
ACPD
12, 33323–33358, 2012

Isoprene oxidation
via the HO2 pathway

Y. J. Liu et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Atmos. Chem. Phys. Discuss., 12, 33323–33358, 2012
www.atmos-chem-phys-discuss.net/12/33323/2012/
doi:10.5194/acpd-12-33323-2012
© Author(s) 2012. CC Attribution 3.0 License.

Atmospheric
Chemistry

and Physics
Discussions

This discussion paper is/has been under review for the journal Atmospheric Chemistry
and Physics (ACP). Please refer to the corresponding final paper in ACP if available.

Production of methyl vinyl ketone and
methacrolein via the hydroperoxyl
pathway of isoprene oxidation
Y. J. Liu1, I. Herdlinger-Blatt1,2, K. A. McKinney3, and S. T. Martin1,4

1School of Engineering and Applied Sciences, Harvard University, Cambridge,
Massachusetts, USA
2Institute of Ion Physics and Applied Physics, University of Innsbruck, Innsbruck, Austria
3Department of Chemistry, Amherst College, Amherst, Massachusetts, USA
4Department of Earth and Planetary Sciences, Harvard University, Cambridge,
Massachusetts, USA

Received: 1 December 2012 – Accepted: 4 December 2012 – Published: 21 December 2012

Correspondence to: K. A. McKinney (kamckinney@amherst.edu),
S. T. Martin (scot martin@harvard.edu)

Published by Copernicus Publications on behalf of the European Geosciences Union.

33323

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/12/33323/2012/acpd-12-33323-2012-print.pdf
http://www.atmos-chem-phys-discuss.net/12/33323/2012/acpd-12-33323-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
12, 33323–33358, 2012

Isoprene oxidation
via the HO2 pathway

Y. J. Liu et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Abstract

The photo-oxidation chemistry of isoprene (C5H8) was studied in a continuous-flow
chamber under conditions such that the reactions of isoprene-derived peroxyl radi-
cals (RO2) were dominated by hydroperoxyl (HO2) pathway. A proton-transfer-reaction
time-of-flight mass spectrometer (PTR-TOF-MS) with switchable H3O+ and NO+

5

reagent ions was used for product analysis. The products methyl vinyl ketone (MVK;
C4H6O) and methacrolein (MACR; C4H6O) were differentiated using NO+ reagent
ions. The MVK and MACR yields were 4.3±0.4 % and 3.2±0.3 %, respectively, for
HO2-dominant conditions at +25 ◦C and <2 % relative humidity. The respective yields
were 41.1±2.2 % and 28.8±1.2 % for NO-dominant conditions. The yields for HO2-10

dominant conditions imply a concomitant yield (i.e., recycling factor) of hydrogen ox-
ide radicals (HOx) of 15±0.7 % from the reaction of isoprene-derived RO2 with HO2.
Other isoprene oxidation products, believed to be organic hydroperoxides, also con-
tributed to the ion intensity at the same mass-to-charge (m/z) ratios as the MVK and
MACR product ions, and these products were selectively removed from the gas phase15

using a variable temperature cold trap (−40 ◦C) in front of the PTR-TOF-MS. These
hydroperoxide products were absent for NO-dominant conditions. When incorporated
into regional and global chemical transport models, the yields of MVK and MACR and
concomitant HOx yields reported in this study will improve the accuracy of simulations
of the HO2 reaction pathway of isoprene, which has been shown to make a significant20

contribution to the total reactivity of isoprene-derived RO2 radicals on a global scale.

1 Introduction

By abundance, isoprene (C5H8) is the dominant non-methane biogenic volatile organic
compound (VOC) in the atmosphere, and its reactive chemistry plays an important role
in the oxidative cycles of the atmosphere (Poisson et al., 2000). Isoprene oxidation is25

initiated for the most part by the addition of a hydroxyl radical (OH) across a double
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bond followed by rapid reaction of the alkyl radical with molecular oxygen (O2), result-
ing in the production of a series of isomeric hydroxyl-substituted alkyl peroxyl radicals
(ISOPOO; HOC5H8OO) (Fig. 1). The subsequent chemistry of the ISOPOO radicals
proceeds along several competing pathways: (i) reactions with nitric oxide (NO) (e.g.,
Tuazon and Atkinson, 1990), (ii) reactions with hydroperoxyl radicals (HO2) (e.g., Paulot5

et al., 2009), (iii) self- and cross- reactions with other organic peroxyl radicals (RO2)
(Jenkin et al., 1998), and (iv) possible unimolecular isomerization reactions (Peeters
et al., 2009; da Silva et al., 2010; Crounse et al., 2011). As illustrated in Fig. 2, un-
der real atmospheric conditions, the NO and HO2 pathways are the major competing
reaction pathways determining the fate of ISOPOO (Crounse et al., 2011). The RO210

pathway is less important because of low atmospheric VOC concentrations (typically
10 ppt to 10 ppb level). The reaction with NO dominates in polluted, urban regions of
the planet (Fig. 2). Many isoprene source regions, particularly remote tropical forests,
however, are characterized by sufficiently low NOx concentrations (e.g., Lelieveld et al.,
2008) that the HO2 pathway dominates. The HO2 pathway is estimated to account glob-15

ally for 53.5 % of the reactive fate of ISOPOO radicals (Crounse et al., 2011).
There remain significant uncertainties in the branching ratios and principal products

of isoprene photo-oxidation for the HO2 reaction pathway. Mechanisms employed in
many regional and global models, including the near-explicit Master Chemical Mecha-
nism (MCM v3.2) (Jenkin et al., 1997; Saunders et al., 2003), treat the reaction of HO220

with ISOPOO as a radical-termination reaction, as follows (R1a):

ISOPOO+HO2 → ISOPOOH+O2 (R1a)

in which organic hydroperoxides (ISOPOOH; HOC5H8OOH) are formed with 100 %
yield. A competing, less investigated pathway, however, might also be important (Dillon
and Crowley, 2008) (R1b):25

ISOPOO+HO2 → ISOPO+OH+O2 (R1b)

This pathway produces alkoxy radicals (ISOPO, HOC5H8O) and recycles the OH rad-
icals (recalling that the oxidation pathway was initiated by OH attack on isoprene).
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Although the same type of reaction has been demonstrated in the laboratory only for
carbonyl-bearing RO2 radicals (i.e., not HOC5H8OO) (Hasson et al., 2004; Jenkin et al.,
2007, 2008; Dillon and Crowley, 2008), theoretical studies suggest that it may occur for
peroxyl radicals in the form of RCHXOO and RCHXCH2OO in general, where X is an
electronegative atom, through a hydrotetroxide intermediate (Hasson et al., 2005). The5

internal hydrogen bonding between the hyrotetroxide and X lowers the energy of the
intermediate and transition state (Hasson et al., 2005). As shown in Fig. 1, two major
ISOPOO radicals, ISOPBOO and ISOPDOO, are in the above form, but the other two,
ISOPAOO and ISOPCOO, are not. Hence Reaction (R1b) may not occur for ISOPAOO
and ISOPCOO.10

Methyl vinyl ketone (MVK, C4H6O) and methacrolein (MACR, C4H6O) arise from the
decomposition of the two alkoxy isomers produced by reaction (R1b) (cf. Fig. 1):

ISOPBO
O2−→ MVK+HCHO+HO2 (R2)

ISOPDO
O2−→ MACR+HCHO+HO2 (R3)

15

Radical termination by Reaction (R1a) does not produce MVK or MACR. Hence, the
yields of MVK and MACR can serve as tracers for the occurrence of Reaction (R1b).
The experimental strategy of the present study is to take advantage of the different
yields of MVK and MACR following (R1a) and (R1b) to assess the importance of the
latter in the reaction of isoprene with OH under HO2-dominant conditions.20

The isoprene photo-oxidation experiments described herein were conducted in a
continuous-flow chamber. Efforts were made to ensure and to verify that the HO2 path-
way was the dominant fate of the ISOPOO species, as opposed to NO pathway or RO2
cross reactions. The yields of MVK and MACR were separately determined using a
proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS) with switch-25

able reagent ion capability (H3O+, NO+).
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2 Experimental

The reaction conditions for seven different isoprene photo-oxidation experiments are
listed in Table 1. Experiments #1 to #6 correspond to HO2-dominant conditions and
Experiment #7 to NO-dominant conditions. For Experiments #1 to #6, the reaction of
H2O2 with OH radicals was used to produce HO2 radicals: OH+H2O2 → HO2 +H2O.5

For Experiment #7, a flow of NO into the chamber in the absence of H2O2 was used,
so that the HO2 pathway was not important under these conditions. Experiment #1 was
the main experiment. For Experiments #2 through #6, the value of one chamber pa-
rameters was halved or doubled relative to Experiment #1 as an approach to validate
experimentally (i) that MVK and MACR were first-generation products and (ii) that the10

HO2 pathway was dominant (cf. Sect. 3.2–3.3). Experiment #7 for NO-dominant condi-
tions facilitated comparison of our results to those reported previously in the literature
for the yields of MVK and MACR under high-NOx conditions.

2.1 Harvard Environmental Chamber (HEC)

The experiments were carried out in the Harvard Environmental Chamber (Fig. S1).15

Detailed descriptions of the chamber were published previously (Shilling et al., 2009;
King et al., 2010). The chamber was operated as a continuously mixed flow reactor
(CMFR), with balanced inflows and outflows. A new polyfluoroalkoxy (PFA) Teflon bag
with a volume of 5.3 m3 was installed for these experiments. The mean reactor resi-
dence time was varied from 1.8 to 7.4 h. Temperature and relative humidity were held20

at 25±1 ◦C and < 2 %, respectively.
For the HO2-dominant Experiments (#1 to #6), isoprene (50 ppm in nitrogen, Scott

Specialty Gases), hydrogen peroxide (31.50 wt %, TraceSELECT@ Ultra, Fluka), and
dry air (pure air generator, Aadco 737) were continuously injected. Isoprene concentra-
tions were 59 to 118 ppb in the inflow and 10 to 35 ppb in the outflow from the chamber25

bag depending on reaction conditions (Table 1). A commercially-available ultra pure
H2O2 solution was used to minimize the content of nitrogen impurity as confirmed by
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NO and NOx measurements. Compared to earlier experiments using the HEC (King
et al., 2010), an updated H2O2 injection system was used to improve stability. An H2O2
solution was continuously introduced by a syringe pump into a warmed glass bulb.
The syringe pump was housed in a refrigerator at 4 ◦C to avoid H2O2 decomposition.
Dry air at a flow rate of 1–4 sLpm was blown through the bulb to evaporate the in-5

jected H2O2 solution and carry it into the chamber bag. Within the CMFR, photolysis of
H2O2 by ultraviolet light produced OH radicals, initiating isoprene oxidation. For the NO-
dominant Experiment (#7), NO (1.02 ppm NO in nitrogen with 0.01 ppm NO2 impurity;
Scott Specialty Gases) was injected in place of H2O2 to produce an inflow concentra-
tion of 28.2 ppb NO and 0.03 ppb NO2. Coupled NOx and HOx photochemical cycles10

were initiated by photolysis of NO2. The injected NO contributed to increasing the OH
concentration by promoting the conversion of HO2 to OH: HO2 +NO → OH+NO2.

The outflow from the HEC was sampled by a PTR-TOF-MS, a condensation particle
counter (CPC, TSI 3022A), an ozone monitor (Teledyne 400E), and a high-sensitivity
NOx analyzer (Eco Physics CLD 899 Y). The CPC instrument was used to measure the15

background number concentration of particles in the HEC, which was below 0.5 cm−3

during the experiments. This low particle number concentration suggests insignificant
new particle production. The NO concentration was below the detection limit (3σ) of
70 ppt for Experiments #1 to #6. The ozone monitor was used to estimate the H2O2
concentration in Experiments #1 to #6 by using the ratio of the absorption cross-section20

of H2O2 to that of O3 (254 nm) under the assumption that absorption was dominated
by H2O2. The H2O2 concentration measured by this method was 6.7 to 26 ppm for
Experiments #1 to #6. The expected concentration based on in-flow concentrations
but not accounting for physical and reactive losses inside the chamber bag was 8.0 to
32 ppm.25

2.2 Mass spectrometry

A proton-transfer-reaction time-of-flight mass spectrometry (PTR-TOF-MS 8000, Ioni-
con Analytik GmbH, Austria) equipped with switchable reagent ion capacity was used to
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measure the concentrations of gaseous organic species in the chamber. For sampling,
chamber air was pulled through a PFA sample line at a total flow rate of 1.25 sLpm. The
PTR-TOF-MS sub-sampled from this flow at a rate of 0.25 sLpm, resulting in a transit
time of 4 s between the chamber and the instrument.

The PTR-TOF-MS was described by Jordan et al. (2009a,b) and Graus et al. (2010).5

In the present study, either H3O+ or NO+ reagent ions were generated in the ion source
and used to selectively ionize organic molecules in the sample air. The use of NO+

reagent ions allows separation of isomeric aldehydes and ketones (Blake et al., 2006),
specifically MVK and MACR. The chemical ionization reaction by NO+ or H3O+ is soft,
typically resulting in little fragmentation, although relatively weakly bound species can10

still undergo some fragmentation in the drift tube (Smith and Spanel, 2005). The high-
resolution TOF detector (Tofwerk AG, Switzerland) was used to analyze the reagent
and product ions and allowed for exact identification of the ion molecular formula (mass
resolution > 4000).

A calibration system was used to establish the instrument sensitivities to isoprene,15

MVK, and MACR. Gas standards (5.12 ppm isoprene, 5.26 ppm MVK in N2; 5.27 ppm
MACR in N2, Scott Specialty Gases) were added into the sample flow at controlled
flow rates. In each experiment, the inlet flow was switched to dry air from the pure air
generator to establish background intensities.

Settings of the drift tube were optimized to measure MVK and MACR at high sensitiv-20

ity. The instrument was operated with a drift tube temperature of 60 ◦C and a drift tube
pressure of 2.2 mbar. In H3O+ mode, the drift tube voltage was set to 520 V, resulting
in an E /N = 118 Td (E , electric field strength; N, number density of air in the drift tube;
unit, Townsend, Td; 1 Td= 10−17 Vcm2). In NO+ mode, a drift tube voltage of 300 V was
used, resulting in E /N = 68 Td. At this reduced E/N ratio, ionization of MVK and MACR25

led to distinct product ions while retaining a highly sensitive instrument response.
PTR-TOF-MS spectra were collected at a time resolution of 1 min. A custom data

processing package was developed in Mathematica (ver 8.0, Wolfram Research, USA)
to analyze the recorded mass spectra. Using this package, the relative mass devia-
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tion was less than 10 ppm over the spectrum. The package consisted of several sub-
routines: peak shape fitting, mass calibration, peak assignment, and signal analysis
(cf. Supplement). Compared with the analysis method reported in Muller et al. (2010),
the main difference was in fitting of the asymmetric peak shape. Muller et al. (2010)
approximated the peak shape using the superposition of four Gaussian peaks, but this5

method did not work well for our peaks, possibly because of different instrument tuning.
Instead, we used several well established single-ion peaks (e.g., the peak for H18

3 O+

ion for H3O+ mode) to produce an empirically derived reference peak shape, which
was then used in the peak fitting routine.

2.3 Low-temperature trap10

The reactions of ISOPOO with HO2 can produce C5 products that have multiple func-
tional groups, including organic hydroperoxides ISOPOOH and its further oxidation
products dihydroxyl epoxides (IEPOX; cf. Fig. S2) (Paulot et al., 2009). These prod-
ucts possibly fragment after collision with H3O+ or NO+ in the PTR-TOF-MS (Smith
and Spanel, 2005), and the resultant fragment ions may have the same m/z values as15

the product ions of MVK and MACR because they all inherit the carbon skeleton from
isoprene. As an approach to separate possible ISOPOOH and IEPOX products from
MVK and MACR, prior to injection into the PTR-TOF-MS, the outflow from the HEC
was passed through a 1-m PFA coil (3/16 inch inner diameter) that was immersed in a
low temperature liquid bath. As the temperature of the bath was decreased in discrete20

steps from +25 to −40 ◦C, molecules of progressively lower vapor pressures sequen-
tially condensed in the coil and were thereby removed from the gas flow. This approach
is particularly suited to separating low-volatility compounds such as ISOPOOH and
IEPOX from high-volatility species like MVK and MACR. The quantification of MVK and
MACR was based on PTR-TOF-MS measurements downstream of the trap at −40 ◦C25

(cf. Sect. 3.1 and Sect. 3.6 for further discussion).
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2.4 Modeling with MCM v3.2

The contribution by different reaction pathways was estimated for each experiment us-
ing a kinetic box model (Chen et al., 2011). The kinetic scheme for isoprene chemistry
was extracted from the MCM v3.2 via website: http://mcm.leeds.ac.uk/MCM (Jenkin
et al., 1997; Saunders et al., 2003). Model runs were initialized using the conditions5

of each experiment (Table 1), with the exception of the H2O2 concentration. Instead of
using the H2O2 injection rates as shown in Table 1, the spectroscopically measured
steady-state H2O2 concentrations of each experiment were used as a constraint in the
model. The one-sun photolysis rates of the MCM model were scaled by 0.3 to match
the lower light intensity of the HEC.10

3 Results and discussion

3.1 Quantification of isoprene, MVK, and MACR

The NO+ mass spectra recorded for zero air, isoprene, MVK, and MACR standards
are shown in Fig. 3. The dominant product ion of the reaction of isoprene (C5H8) with
NO+ was the charge-transfer ion C5H+

8 (m/z 68.0621), which is in agreement with Karl15

et al. (2012). NO+ reacted with the aldehyde MACR (C4H6O) to yield mainly the de-
hydride ion C4H5O+ (m/z 69.0335) and a small amount of the C4H6O·NO+ cluster ion
(m/z 100.0393). NO+ reacted with the ketone MVK (C4H6O) to produce mainly the
C4H6O·NO+ cluster ion. Ion-molecule clustering reactions are favorable when no other
exothermic channel is available, as is especially the case for the reaction of NO+ with20

ketones (Španěl et al., 1997). The hydride ion (H−) transfer reaction is favorable for
aldehydes because extraction of the H− ion from a -CHO moiety requires less energy
than from a hydrocarbon chain. These ionization patterns have been observed for ke-
tones and aldehydes using NO+ in selective-ion flow-tube studies (SIFT; E /N = 0 Td)
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(Španěl et al., 2002). In comparison, the proton transfer reaction of MVK and MACR
with H3O+ gave rise dominantly to C4H7O+ (m/z 71.0492).

The sensitivities of the PTR-TOF-MS to isoprene, MVK, and MACR are listed in Ta-
ble 2 for trap temperatures of +25 and −40 ◦C. To account for possible matrix effects,
calibrations for both H3O+and NO+ were carried out for each experiment by standard5

addition to the outflow air from the chamber (i.e., prior to the low-temperature trap).
For both the H3O+and NO+ modes, the sensitivities did not depend on trap tempera-
ture. This temperature independence indicates that isoprene, MVK, and MACR did not
condense at a trap temperature of −40 ◦C. Hence, MVK and MACR were effectively
separated from other oxidation products of lower volatility by use of the trap at −40 ◦C10

(cf. Sect. 3.6). The isoprene, MVK, and MACR concentrations reported herein were
based on NO+ ionization and using the −40 ◦C trap prior to PTR-TOF-MS.

In an iterative process, the E /N value for NO+ mode was optimized to isolate the
product ions of MACR from those of MVK while retaining high instrument sensitivity
(cf. Fig. S3). Compared with an earlier drift tube study using NO+ (Blake et al., 2006),15

much less fragmentation was observed in the present study, both for MVK and MACR,
possibly because of the lower drift tube energies used here (i.e., E /N = 68 Td com-
pared to E /N = 165 Td). The good separation achieved with NO+ enabled separate
quantification of MVK and MACR in the mixed composition present in the chamber out-
flow. The small contribution of MACR to the C4H6O ·NO+ cluster ion was corrected for20

algebraically (cf. Eqs. (S1)–(S3) in the Supplement).
As a comparison point, the sensitivity of isoprene in NO+ mode measured in this

study agreed with the value reported by Karl et al. (2012) under similar E/N ratios (cf.
Supplement). With respect to calibration in H3O+ mode, the sensitivities of isoprene,
MVK, and MACR in H3O+ mode differed from the theoretically expected values by less25

than 10 % (Zhao and Zhang, 2004; de Gouw and Warneke, 2007). The signal for C3H+
5

(m/z 41.039), which is a common fragment of isoprene in H3O+ mode, was 6 % of the
main isoprene signal and lay within the range of 3 % to 16 % reported in the literature
(e.g., Ammann et al., 2004; McKinney et al., 2011).
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Table 1 presents the steady-state concentrations of isoprene, MVK, and MACR
measured in NO+ mode as well as the steady-state concentrations of isoprene and
MVK+MACR measured in H3O+ mode determined from the data at −40 ◦C. The total
concentration of MVK+MACR measured using H3O+ ionization agreed with the sum
of the speciated measurements using NO+ ionization for all Experiments #1 through5

#7 (R2 = 0.9999).

3.2 MVK and MACR yields

The yield of MVK (MACR) from isoprene oxidation is equal to the sum of the mathemat-
ical products of (i) the branching ratio leading to the precursors ISOPBOO (ISOPDOO)
in the initial reaction of isoprene with OH and (ii) the branching ratios to the channels10

forming ISOPBO (ISOPDO) in the subsequent ISOPBOO (ISOPDOO) reactions (cf.
Fig. 1). Analysis of reactant and product concentrations in the CMFR at steady state
provides a method for determination of the product yields. At steady state, the relation-
ship of mass balance for the sources and sinks of MVK is as follows:

0 =
(
YMVKk1c [OH]ssc

[
C5H8

]
ss

)
sources

−
(
k2c [OH]ss c [MVK]ss +

1
τ
c[MVK]ss +kwallc[MVK]ss

)
sinks

(1)15

in which c[M]ss is the steady-state chamber concentration of compound M, YMVK is the
yield of MVK from isoprene oxidation, τ is the mean residence time in the chamber, k1
and k2 are the reaction rate coefficients of isoprene and MVK with OH, respectively,
and kwall is the steady-state wall loss rate of MVK. Rearrangement of Eq. (1) leads to
the expression for the yield of MVK, as follows:20

YMVK =

(
k2c[OH]ss +1/τ +kwall

)
c[MVK]ss

k1c[OH]ssc
[
C5H8

]
ss

(2)

For YMACR, a direct analogy to Eq. (2) exists.
33333

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/12/33323/2012/acpd-12-33323-2012-print.pdf
http://www.atmos-chem-phys-discuss.net/12/33323/2012/acpd-12-33323-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
12, 33323–33358, 2012

Isoprene oxidation
via the HO2 pathway

Y. J. Liu et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

For use of Eq. (2), values of k1 and k2 were taken from the IUPAC database (Atkin-
son et al., 2006). A value of kwall = 0 s−1 was used based on the results of wall-loss
experiments for isoprene, MVK, and MACR that were performed separately in the HEC
(cf. Supplement). The value of c[OH]ss was calculated based on measurements of the
isoprene concentration prior to the reaction and at steady state, as follows:5

0 =
(

1
τ
c
[
C5H8

]
in

)
sources

−
(
k1c[OH]ssc

[
C5H8

]
ss +

1
τ
c
[
C5H8

]
ss

)
sinks

(3)

in which c[C5H8]inwas the inflow concentration of isoprene to the HEC. The steady-
state OH concentration inferred by use of Eq. (3) varied from 1.8 to 2.0×106 cm−3 for
Experiments #1 to #6.

Yields of MVK and MACR for each experiment are listed in Table 1. In the case of Ex-10

periment #1 for HO2-dominant conditions, the MVK and MACR yields were 4.6±0.3 %
and 3.2±0.2 %, respectively, for reaction at 25 ◦C and < 2 % RH. By comparison,
without low-temperature trap correction, the respective yields were 22.8±1.0 % and
12.6±0.5 %, respectively. Based on averaging the yield data of all the valid HO2-
dominant experiments, including Experiments #1, #2, #5 and #6 (cf. Table 1 and15

Sect. 3.3), a MVK yield of 4.3±0.4 % and a MACR yield of 3.2±0.3 % are obtained.
In the case of Experiment #7 for NO-dominant conditions, MVK and MACR were

produced in high yields as a result of the reaction of ISOPOO with NO (e.g., Tua-
zon and Atkinson, 1990). O3 produced as part of the NOx photochemical cycle also
reacted to a small extent with isoprene, MVK, and MACR. Equations (1)–(3) were20

therefore expanded to include this chemistry, with rate constants taken from the IUPAC
database (cf. Eqs. (S4)–(S6) in the Supplement). The ozone concentration (65 ppb)
measured in the chamber outflow was used, resulting in a calculated OH concentration
of 1.5×106 cm−3 with ozone correction. For the above ozone and OH concentrations,
90 % of isoprene reacted with OH and 10 % with ozone. The ozonolysis of isoprene25

also provided an additional source term for MVK and MACR. This term, with MVK
and MACR yields taken from Grosjean et al. (1993), was also included in the cal-
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culation (cf. Eqs. (S4)–(S6) in the Supplement). The resulting MVK and MACR yields
(Table 1) were 36.7±1.6 % and 31.7±1.0 % without ozone correction and 41.1±2.2 %
and 28.8±1.2 % with the correction.

As a caveat for consideration, the source term in Eq. (1) is written assuming that
MVK is not produced through any process other than as a first-generation product of5

OH reaction with isoprene. Secondary oxidation processes of some isoprene oxidation
products of the HO2 pathway, like ISOPOOH (C5H10O3) and IEPOX (C5H10O3), could
conceivably also produce some MVK and MACR and therefore represent an additional
source term. As one test of the data against this possibility, experiments were con-
ducted for halved (#2; 1.9 h) and doubled (#3; 7.4 h) chamber residence times (relative10

to 3.7 h in Experiment #1). For an increase (decrease) in chamber residence time, the
steady-state concentration of isoprene decreased (increased) while those of its oxida-
tion products increased (decreased). In these experiments, the MVK and MACR yields
can be expected to remain constant only in the absence of significant secondary oxida-
tion processes, which would introduce non-linearity to the measured yields. As shown15

in Fig. 4a, halving the residence time (Experiment #2, Table 1) left the yield unchanged
compared to Experiment #1. By comparison, doubling the residence time (Experiment
#3, Table 1) increased the MVK and MACR yields. Therefore, secondary processes
seemed to produce significant quantities of MVK and MACR only for τ � 3.7 h, and
shorter residence times such as in Experiment #1 produced yields representative of20

first-generation production.

3.3 HO2-dominant conditions

For the conducted experiments, the dominant regime for the fate of the ISOPOO rad-
icals, whether by reaction with HO2, NO, or RO2 or by isomerization, was assessed
both computationally with the assistance of MCM simulations and experimentally by25

empirical observation of the effects of varying the reaction conditions on the results.
The HO2 and

∑
RO2 concentrations modeled using the MCM together with measured

NO were used to calculate the contribution of each pathway to the fate of ISOPOO in
33335
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each experiment. The results are presented in Table 3. For Experiment #1, the modeled
concentrations of HO2 and

∑
RO2 were 540 ppt and 17 ppt, respectively, and the mea-

sured NO was below the detection limit (70 ppt), resulting in a calculated contribution
of 93 % from the HO2 pathway. This value represents a lower limit because as a strin-
gency test the calculation used a maximum value for the NO concentration (70 ppt).5

Actual NO concentrations were lower because of scavenging by HO2, perhaps on or-
der of 3 ppt based on the model simulation. The calculated contributions of the RO2
and isomerization pathways were negligible for all experiments.

The accuracy of the foregoing modeling analysis is subject to uncertainties in the
kinetic scheme of MCM v3.2 and the reaction rate coefficients of ISOPOO via each10

pathway. Therefore, Experiments #4 to #6 were designed to provide further empirical
verification that there was no considerable contribution to Experiment #1 from path-
ways other than HO2. Experiments #4 and #5 employed halved and doubled H2O2
inflow concentrations, respectively, thereby changing the steady-state concentration of
HO2 (cf. Table 3). In the case that other pathways significantly competed with HO215

(i.e., implying HO2 was not fully dominant), the MVK and MACR yields would have
increased (decreased) with a decrease (increase) of the H2O2 and hence HO2 con-
centrations (since, as represented in MCM (v3.2), the yields of MVK and MACR are
41.5 % and 26.5 % via the NO pathway and 35.5 % and 24.5 % via the RO2 path-
way, whereas yields measured in the Experiment #1 were much lower, 4.6±0.3 % and20

3.2±0.2 %, respectively). As shown in Fig. 4b, doubling the H2O2 concentration (Ex-
periment #5, Table 1) did not decrease the yield compared with Experiment #1. Halving
of the H2O2 concentration, however, increased the MVK and MACR yields (Experiment
#4, Table 1), implying that pathways other than HO2 made contributions to Experiment
#4. The conclusion is that the NO and RO2 pathways were not significant in Experiment25

#1 because of the high HO2 concentrations.
Experiment #6 was designed as a further empirical test of the importance of the

RO2 pathway relative to the HO2 pathway. Doubling isoprene inflow concentration in
Experiment #6 increased the steady-state concentration of RO2 (cf. Table 3) yet the
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MVK and MACR yields did not increase (Fig. 4c), supporting the conclusion that the
RO2 pathway was insignificant and the HO2 pathway dominated in Experiment #1.

3.4 Comparison with literature

Laboratory studies investigating isoprene oxidation chemistry generally have been cat-
egorized as either “high-NOx” or “low-NOx” experiments (Tuazon and Atkinson, 1990;5

Paulson et al., 1992; Miyoshi et al., 1994; Ruppert and Becker, 2000; Benkelberg et al.,
2000; Sprengnether et al., 2002; Lee et al., 2005; Karl et al., 2006; Paulot et al., 2009;
Navarro et al., 2011; Crounse et al., 2011). Figure 5 shows a comparison of the yields of
MACR and MVK quantified in this study to the yields reported in earlier “high-NOx” and
“low-NOx” experimental studies and also the yields represented in MCM. The yields of10

MVK and MACR via the NO pathway quantified in our NO-dominant experiments are
in good agreement with earlier “high-NOx” experiments. Our observations also agree
with the yields used in the MCM for the NO pathway.

The yields of MVK and MACR via the HO2 pathway reported herein are 60–90 %
lower than the yields reported in other “low-NOx” experiments (Miyoshi et al., 1994;15

Ruppert and Becker, 2000; Benkelberg et al., 2000; Lee et al., 2005; Navarro et al.,
2011). Several factors may contribute to this difference. For all of these studies, the
RO2 pathway was expected to have a significant or even dominant contribution to
the ISOPOO chemistry because high initial isoprene concentrations (1–100 ppm) were
used, as illustrated in Fig. 2. Miyoshi et al. (1994) found that the yields of MVK and20

MACR increased for higher isoprene:H2O2 ratios, an experimental parameter which
regulated the ratio of RO2 to HO2. Navarro et al. (2011) likewise reported that the
yields of MVK and MACR dropped as the modeled ratio of HO2 to RO2 increased from
0.1 to 1. These findings suggest that both the RO2 and the HO2 channels contributed to
the observed MVK and MACR production in these “low-NOx” experiments, with higher25

yields of MVK and MACR from the RO2 pathway than from the HO2 pathway, as sup-
ported by currently accepted mechanisms including the MCM (Fig. 5). Another issue
for some of the “low-NOx” studies is that the background NO concentration was typi-
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cally not well measured, e.g., < 100 ppb of NOx reported in the study by Ruppert and
Becker (2000). NOx and HONO off-gassing have been observed in many chamber
systems (Carter et al., 2005; Rohrer et al., 2005). In the present study we found that
injection of H2O2 can increase the measured NOx level in the reactor depending on the
content of nitrogen impurity in the H2O2 solution. An unaccounted contribution from the5

background NO in the earlier “low-NOx” experiments, therefore, could be another rea-
son for the higher reported yields. The present study achieved low NO concentrations
(verified experimentally to be below the detection limit of 70 ppt) by use of a high-purity
H2O2 solution and a bag never exposed to high concentrations of NOx and operated in
a CMFR configuration.10

Paulot et al. (2009) probed the HO2 pathway using ppb-level isoprene concentrations
and negative chemical ionization mass spectrometry (CIMS). A total yield of MVK and
MACR was reported because the CIMS instrument did not separately measure iso-
meric MVK and MACR. This yield was 12±12 % via the HO2 pathway, and the large
uncertainty was tied to a small initial amount of NOx present initially in the chamber15

(Paulot et al., 2009). Our results (7.5±0.5 % for MVK+MACR) fall into the yield range
suggested by their study.

3.5 HOx regeneration via the reaction of HO2 and ISOPOO

The production of MVK and MACR from ISOPOO through the HO2 reaction pathway
is concomitant with OH production, according to Reaction (R1b). Therefore, the MVK20

and MACR yields for HO2-dominant conditions imply a concomitant yield of hydroxyl
radical from (R1b) of 7.5±0.5 %. This value is slightly higher than the OH product yield
reported by Dillon and Crowley (2008) (< 6 %) for another C5 radical (HOC5H10OO),
but is consistent with more recent work from the same group, which constrained the
OH yield from Reaction (R1b) to < 15 % for ISOPOO (Taraborrelli et al., 2012). Re-25

actions (R2) and (R3), which follow Reaction (R1b), also regenerate HO2 radicals,
corresponding to a total HOx (OH+HO2) recycling ratio of 15±0.7 % compared with
the radical termination channel Reaction (R1a).
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3.6 Organic hydroperoxides and epoxides

Changes in the signal intensities of C5H+
8 , C4H5O+, and C4H6NO+

2 ions produced us-
ing the NO+ reagent ion are shown in Fig. 6 for stepwise decreases in trap tempera-
ture from +25 to −40 ◦C. Results are shown for Experiments #1 and #7, representing
HO2-dominant and NO-dominant conditions, respectively. The ion intensities plotted5

in Fig. 6 nominally represent isoprene, MACR, and MVK: the data show that in the
HO2-dominant experiments additional species contributed to these ions for trap tem-
peratures warmer than −30 ◦C. The more general formula C4H6NO+

2 is therefore used
in place of C4H6O·NO+ because specific formulas of the additional species are not
known.10

The signal intensity for the C5H+
8 ion did not depend on trap temperature for either

dominant oxidation pathway. The implication is that there was no chemical interfer-
ence for isoprene detection via the C5H+

8 ion. Likewise, the signal intensities of the
C4H5O+ and C4H6NO+

2 ions did not depend on temperature for the NO-dominant ex-
periments, implying that these ions represented the instrument response to MACR15

and MVK in those experiments. By comparison, the signal intensities of the nominal
C4H5O+ and C4H6NO+

2 ions depended strongly on temperature from 0 to −30 ◦C in the
HO2-dominant experiments, implying the presence of other molecular products that
were removed at low temperature. The signal intensities were independent of tem-
perature from −30 to −40 ◦C, meaning that the C4H5O+ and C4H6NO+

2 ions at −40 ◦C20

represented the instrument response to MACR and MVK. Temperature-dependent pat-
terns of signal intensity using the H3O+ reagent ions (Fig. S4) were similar to the results
shown in Fig. 6 for the NO+ reagent ions.

For the HO2-dominant experiments, the signal intensities of the C4H5O+ and
C4H6NO+

2 ions were stable at temperatures warmer than 0 ◦C. As the trap tempera-25

ture cooled below 0 ◦C, the signal intensities first decreased and then returned to the
original level. This dip-restore behavior suggests adsorption on the cold inner walls of
the trap coil followed by thermodynamic equilibration between partial and vapor pres-
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sures with time. As the trap temperature decreased further, the dip in signal intensity
increased and the rate of signal recovery decreased, consistent with a longer approach
to equilibrium for decreased vapor pressures at lower temperatures. For −30 ◦C, signal
recovery was no longer observed, suggesting that the surface uptake process transi-
tioned from adsorption to condensation.5

With high plausibility, the condensing species can be inferred to be a mixure of
organic hydroperoxides (ISOPOOH) and possibly epoxides (IEPOX) based on their
physical properties and the dominant chemical pathways. There are two lines of ev-
idence. (1) The condensing species were absent for the NO-dominant experiments,
implying that the condensing products were produced exclusively by the HO2 pathway.10

ISOPOOH (C5H10O3) and IEPOX (C5H10O3) are oxidation products formed exclusively
by the HO2 pathway. Paulot et al. (2009) reported a yield of > 70 % for ISOPOOH from
the reaction of HO2 + ISOPOO and a yield of > 75 % for IEPOX from further oxidation
of ISOPOOH by OH. (2) The condensing species had lower volatilities than MVK and
MACR because neither MVK nor MACR condensed at −40 ◦C (Table 2). Compared with15

MVK and MACR, the ISOPOOH and IEPOX species have multiple functional groups as
well as an additional carbon atom. Correspondingly, their vapor pressures are expected
to be lower than MVK and MACR (Pankow and Asher, 2008).

The expected product ions of ISOPOOH and IEPOX assuming no fragmentation
were not observed in the chamber air using either H3O+ or NO+ reagent ions. There-20

fore, either thermal decomposition in the instrument (60 ◦C) or fragmentation following
ionization occurred to these two compounds in both modes. A set of experiments was
carried out to investigate how operating parameters of the PTR-TOF-MS can influence
the fragmentation or decomposition of the species condensing in the low temperature
trap. The results are included in the Supplement. The conclusion of the analysis is that25

ionization processes rather than thermal decomposition likely explain the production of
ions at m/z values identical to those of MVK and MACR.

To further assess whether ISOPOOH and IEPOX can fragment to ions at the same
m/z ratio as the product ions of MVK and MACR, the fragmentation patterns for their
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authentic standards or proxy compounds were tested. β-IEPOX (cf. Fig. S2), which is
the most abundant IEPOX isomer produced from isoprene (Paulot et al., 2009), was
synthesized following the procedure of Zhang et al. (2012). The ionization of β-IEPOX
mainly led to C5H7O+ ions in H3O+ mode and C5H6O+ ions in NO+ mode, which are
different from the product ions of MVK and MACR. Under the assumption of similar5

fragmentation patterns for all the isomers of IEPOX, the conclusion is that IEPOX is not
the condensing species that contributes to the same m/z ratio as the MVK and MACR
ions.

Because no ISOPOOH standards were available, tert-butyl hydroperoxide (M =
C4H10O3) was instead tested as a proxy compound. The main product ions in-10

cluded (M−(OOH))+, (MH−(OH)−(CH3))+, and (MH−(H2O))+ in H3O+ mode. For NO+

mode, (M−(OOH))+ and (M ·NO−(OH)−(CH3))+ were observed. As illustrated in Reac-
tion (R4), the production of (M ·NO−(OH)−(CH3))+ in NO+ mode can result in a loss of
a β-carbon and an -OH from the -OOH group to produce a carbonyl compound upon
reaction with NO+. A similar pathway can produce (MH−(OH)−(CH3))+ in H3O+ mode.15

Under the supposition that similar chemical processes can occur for M= ISOPOOH,
the product ions are identical to those produced by MVK and MACR in the PTR-TOF-
MS analysis (Reactions (R5) and (R6)). A further line of evidence in favor of hydroper-
oxides is the variation of signal intensities with chamber residence time (cf. Fig. S5).
The equivalent concentrations of the interference for MVK and MACR (defined as the20

difference in the concentrations of MVK and MACR quantified at the trap temperature
of 25 ◦C and those at −40 ◦C) were higher for shorter residence times, suggesting that
the contributing compounds are first-generation products, i.e., hydroperoxides.
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4 Conclusions and atmospheric implications

Photo-oxidation experiments of isoprene were conducted in a steady-state chamber for5

HO2-dominant and NO-dominant conditions. The concentrations of isoprene, MVK, and
MACR in the chamber were measured with a PTR-TOF-MS equipped with switchable
H3O+ and NO+reagent ion capacities. The use of NO+ allowed separate quantifica-
tion of isomeric MVK and MACR, which was not possible by the more commonly used
H3O+. For both the H3O+ and NO+ modes, some low-volatility oxidation products pro-10

duced under HO2-dominant conditions, possibly isoprene hydroperoxides, fragmented
to ions having the same m/z ratios as the product ions of MVK and MACR. These
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low-volatility compounds, which served as an interference of MVK and MACR quantifi-
cation, were removed by adding a low-temperature trap (−40 ◦C) in the sampling line
prior to the PTR-TOF-MS.

These results have implications with respect to the use of PTR-MS instruments to
elucidate isoprene chemistry in clean atmospheric environments, which are typically5

characterized by high HO2/NO ratios (i.e., favoring HO2 dominant pathway) (Fig. 2).
The C4H7O+ ions in H3O+ mode are usually exclusively attributed to MVK and MACR
(de Gouw and Warneke, 2007; Blake et al., 2009). The results of the present study,
however, showed that some low-volatility oxidation products of isoprene produced via
the HO2 pathway, possibly hydroperoxides, fragment to ions at the same m/z ratios as10

the product ions of MVK and MACR. Caution is therefore needed with respect to inter-
ference compounds when using the PTR-MS for measurements of MVK and MACR in
environments of high HO2/NO ratios.

With respect to the yields of MVK and MACR, a steady-state approach was used in
this study’s analysis. This approach was validated by the good agreement between the15

yields measured under high-NOx conditions and those reported in the literature. For the
low-NOx conditions of the present study, both kinetic modeling and inferential experi-
mental evidence were consistent with HO2 pathway as the dominant fate of ISOPOO.
Under these conditions, the measured yields of MVK and MACR were 4.3±0.4 % and
3.2±0.3 %, respectively.20

The yields of MVK and MACR reported in this study for the reaction of ISOPOO
and HO2 correspond to a concomitant HOx yield (i.e., recycling) of 15±0.7 % (Re-
actions (R1b), (R2) and (R3)). This HOx recycling is not taken into account in widely
employed chemical mechanisms of the atmospheric chemistry of isoprene. A grow-
ing body of observational evidence suggests significant discrepancies in modeled and25

measured OH concentrations in atmospheric environments having high isoprene emis-
sions and low NOx concentrations (e.g., Lelieveld et al., 2008; Stone et al., 2011). An
OH-recycling channel for the reaction of ISOPOO and HO2 was proposed to explain
the discrepancy. Recycling of 200–300 % OH radicals (i.e., amplification) was needed
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to close the gap between model predictions and atmospheric measurements over the
coastal Amazon rainforest (Lelieveld et al., 2008; Butler et al., 2008) as well as in a
Southeast Asian rainforest (Stone et al., 2011). Therefore, the present study’s result of
15±0.7 % for HOx recycling is insufficient to close the gap. Other OH-recycling mecha-
nisms may therefore be important (Peeters et al., 2009; Crounse et al., 2011). Another5

possibility, suggested by a recent report on instrumental issues, could be that the gap
between measured and modeled OH was not so large as originally reported (Mao et al.,
2012).

Supplementary material related to this article is available online at:
http://www.atmos-chem-phys-discuss.net/12/33323/2012/10

acpd-12-33323-2012-supplement.pdf.
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Table 1. Summary of experimental conditions and results.

Mixing ratio at steady state (ppb)d Yield (%)d

Chamber
NO+ mode H3O+ mode

MVK MACRConditiona

Isoprene MVK MACR Isoprene MVK+MACR

#1 Main experimentb 16.0±0.3 1.3±0.1 0.8±0.1 15.8±0.7 2.1±0.1 4.6±0.3 3.2±0.2
#2 0.5 τref 25.4±0.5 1.1±0.1 0.8±0.1 25.2±1.1 2.0±0.1 4.3±0.3 3.4±0.3
#3 2 τref 9.5±0.2 1.6±0.1 0.8±0.1 9.3±0.4 2.4±0.1 6.6±0.4 4.3±0.3
#4 0.5 c[H2O2]in, ref 16.9±0.4 1.7±0.1 1.1±0.1 17.3±0.7 2.7±0.1 6.1±0.3 4.4±0.4
#5 2 c[H2O2]in, ref 15.8±0.3 1.3±0.1 0.7±0.1 16.2±0.7 2.0±0.1 4.5±0.4 2.8±0.3
#6 2 c[C5H8] in,ref 34.5±0.7 2.1±0.1 1.6±0.1 34.1±1.5 3.6±0.2 3.7±0.2 3.2±0.2
#7 NO-dominantc 18.3±0.4 10.3±0.4 7.9±0.2 18.4±0.8 18.1±0.9 41.1±2.2 28.8±1.2

a Experiment #1 is the main experiment. For the other experiments, chamber conditions varied with respect to
Experiment #1 are listed. c[M]in, ref represents the inflow mixing ratio of species M for the the main experiment. τref is
the mean residence time in the chamber for the main experiment. For example, 0.5 c[H2O2]in, ref in Experiment #4
indicates that the inflow H2O2 mixing ratio for Experiment #4 was half that of the main experiment. Other experimental
conditions remain unchanged.
b Condition for main experiment: c[C5H8]in, ref=59 ppb; c[H2O2]in, ref=16 ppm; no injection of NOx and measured NO
less than minimum detection limit (70 ppt); τ = 3.7 h; 25 ◦C; < 2 % relative humidity.
c Chamber condition for NO-dominant experiment: no injection of H2O2; c[NO]in = 28 ppb; other conditions same as
those of the main experiment.
d (mean value) ± (standard deviation) for mixing ratios and yields. The uncertainties were estimated by Monte Carlo
methods (cf. Supplement).
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Table 2. Sensitivities of the PTR-TOF-MS to isoprene, MVK, and MACR.

Species Chemical
NO+ mode H3O+ mode

Formula Product Sensitivity (ncpsppb−1)a Product Sensitivity (ncpsppb−1)

ions +25 ◦Cb −40 ◦Cb ions +25 ◦C −40 ◦C

Isoprene C5H8 C5H+
8 15.7±0.2c 15.9±0.3 C5H+

9 16.8±0.7 16.2±0.6
MVK C4H6O C4H6O ·NO+ 23.1±0.9 23.7±0.6 C4H7O+ 30.6±1.4 29.2±0.7
MACR C4H6O C4H5O+ 15.0±0.4 15.0±0.2 C4H7O+ 30.0±1.4 28.7±1.1

C4H6O ·NO+ 8.8±0.4 8.9±0.2

a ncps is the measured counts per second (cps) normalized to a primary ion signal of 106 cps.
b Sensitivities were determined for trap temperatures of +25 and −40 ◦C.
c (mean value) ± (standard deviation) for sensitivities determined across Experiments #1 through #7.
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Table 3. Modeled relative importance of competing reaction pathways for Experiments #1 to
#7.

Mixing ratios (ppt)
Reaction rates with

Contribution by pathway (%)ISOPOO (10−2 s−1)c

NOa HOb
2

∑
ROb

2 NO HO2 RO2 ISOM NO HO2 RO2 ISOM

#1 < 70 541 17 1.5 23 0.1 0.2 < 6 93 0.3 0.8
#2 < 70 532 23 1.5 23 0.1 0.2 < 6 93 0.4 0.8
#3 < 70 540 13 1.5 23 0.1 0.2 < 6 93 0.2 0.8
#4 < 70 354 25 1.5 15 0.1 0.2 < 9 89 0.7 1.2
#5 < 70 795 12 1.5 34 0.1 0.2 < 4 95 0.1 0.6
#6 < 70 500 35 1.5 21 0.2 0.2 < 7 92 0.7 0.9
#7 910 28 25 20 1.2 0.1 0.2 93 6 0.5 0.9

a Value measured by NOx analyzer, which had a detection limit of 70 ppt.
b Value simulated using MCM v3.2 for the employed reaction conditions.
c Reaction rate coefficients of ISOPOO used here: 8.8×10−12 cm3 molec−1 s−1 for NO, 1.74×10−11 cm3 molec−1 s−1

for HO2 (Atkinson et al., 2006), and 0.002±0.001 s−1 for isomerization (ISOM, Crounse et al., 2011). A single
effective reaction rate coefficient of 1.8×10−12 cm3 molec−1 s−1 was used for the RO2 family. This value represents the
average reaction rate coefficients of the ISOPOO isomers weighted by their respective branching ratios in MCM v3.2.
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Figure 1

Fig. 1. Mechanism of isoprene oxidation to produce MVK and MACR as first-generation prod-
ucts. Results are shown for NO and RO2 pathways, as represented in MCM v3.2. Branching
ratios to specific products are shown in parentheses. The present study evaluates the extent,
represented by the question mark, to which ISOPOO alkyl peroxy radicals might also react with
HO2 to produce ISOPO alkoxy radicals (Reaction R1b) and thereby MVK and MACR (Reactions
R2–R3).
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Fig. 2. Diagram of environmental factors that affect the dominant reaction pathways of ISOPOO
radicals. The isomerization pathway is not included because of its small contribution in the real
atmosphere and in most laboratory experiments.
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Fig. 3. Mass spectra of zero air, isoprene, MVK, and MACR measured using PTR-TOF-MS
with NO+ reagent ion. Insets show expansions near m/z 69 and m/z 100, corresponding at m/z
69.0335 to C4H5O+ contributed by MACR and isoprene, at m/z 69.0654 to C13

4 CH+
8 contributed

by isoprene, and at m/z 100.0393 to C4H6O ·NO+ contributed by MVK and MACR.
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Fig. 4. Measured yields of MACR (top) and MVK (bottom) for HO2-dominant conditions. (A)
Variable residence time. (B) Variable inflow concentration of H2O2. (C) Variable inflow concen-
tration of isoprene. The labeled experiment numbers refer to Table 1.
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Figure 5

Fig. 5. Comparison of the MVK and MACR yields of this study with those of earlier studies for
conditions described as “low NOx” and “high NOx” (green bars) and with those of RO2, HO2, or
NO pathways represented in MCM (grey bars). The “low NOx” studies might have represented
dominant or mixed conditions by RO2, HO2, or NO pathways depending on the experimental
procedures of each study. Cited studies: Tuazon and Atkinson (1990), Paulson et al. (1992),
Miyoshi et al. (1994), Benkelberg et al. (2000), Ruppert and Becker (2000), Sprengnether
et al. (2002), Lee et al. (2005), Karl et al. (2006), and Navarro et al. (2011). The modeled
ratio of HO2 to RO2 is 0.1 and 1 in Navarro 2011 Exp a and Exp b, respectively.
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Fig. 6. Time series of (top) trap temperature and (bottom) signal intensities of C5H+
8 (m/z

69.0654), C4H5O+ (m/z 69.0335), and C4H6NO+
2 ions (m/z 100.0393). These ions nominally

represent isoprene, MACR, and MVK, respectively, when using the NO+ reagent ion (cf. Fig. S4
for H3O+). Results are shown both for HO2- and NO-dominant conditions (Experiments #1 and
#7).
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