Supplementary Data Photo-oxidation of pinonaldehyde under low NO_x: from chemistry to organic aerosol formation

Heber J. Chacon-Madrid, Kaytlin Henry and Neil M. Donahue

Species oxidized	Initial Concentration in the Smog Chamber	Initial NO _x (ppb)	Initial VOC₀/NO _x (ppbC/ppb)	Initial OH concentration (molecule cm ⁻³)
<i>n-</i> Tridecanal high NO _x	~250 ppb	~1700	~2	~1×10 ⁷
Pinonaldehyde high NO _x	~300 ppb	~4000	~0.8	~0.5×10 ⁷
<i>n-</i> Pentadecane Presto <i>et al.,</i> 2010	2 to 9 ppb	-	0.03-0.1	-
<i>n</i> -Tridecanal low NO _x	~69 ppb	~2000	~0.46	~0.3×10 ⁷
Pinonaldehyde low NO _x	~70 ppb	~2000	~0.47	~0.3×10 ⁷
Pinonaldehyde low NO _x Dark Experiment	~93 ppb	~2000	~0.35	~0.3×10 ⁷

Table A. Conditions of all experiments performed.

Supplementary Data

Figure A. α -Pinene is reacted with a flow of excess ozone at -72° C to form a primary ozonide. Dimethylsufide was used as a reducing agent to form the corresponding dicarbonyl (pinonaldehyde). A bicarbonante solution was used to extract carboxylic acids formed and other water soluble impurities. The procedure followed was the one by McMurry et al. (1987).

Supplementary Data

Figure B. ¹H NMR spectra are taken from the synthesized pinonaldehyde sample in order to assess its purity level. Pinonaldehyde composes approximately ~85% of the sample, including the *cis*- and *trans*-isomers. Other minor species like peroxides are found. No acids are encountered. The biggest impurity was dimethyl sulfoxide (DMSO, at ~3.6 ppm). The signal at approximately 7.2 ppm corresponds to CDCl₃, wich was the solvent used when the NMR spectra were taken. CDCl₃ is not part of the original synthesis.

Figure C. This is a Heteronuclear Single Quantum Coherence (HSQC) spectra of the synthesized pinonaldehyde sample that gives a strong suggestion of the abundance of the pinonadehyde structure. There is an excellent connection between the ¹³C NMR and the ¹H NMR which shows pinonaldehyde as the most abundant species in the sample.

Figure D. Reaction mechanism of *n*-aldehyde + OH radical in the presence of high NO_x . The first branching point in the reaction mechanism (shown in blue) is the peroxyacyl radical (PAR) becoming either a peroxyacyl nitrate (PAN) or an alkoxyacyl radical (AAR). The alkoxyacyl radical will fragment and form a C_{n-1} alkyl radical that will eventually branch between a C_{n-1} alkyl nitrate and a C_{n-1} alkoxy radical. This alkoxy radical branches (arrows in green) between the C_{n-1} aldehyde and an isomerization structure. Long straight-chain aldehydes have a preference towards isomerization in this last step.

Supplementary Data