Atmos. Chem. Phys. Discuss., 12, C11329–C11330, 2013 www.atmos-chem-phys-discuss.net/12/C11329/2013/ © Author(s) 2013. This work is distributed under the Creative Commons Attribute 3.0 License.

Interactive comment on "Brown carbon absorption linked to organic mass tracers in biomass burning particles" by D. A. Lack et al.

Anonymous Referee #1

Received and published: 8 January 2013

General Comments:

This is a very interesting manuscript about correlations between optical aerosol characteristics with chemical biomass burning tracers. However, it would greatly benefit from quantification of the observed correlations and a few minor revisions as detailed below.

Specific Comments:

1) p29130, I15-17: "The linear relationship between MAEPOM-404 nm and f60/f44 suggests that the impact of BrC can be predicted by emissions of f60-related organic matter." This statement is far to general to be based on measurements of emissions from a single fire and fuel type with fairly constant photochemical age. Even the authors

C11329

limit the validity of this statement by saying (p29136, I3-4) "The ratio of f60/f44 appears to be a good proxy for BrC absorption (for this fire)."

2) A better description of fuels and fuel types needs to be included beyond referring to Lack et al. (2012b). The only relevant description refers to a "large Ponderosa Pine forest fire " (p29132, l1).

3) A clear definition of the quantities used to calculate MAE, that is bAbs-404-POM and mPOM, and the measurement methods used, is missing. For example, is mPOM identical to the non-refractory particle mass measured by AMS or has a correction for ammonium nitrate mass been used? Is bAbs-404-POM = (bAbs-404) - (bAbs-404-BC)?

4) Relationships between optical quantities (e.g., EAbs, AAE, and MAE) and f60/f44 are presented in figs. 2-4 and are judged in a subjective and qualitative fashion. For example, the abstract states "AAE showed a good correlation; however, the best correlation resulted from MAE". Section 3.3.2 states "...the MAE shows the most robust linear relationship with f60/f44", which is repeated in section 4 conclusions. What criteria do the authors use to judge the quality of these relationships; a correlation coefficient such as R2, or some quantification of robustness? In either case, these judgments need to be quantified with both procedures and quantitative results clearly stated.

Technical Corrections:

p.29131, I2: Insert a comma "," between "hydrogen cyanide" and "potassium".

Interactive comment on Atmos. Chem. Phys. Discuss., 12, 29129, 2012.