the supplementary material (see 
Table S1). We find that the correlation coefficients are low (<0.2) between LWC (or 
TCloss) and other factors.   
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Table S1. Correlation matrix between the six factors 

 
 

LWC TCloss Temp OH O3 VOC/NOx 
LWC 

 
1 0.07 0.18 0.05 -0.1 -0.04 

TCloss 
 

 1 0.17 0.08 -0.03 0.07 
Temp 

 
 

 
1 0.66 -0.22 -0.13 

OH 
 

 
  

1 -0.08 -0.1 
O3 

 
 

   
1 0.08 

VOC/NOx 
 

 
    

1 
 
In ER08, high correlation between LWC and cloud contact time was observed, but 
both terms were included in their parameterization. However, in this study, if LWC is 
replaced by cloud volume fraction, the R2 will decrease by half. Therefore, to screen 
out best factors we present the final factors with the highest R2. To clarify this, we add 
the following in the revised manuscript: 
 
Section 3: “Above analysis indicates that LWC and TCloss have the highest correlation 
with PSOAcld. To understand the inter-dependence between the six factors, Table S1 in 
the supplementary material lists their correlation matrix. In general, neither LWC nor 
TCloss is correlated well (r<0.2) with the remaining factors.” 
 
Section 4: “The cross regional R2 of Eq. (2) is approximately 0.5, indicating that the 
combination of LWC and TCloss alone can explain nearly half of the spatial and 
temporal variability of PSOAcld in a global scale. To investigate factors that potentially 
confounding with LWC and TCloss, other physically plausible relationships were 
investigated. In Ervens et al., 2008, cloud contact time (∝ cloud fraction) is 
significantly associated with cloud liquid water. In this study, if LWC is replaced by 
cloud fraction, R2 will decrease by half. Therefore, we present the factors with the 
highest R2.” 
   
 
Section 3: Many of the results agree with those of Ervens et al. (2008), which again 
begs the question as to why this type of study is being repeated with a model that 
cannot examine the relevant processes at the scale of single clouds. Example: Line 
10-14 on pg 26939. 
 
Actually, many of our results are inconsistent to those of ER08. For example, as we 
mentioned on line 11-14, Page 26939 in the original manuscript, VOC/NOx ratio is a 
trivial factor influencing PSOAcld in a global scale, though it is critical in the work of 
ER08. We also analyzed the data grouped by VOC/NOx (i.e., >100, 5-100, and <5) 
but found little improvement in model overall predictability. Therefore, this factor 
might be important at few locations where the conditions are similar to the 
configuration of the clouds used in ER08. However, in a global scale, much more 
possibilities exist where results based on the single clouds in ER08 may not fully 
capture. Here we summarized all these differences between this work and ER08 in 
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Table S2 in the supplementary material:  
 
Table S2. Major difference between this work and ER08 

 This work Ervens et al., 2008 

Model 
GCM coupled with detailed 

gas and cloud chemistry 
Cloud parcel model with detailed 

gas and cloud chemistry 

SOAcld 
precursors 

isoprene, toluene, α-pinene isoprene 

Multiphase 
chemistry 

Jacob,1986; Liang and Jacobson, 
1999; Lim et al., 2005; Tan et al., 
2010; Emmons et al., 2010; Liu et 

al., 2012 

Ervens et al., 2004a; Lim et al., 2005; 
Altieri et al., 2006; Carlton et al., 

2006,2007 

Transport 
Coupled chemistry-climate 
GCM simulated continuously 
for one year 

Offline 45 1-h trajectories 
describing passages of an air parcel 
through stratocumulus clouds, 
derived from three-dimensional 
Eulerian large-eddy-simulations. 
Repeat 5 times from 10 am. 

Methods 

Statistical analysis on the 
spatiotemporal association of 
different factors with respect 
to in-cloud SOA formation 

Sensitivity of in-cloud SOA 
production against initial chemical 

composition in a closed system. 

Parameteriz
ation 

  

Major 
findings 

1. LWC linearly determines 
the spatiotemporal variability 
of PSOAcld. 
2. The spatiotemporal 
association between TCloss and 
PSOAcld is non-linear.  
3. VOC/NOx is not 
spatiotemporally correlated 
(|R| < 0.1) well with PSOAcld. 

1. Initial VOC/NOx and τ are the 
most important factors. 
2. In-cloud SOA yield is less 
affected by LWC. 

 
 
 
Section 4 and Tables 2-3: In my opinion, this analysis really does nothing to advance 
our knowledge of in-cloud SOA production and its sensitivity to parameters such as 
LWC. It is just an extension of Table 1, which I still struggle to understand as to why 

SOAcld lossP LWC TCγα β= ⋅ ⋅ + ( )SOAcld initialP a LWC b c TCτ= ⋅ + ⋅ + ⋅
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it would be better than a modeling study at a more cloud-relevant resolution (and 
what is being shown that is significantly new as compared to older work). 
 
Table 1 shows the linear least squares correlation between PSOAcld and each individual 
factor. Data is paired in space (horizontal and vertical) and time (daily average).  
Tests in Table 2 show regression coefficients (i.e., the slope of each predictor) for 
multiple factor linear regressions for two scenarios, 1) if all six listed factors are 
simultaneously associated with PSOAcld and 2) when LWC and TCloss are the only 
considered factors.  The meaning of each value in Table 1 is correlation (i.e., the r 
value), whereas values in Table 2 show the regression coefficients (i.e., the slope of 
each predictor). Therefore, their meanings are different between these two tables. The 
role of table 1 is to show the relative importance of factors influencing PSOAcld and 
help to screen out factors with significant association to the spatiotemporal variability 
of PSOAcld. In table 2, we use multiple regression models and screen out predictors by 
standardized regression coefficients (i.e., the B values which indicate the relative 
contribution of each factor to the predicted variable PSOAcld). The b values in table 2 
suggest the exponents of LWC and TCloss used in Eq. (2). Table 3 is discussed in 
Section 6 in the original manuscript. These values in addition to Figure 7 in the 
original manuscript show spatial sensitivity of PSOAcld to each parameter α, β, γ in Eq. 
(2). This would be useful when tuning Eq (2) to fit either global mean values or 
observations.      
 
Section 4 and Table 2 have summarized our new findings related to the 
spatiotemporal relationship between PSOAcld and these key factors in a global scale. 
We find that (1) LWC is the dominant factor controlling PSOAcld globally (Table 2), 
whereas ER08 indicated “in-cloud SOA yield is less affected by LWC”. (2) PSOAcld 
varies linearly with LWC, but nonlinearly (concavely) with VOCs oxidation rate, 
whereas in ER08 in-cloud SOA production varies linearly with VOCs initial mass 
concentration. (3) VOC to NOx ratio is not a key factor consistently determining the 
spatiotemporal distribution of PSOAcld (and no significant improvement is observed by 
reanalyzing the data grouped by VOC/NOx), whereas in ER08 PSOAcld is mostly 
determined by VOC/NOx and cloud contact time. Cloud contact time is actually 
difficult to employ in a GCM (the physical meaning of cloud contact time is different 
to cloud volume fraction). Finally, for model resolutions (i.e., bulk cloud vs small 
scale cloud), it was stated clearly in ER08 that “SOAcld can be modeled in bulk cloud 
water similar to sulfate”. Therefore, section 4 (in the original manuscript) and table 2 
have shown how the key factors influence spatiotemporal variability of PSOAcld in a 
global scale, which to our knowledge is new to our community. 
 
In the revised manuscript, we have edited many places to clarify the meanings of 
values in Tables and include a table (i.e., Table S2 in the supplementary material) to 
compare the major difference between this work and ER08. 
 
 



13 
 

Section 5: This analysis also does not do much beyond what already was shown in 
Table 1 in terms of trying to advance understanding of what factors influence SOA 
formation. Pg 26940, Line 24-25: I don’t understand what is meant by “. . .than the 
estimation based on detailed cloud chemistry”. 
 
Section 5 evaluates how well AM3 would perform using the new parameterization 
(i.e., Eq 2, developed in section 4) rather than using online detailed cloud chemistry as 
developed in Liu et al., 2012. Then we compare the parameterized result (based on Eq 
2 alone) to what GCM with detailed cloud chemistry predicts. We find that our new 
parameterization can capture well the features generated by GCM with detailed cloud 
chemistry. This also indicates the difference in PSOAcld parameterization between this 
work and ER08. Features in ER08 parameterization are suitable for application in 
cloud parcel model or global models which track air parcels’ cloud contact time, but 
may not adequately capture the actual processes at play in most GCM.  To avoid 
misunderstanding, we combined sections 4 and 5 into one section “Section 4 
Parameterization of SOAcld production and its evaluation”. We also made revisions to 
Pg 26940, Line 24-25 in the original manuscript:  
 
“After implementing Eq. (2) into AM3 to replace the detailed cloud chemistry scheme, 
the parameterized global SOAcld production is 23.0 Tg•yr-1, close to what detailed 
cloud chemistry shows (23.4 Tg•yr-1), as well as the results based on uptake 
coefficients (~22 Tg•yr-1, Fu et al., 2008, assuming OM:OC=2. We did not compare 
our results to Ervens et al., 2008 since implementation of the parameterization as 
suggested by Ervens et al., 2008 would require additional information (i.e., cloud 
contact time, not equivalent to cloud volume fraction) beyond the processes at play in 
AM3).” 
 
 
Figures 3-7: I find it troubling to invest this many figures and discussion on such a 
simplified parameterization (Eqn 2), which cannot be expected to capture all of the 
aspects influencing SOA production in clouds. Section 6.2 thankfully tries to address 
some of these issues, but a more important question is what is being learned in this 
analysis (Figs 3-7) that can significantly advance our knowledge of factors 
influencing SOA formation. 
 
Figures 3-6 are used to show that although our parameterization (Eq 2) is simple, it 
works (shown in figures 3-6) to capture the global spatiotemporal distribution of 
SOAcld production. Most GCMs do not have detailed cloud chemistry scheme and 
cannot afford the computational expense. Therefore the SOAcld source is totally 
neglected in their models. Even though we implement the detailed multiphase 
chemistry in AM3 (i.e., Liu et al., 2012), it is expensive to use it for long-term climate 
simulation (computer hours increase nearly a factor of 2 when the detailed cloud 
chemistry is simulated online). Therefore, in this study we explored and screened for 
the most influential factors (i.e., LWC and TCloss) and derived the empirical 
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parameterization which represents the essential of the role of detailed multiphase 
chemistry on global production of SOA from cloud processes. This is the exact 
approach employed in ER08, but our findings suggest different factors regulate 
SOAcld production and we develop an alternate parameterization.  Similar to ER08, 
Carlton et al., 2008 as well as Fu et al., 2008, this study delivers additional insights 
regarding global spatiotemporal variability of SOAcld formation and provides an 
additional parameterization which can capture well in-cloud SOA production in a 
global scale. 
 
To make the paper concise, and describe this better we put Figure 4 into 
supplementary material and combined Figures 5 and 6 into one figure. Figure 7 shows 
the sensitivity of PSOAcld to each tunable parameter in Eq 2. It provides the guidelines 
on how to implement our parameterization into other global models with different 
time resolution.  
 


