Review of the manuscript "Black carbon physical properties and mixing state in the European megacity Paris" by Laborde et al.

General comments:

In this study the authors report very interesting ground-based measurements of aerosol hygroscopicity and black carbon (BC) properties during wintertime in Paris. BC properties are analyzed as a function of aerosol source and air mass type. The authors find that BC originating from traffic was non-hygroscopic and does not show a coating while biomass burning aerosol is slightly more hygroscopic with a medium coating thickness and a larger mean BC-core diameter. The largest coating thickness and largest growth-factors are reported for aerosol originating from Eastern Continental Europe.

In this study an interesting data set of quality-controlled aerosol measurements is presented. The structure of the manuscript is reasoned and the paper is well-written. However, the manuscript is full of acronyms of instruments and campaigns that can hardly be avoided. I would recommend to avoid too many acronyms in a publication if the reader might be overwhelmed by so much capitalised material. For example, I did not remember at this point what a COA is.

I recommend this manuscript for publication in ACP after the following minor comments have been addressed:

Specific comments:

Use of the term "biomass burning" in this study: Please define how the term "biomass burning" is used in this study. Do the authors refer to emissions from the burning of living dead vegetation (boreal/tropical forests, savannas, agricultural land) or do they rather refer to the emissions from residential heating or something else?

- p. 25122, l. 17: Coating thickness of \sim 2nm: How meaningful is this number given the uncertainty of \pm 10 nm reported in section 2.3.1.
- p. 25122, l. 23: Please define D0.
- p. 25123, l. 1: What is a boxdetectable BC core? Please clarify.
- p. 25124, l. 4: "primary organic matter (POM)". Has already been defined on page 25123
- p. 25124, l. 3ff: "In Paris, the smaller EC-containing particles ($D_{va} \le 400 \text{ nm}$) were mainly externally mixed, indicating local or regional sources, while bigger EC-containing particles $D_{va} \ge 400 \text{ nm}$) were mainly internally mixed with nitrate compounds, indicating medium- to long-range transport." \rightarrow Results should not be presented in the introduction.
- p. 25128, l. 5: remove "and"
- p. 25129, l.4: bias or uncertainty?
- p. 25129, l.12: "(...) long wavelength (...)" → add: compared to the size of the BC particles
- p. 25129, l.21: "(...) while single particle data can have even more negative values due to random noise (as seen in Fig. 10). Please give a little bit more detail, since this might not be clear to non-SP2 users.
- p. 25129, l.23: with above assumptions. → add "the" between "with" and "above"
- p. 25129, l. 18 ff: "Briefly, sizing differences between the first and second DMA are corrected for with dry measurements of ambient air.(...)" \rightarrow please give more detail
- p. 25129, l. 22: TDMAinv → HTDMAinv??
- p. 25131, l.22: "C = 4.2 (...)f =1.3" \rightarrow define "C" and "f" and give more detail.
- p. 25147, l.11: "brush fire" → bush fire?