Supplement to Observations of Glyoxal and Formaldehyde as Metrics for the Anthropogenic Impact on Rural Photochemistry

```
J. P. DiGangi<sup>1,*</sup>, S. B. Henry<sup>1</sup>, A. Kammrath<sup>1,**</sup>, E. S. Boyle<sup>1</sup>, L. Kaser<sup>2</sup>, R. Schnitzhofer<sup>2</sup>, M. Graus<sup>3,4</sup>, A. Turnipseed<sup>5</sup>, J-H. Park<sup>6</sup>, R. J. Weber<sup>6</sup>, R. S. Hornbrook<sup>5</sup>, C. A. Cantrell<sup>5</sup>, R. L. Maudlin III<sup>5,7,***</sup>, S. Kim<sup>5</sup>, Y. Nakashima<sup>8</sup>, G. M. Wolfe<sup>1</sup>, Y. Kajii<sup>8</sup>, E.C. Apel<sup>5</sup>, A. H. Goldstein<sup>6,9</sup>, A. Guenther<sup>5</sup>, T. Karl<sup>5</sup>, A. Hansel<sup>2</sup>, and F. N. Keutsch<sup>1</sup>
```

Correspondence to: F. N. Keutsch (keutsch@chem.wisc.edu)

¹Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA

²Institute of Ion Physics and Applied Physics, University of Innsbruck, Innsbruck, Austria

³Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA

⁴Chemical Sciences Division, National Oceanic and Atmospheric Administration, Boulder, CO, USA

⁵Atmospheric Chemistry Division, National Center for Atmospheric Research, Boulder, CO, USA ⁶Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA

⁷Department of Physics, University of Helsinki, Finland

⁸Division of Applied Chemistry, Faculty of Urban Environmental Sciences, Tokyo Metropolitan University, Japan

⁹Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA *Now at: Department of Civil & Environmental Engineering, Princeton University, Princeton, NJ, USA

^{**}Now at: Kimberly Clark Corporation, Neenah, WI, USA

^{***}Now at: Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, CO, USA

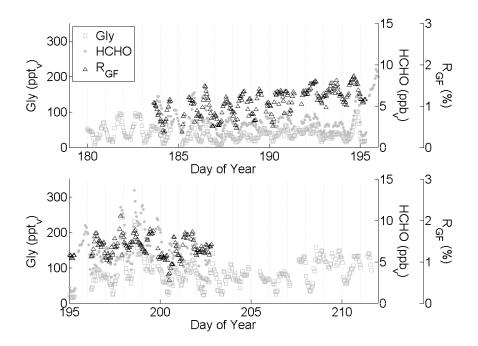


Fig. S1. One hour bin averaged Gly, HCHO, and R_{GF} during BEARPEX 2009.

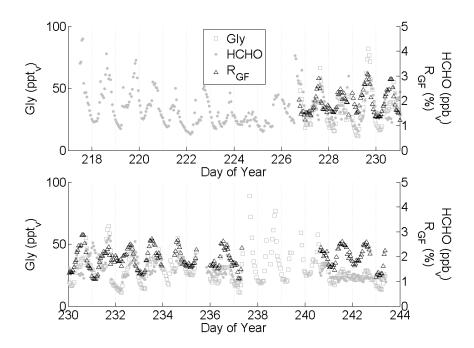
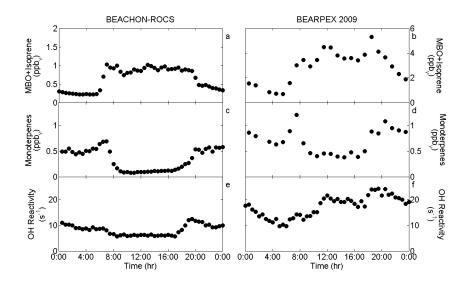
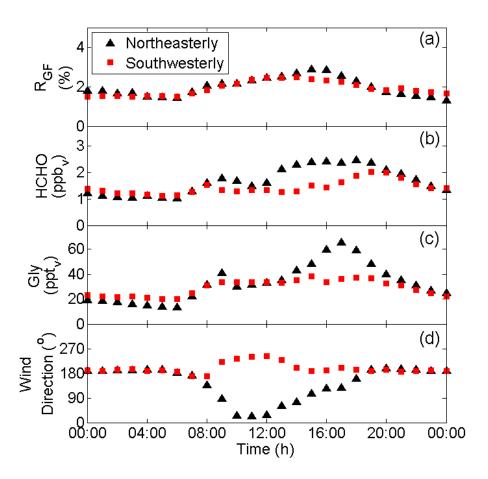
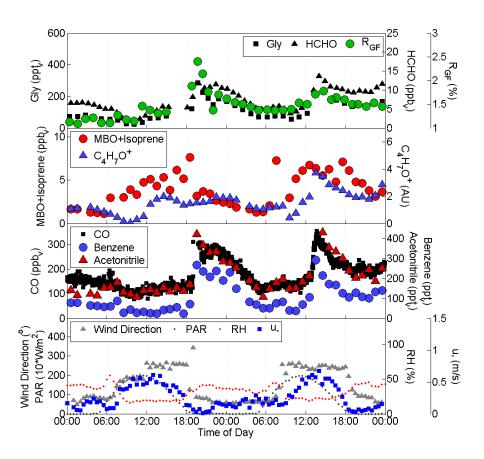
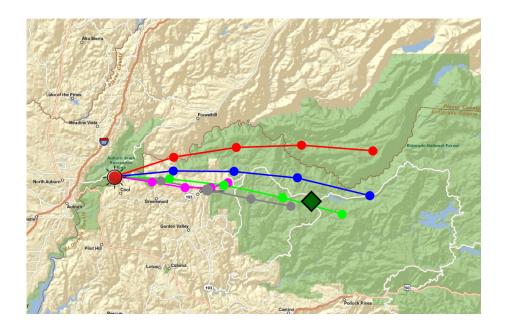
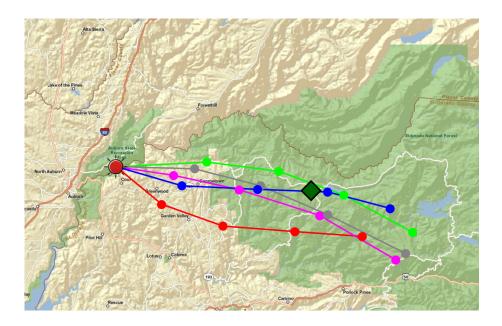
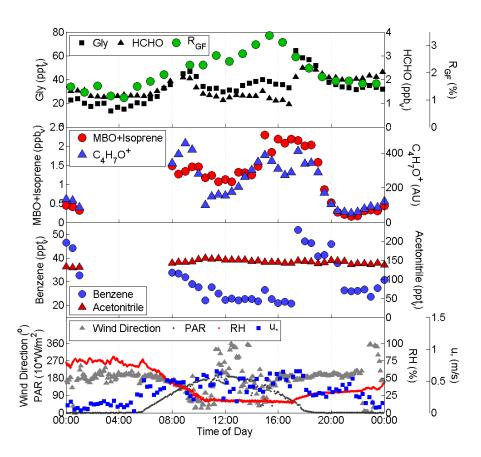



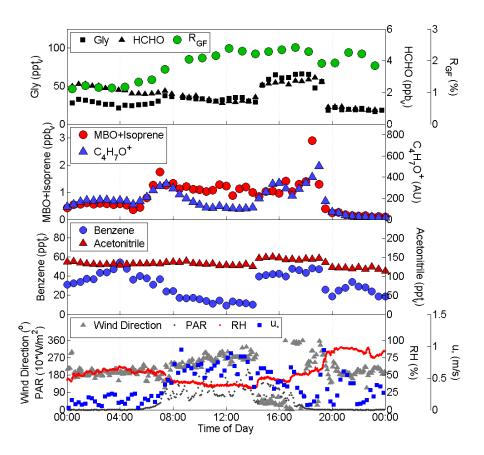
Fig. S2. One hour bin averaged Gly, HCHO, and R_{GF} during BEACHON-ROCS 2010.

Fig. S3. Thirty minute binned median diurnal profiles of MBO+Isoprene, monoterpenes, and OH reactivity during BEACHON-ROCS and BEARPEX 2009.


Fig. S4. Diurnal median profiles of R_{GF} , HCHO, Gly, and wind direction for the two different wind regimes during BEACHON-ROCS 2010.


Fig. S5. Comparison of Gly and HCHO (17.8 m inlet only) with other species and meteorological parameters for the MFI on 17 July during BEARPEX 2009.


Fig. S6. Four hour forward HYSPLIT trajectories for 16 July, 2009 originating at the MFI site (red symbol) at 50 m above ground level. Lines denote initial times of 14:00 (red), 15:00 (blue), 16:00 (green), 17:00 (grey), and 18:00 (purple). Filled circles denote plume position after each hour of travel time. The BEARPEX site is denoted by the green diamond.

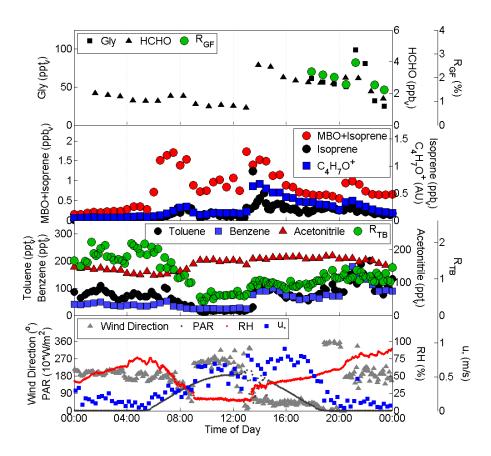

Fig. S7. Four hour forward HYSPLIT trajectories for 17 July, 2009 originating at the MFI site (red symbol) at 50 m above ground level. Lines denote initial times of 10:00 (red), 11:00 (blue), 13:00 (green), 14:00 (grey), and 16:00 (purple). Filled circles denote plume position after each hour of travel time. The BEARPEX site is denoted by the green diamond.

Fig. S8. Gly, HCHO, R_{GF} , other tracer species, and meteorological data during day BN1. Gly, HCHO, and R_{GF} are shown as binned averages, whereas other species are shown at full resolution. Data for MBO+Isoprene, $C_4H_7O^+$, benzene, and acetonitrile were measured via PTR-TOF-MS.

Fig. S9. Gly, HCHO, R_{GF} , other tracer species, and meteorological data during day BN2. Gly, HCHO, and R_{GF} are shown as binned averages, whereas other species are shown at full resolution. Data for MBO+Isoprene, $C_4H_7O^+$, benzene, and acetonitrile were measured via PTR-TOF-MS.

Fig. S10. Gly, HCHO, R_{GF} , other tracer species, and meteorological data during day BN3. Gly, HCHO, and R_{GF} are shown as binned averages, whereas other species are shown at full resolution. Data for MBO+Isoprene, $C_4H_7O^+$, benzene, and acetonitrile were measured via PTR-TOF-MS. Data shown for toluene was measured via TOGA, and R_{TB} is based on TOGA measurements of benzene and toluene.

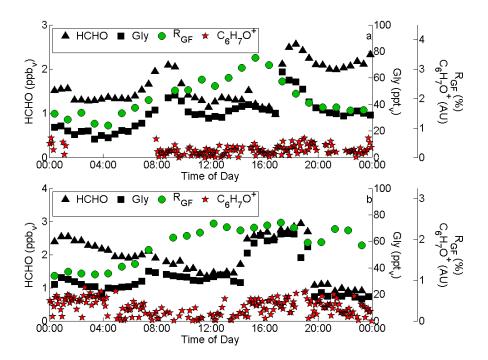


Fig. S11. Comparison of $C_6H_7O^+$ with Gly, HCHO, and R_{GF} during days (a) BN1 and (b) BN2. Note the lack of change in $C_6H_7O^+$ during the fast rises/falls in Gly and HCHO.